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----------------------------------------------------------------------------------------------------------

Abstract. 

The ionised monoxime, 1-phenyl-1,2-propanedione-2-oxime (ppdm) reacts 

smoothly with trimethylplatinum(IV) sulfate in aqueous acetone, to form the 

complex fac-[PtMe3(ppdm)(H2O)] 1 in high yield.   1 Reacts with 3,5-lutidine and 

2,2'-bipyridine to form stable 1:1 adducts, viz. fac-[PtMe3(ppdm)(3,5-lut)] 2 and 

fac-[PtMe3(ppdm)(bipy)] 3.  In complexes 1 and 2, the ionised monoxime 

behaves in a N/O bidentate chelate fashion, whereas in 3, ppdm is co-ordinated 

to the metal moiety in a monodentate fashion, via the oximate N donor atom.   

The parent complex, 1, dissolves in polar solvents to form species of general 

formulae fac-[PtMe3(ppdm)(solv)] (solv = DMSO, methanol or acetone), which 

undergo an intramolecular "windscreen-wiper" fluxional rearrangement.   The 

stereodynamics of the fluxional process have been measured in CD3OD and 

[D6]DMSO solution by two-dimensional exchange spectroscopy; ∆G
‡ (298 K) is 

73.6 kJ mol-1 and 88.5 kJ mol-1, respectively.   The effects of the solvent on the 

energetics and a possible mechanism for the fluxional process are discussed. 

---------------------------------------------------------------------------------------------------------- 
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Introduction. 

In a previous study1 of trimethylplatinum(IV) complexes of the 

physiologically active monoxime butane-2,3-dione monoxime (Hbdm),2 it was 

shown that, in the three complexes prepared, viz. [PtMe3(bdm)]2, 

[PtMe3(bdm)(py)] and [PtMe3(bdm)(bipy)], the ionised ligand (bdm) adopted three 

different modes of co-ordination.   Furthermore, in the parent complex, 

[PtMe3(bdm)]2, the oximate ligand appears to display two different configurations; 

 an ionised hydroxy-oxime configuration in the solid-state and in protic solvents, 

and a carbonyl-oxime configuration in aprotic solvents (Figure 1).  

 

The parent complex, [PtMe3(bdm)]2, is soluble only  in co-ordinating solvents, in 

which it dissociates into solvent-bonded monomeric species, [PtMe3(bdm)(solv)] 

(solv = co-ordinating solvent).   The resulting complexes (solv = dimethyl 

sulfoxide, methanol or acetone) were shown to undergo a novel "windscreen-

wiper" fluxional rearrangement.   The energetics of the rearrangement were 

measured by two-dimensional exchange spectroscopy (EXSY) in [D4]methanol; 

∆G
‡ (298 K) was ca. 74 kJ mol-1.   It was therefore of interest to study the 

behaviour of the related monoxime, 1-phenyl-1,2-propanedione-2-oxime 

(Hppdm), which can only adopt a carbonyl-oxime configuration when ionised.   As 

with Hbdm, few complexes of Hppdm have been reported hitherto.   Aromatic 

carbonyl oximes are generally regarded as poor chelating agents, and the 

complexes, if formed at all, are usually unstable.3,4   The X-ray crystal structure of 

the cobalt(III) complex, [Co(ppdm)3], has been reported,4 and is presumably the 

same compound as that described as the characterisation product of the ligand.5 

  In contrast, like Hbdm, the ionised ligand 1-phenyl-1,2-propanedione-2-oximate 

(ppdm) reacts readily with trimethylplatinum(IV) sulfate in aqueous media, to form 

a stable Pt-N=C-C=O chelated complex.   The parent complex, [PtMe3(ppdm)] 1, 

which is monomeric (with a water molecule occupying the sixth co-ordination 

site), reacts readily with 3,5-lutidine and 2,2'-bipyridine in benzene, to form the 

1:1 adducts, [PtMe3(ppdm)(3,5-lut)] 2 and [PtMe3(ppdm)(bipy)] 3, respectively. 
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Experimental. 

Materials.-    1-Phenyl-1,2-propanedione-2-oxime was purchased from Aldrich 

Chemical Company and used without further purification.   Trimethylplatinum(IV) 

sulphate was prepared by our previously published procedure.1 

 

Synthesis of [PtMe3(ppdm)(H2O)] 1.-   1-Phenyl-1,2-propanedione-2-oxime (800 

mg, 0.49 mmol) was added as a solid to a stirred aqueous acetone solution 

(50:50 v/v) of trimethylplatinum(IV) sulfate, [(PtMe3)2SO4.4H2O], (500 mg, 0.77 

mmol).   Sodium acetate trihydrate (0.50 g, 3.67 mmol) was added to the 

resulting clear orange solution.  The reaction mixture was stirred for ca. 0.5 h, 

during which time an orange coloured solid precipitated.   The solid product was 

isolated by filtration, washed with water and dried in vacuo.   Recrystallisation 

from acetone-hexane gave 390 mg (60%) of pure, orange [PtMe3(ppdm)(H2O)]. 

 

Synthesis of [PtMe3(ppdm)(3,5-lut)] 2.-   3,5-Lutidine (0.20 cm3) was added to a 

stirred suspension of [PtMe3(ppdm)(H2O)] (100 mg, 0.24 mmol) in 10 cm3 of 

benzene.   The reaction mixture was stirred for ca. 1.5 h.   The resulting pale pink 

solution was then evaporated to dryness in vacuo and the solid residue 

crystallised from benzene-hexane to yield a red-pink solid.   Yield; 78 mg, 64%. 

 

Synthesis of [PtMe3(ppdm)(bipy)] 3.-   2,2'-Bipyridine (0.150 mg, 0.64 mmol)) was 

added to a stirred suspension of [PtMe3(ppdm)(H2O)] (150 mg, 0.37 mmol) in 15 

cm3 of benzene.  After ca. 3 h. stirring at ambient temperature, a clear yellow 

solution was obtained.   Concentration of the mother liquor to ca. 5 cm3 
in vacuo, 

and addition of hexane yielded crystalline, yellow [PtMe3(ppdm)(bipy)].   Yield; 

162 mg, 81%. 

 

Physical methods.-   Hydrogen-1 NMR spectra were recorded in [D6]dimethyl 

sulfoxide (DMSO), [D4]methanol, [D6]acetone or CDCl3 solution, on either a 



 
 

4 

Bruker AC300 or a Bruker AC400 Fourier Transform spectrometer, operating at 

300.13 and 400.13 MHz, respectively.   Chemical shifts are quoted in ppm, 

relative to tetramethyl silane as an internal standard.   NMR probe temperatures 

were controlled by a standard B-VT 2000 unit; temperatures were checked 

periodically against a standard sample of methanol in [D4]methanol, and are 

considered accurate to within ± 1 oC.  Two-dimensional exchange spectra were 

obtained using the Bruker NOESYPH program,6 which generates the pulse 

sequence D1-90o-D0-90o-D9-90o-free induction decay.   Spectra were typically 

recorded with 512 words of data in f1 and f2, and transformed with 1024 words of 

data.   The initial delay, D0, was set at 3µs and the relaxation delay, D1, was 2.0 

s.   The mixing time, D9, was varied according to the complex under 

investigation, and the experimental temperature.  Signal intensities were obtained 

from the resulting two-dimensional spectra by volume integration.   Integrations 

were performed five times; mean values were used to determine the exchange 

rates from the program D2DNMR.7   The activation parameters were calculated 

from a least-squares fit of the linearised Eyring and Arrhenius equations.   Errors 

quoted are those defined by Binsch and Kessler.8    

 

Infrared spectra were recorded as pressed CsI discs on a Nicolet Magna 550 FT-

IR spectrometer, operating in the region 4000 - 200 cm-1.   Fast atom 

bombardment (FAB) mass spectra were obtained on a VG AutoSpec instrument 

using Cs+ ion bombardment at 25 kV energy, on samples of the complexes 

dissolved in a matrix of 3-nitrobenzyl alcohol.   Elemental analyses were carried 

out at Butterworth Laboratories Ltd., Teddington, Middlesex. 

 

Results and Discussion. 

The three complexes, [PtMe3(ppdm)(H2O)] 1, [PtMe3(ppdm)(3,5-lut)] 2 and 

[PtMe3(ppdm)(bipy)] 3, were prepared in high yields as described (vide supra).   

The analytical data (vide infra) indicate that the complexes have the structures 

shown in Figure 2.   Attempts to prepare the dimer, [PtMe3(ppdm)]2, by 

dehydration of 1 were unsuccessful, as were attempts to prepare the pyridine 
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adduct, [PtMe3(ppdm)(py)]. 

 

The infra-red spectrum of [PtMe3(ppdm)(H2O)], 1, showed a strong, broad band 

at 3243 cm-1 (∆σ = 220 cm-1), which shifted to 2360 cm-1 (∆σ = 880 cm-1) on 

deuteration of the complex.   Since no N-OH configuration is possible for the 

ionised monoxime ligand, this indicates the presence of a co-ordinated water 

molecule.   Three bands were observed in the C-H stretching region;9-12 two due 

to C-H stretching modes and one due to the overtone of the C-H deformation at 

ca. 1408 cm-1.   One Pt-N and three Pt-C stretching modes were also tentatively 

assigned.   The strong band at 1552 cm-1 was assigned to the C=O stretch of the 

co-ordinated oximate carbonyl group.   These data are consistent with 1 having 

the structure shown in Figure 2.   Infra-red data are reported in Table 1. 

 

The infra-red spectrum of the 3,5-lutidine adduct, 2, displayed three bands in the 

C-H stretching region, together with one Pt-N and three Pt-C stretching bands.   

The signal at 1520 cm-1 was assigned to the oximate carbonyl stretching mode.   

Complex 3 displayed three bands in the C-H stretching region, three Pt-C and 

two Pt-N stretching bands.   The presence of a band at 1622 cm-1, assigned to 

the stretching mode of a free carbonyl group, indicates that the monoximate 

oxygen donor atom is unco-ordinated.   The infra-red data for 2 and 3 (Table 1) 

thus indicate that the complexes have the structures depicted in Figure 2. 

 

Fast atom bombardment (FAB) mass spectrometry was performed on the three 

complexes, 1 - 3.   The parent complex, 1, displayed an intense peak at m/z+ 

403, which corresponds to the species [M-OH]+; this presumably arises from 

protonation of [PtMe3(ppdm)], i.e. M-OH2.   Strong fragmentation peaks were also 

observed at m/z+ 357 {[Pt(ppdm)]} and 240 {[PtMe3]}.   The 3,5-lutidine adduct, 2, 

displayed a molecular ion at m/z+ 509, [M], with further strong peaks at m/z+: 464, 

[Pt(ppdm)(3,5-lut)]; 347, [PtMe3(3,5-lut)]; 317 [PtMe(3,5-lut)]; 302, [Pt(3,5-lut)].   

Complex 3, [PtMe3(ppdm)(bipy)], displayed intense signals at m/z+ 581, 559, 396, 

366 and 350, attributable to the species [M+Na], [M], [PtMe3(bipy)],  [PtMe2(bipy)] 
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and [PtMe(bipy)], respectively.   In all cases the observed isotope distribution 

patterns were in accord with those calculated for the formulated species. 

The elemental analyses obtained for 1 - 3 were generally consistent with the 

formation of analytically pure complexes; however, the somewhat anomalous C 

and H analyses for the 2,2'-bipyridyl adduct, 3, were difficult to rationalise.   Data 

obtained for the elemental analyses are reported in Table 1. 

 

NMR Studies on [PtMe3(ppdm)(H2O)] 1.-   Complex 1 dissolves in polar solvents, 

forming a solvent co-ordinated species, viz. [PtMe3(ppdm)(solv)] (solv = co-

ordinating solvent).   In [D6]DMSO solution, the ambient temperature (298 K) 1H 

NMR spectrum shows well-resolved signals.  The platinum-methyl region of the 

spectrum (ca. δ = 0.6 - 1.1) displayed three signals, with 195Pt satellites, in a 1:1:1 

intensity ratio.   On the basis of their 2JPtH scalar coupling constants,1,13-16 these 

signals were assigned to methyls trans O (oximate), trans N (oximate) and trans 

S (DMSO), respectively from high- to low-frequency.   The low magnitude for the 
2
JPtH scalar coupling constant  for the trans N (oximate) methyl group {64.3 Hz, cf. 

66.5 Hz in [PtMe3(bipy)(H2O)]9} indicates the presence of a strong Pt-N 

interaction.   The ligand-methyl region (Pt-N=C-CH3) showed a single resonance, 

with 195Pt coupling.   The signals due to the ligand-phenyl ring (Pt-O=C-C6H5), 

could also be fully assigned (Table 2).   Hydrogen-1 NMR data are reported in 

Table 2; the spectrum of 1 in [D6]DMSO at 298 K is shown in Figure 3. 

 

On warming the solution, a number of reversible band shape changes occurred, 

indicating the onset of dynamic exchange processes at a measurable rate on the 

NMR chemical shift time scale.  Firstly, the signal due to the Pt-Me group trans S 

(DMSO) broadened and shifted slightly to higher frequency; this was 

accompanied by a small increase in the 2
JPtH coupling, indicating a lengthening 

and weakening of the Pt-solvent interaction.   This signal then sharpens again, as 

the complex attains a rapid pre-equilibrium (which probably involves solvent 

exchange).   On warming further, the signals trans O (oximate) and trans S 

(DMSO) displayed dynamic line broadening, due to the expected1 windscreen-
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wiper fluxional rearrangement (Figure 4).   Line shape changes characteristic of 

platinum-methyl scrambling, a well established feature of fluxional 

trimethylplatinum(IV) complexes,12 also occurred at elevated temperatures.   No 

changes were observed in the other regions of the spectra; the 4J(Pt-N=C-CH3) 

scalar coupling (ca. 4 Hz) was unaffected by the dynamic processes, indicating 

that the Pt-N remains intact at all times. 

 

The energetics of the windscreen-wiper fluxion were measured by two-

dimensional exchange spectroscopy (EXSY).   Five EXSY experiments were 

performed17 at temperatures at which the pre-equilibrium had been attained, but 

the Pt-Me scrambling was of negligible rate on the NMR magnetisation transfer 

time scale.   Reliable rate data were obtained (Table 3), and the activation 

parameters for the windscreen-wiper rearrangement determined (Table 4).   The 

2D EXSY spectrum of 1 in [D6]DMSO at 323 K is shown in Figure 5. 

 

The ambient temperature (298 K) spectrum of 1 in [D4]methanol revealed slightly 

exchange broadened signals; this broadening disappeared on cooling to ca. 273 

K and a well resolved spectrum was obtained.   The "static" spectrum was exactly 

analogous to that of 1 in [D6]DMSO.   Hydrogen-1 NMR data are reported in 

Table 2.    On warming, changes in the Pt-Me band shapes consistent with (i) the 

attainment of a pre-equilibrium, followed by (ii) the expected windscreen-wiper 

fluxion and (iii) Pt-Me scrambling (vide supra), were observed.   The energetics of 

the windscreen-wiper fluxional rearrangement were measured by two-

dimensional exchange spectroscopy; five EXSY experiments were performed17 in 

the temperature range 297 - 313 K, and reliable rate data obtained (Table 3).   

The Eyring and Arrhenius activation parameters are reported in Table 4. 

 

In [D6]acetone, the ambient temperature (298 K) spectrum of 1 showed extensive 

line broadening.  On cooling to 243 K, the band shapes sharpened to reveal a 

total of six platinum-methyl signals (with 195Pt satellites), resulting from two 

solution-state species; each species displayed three signals in a 1:1:1 intensity 
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ratio.   The relative populations of the two species are highly temperature 

dependant.   The two sets of signals are believed to arise from the presence of 

both an acetone co-ordinated complex and a water co-ordinated complex.   The 

presence of  a water co-ordinated species in acetone solution was not totally 

unexpected, because 1 is crystallised as the H2O adduct from acetone (vide 

supra).   The addition of excess D2O to the [D6]acetone solution of 1 at 238 K 

resulted in a single set of Pt-Me signals, which presumably arise from the D2O 

adduct, [PtMe3(ppdm)(D2O)] 1b.   The chemical shift and scalar coupling data for 

[PtMe3(ppdm)(D2O)] (Table 2) were more closely analogous to the data for the 

major isomer at that temperature.   This suggests that the major solution-state 

species is the H2O adduct, [PtMe3(ppdm)(H2O)]; the spectrum of 1 was assigned 

on this basis.   The ligand-methyl and ligand-phenyl regions of the spectra each 

displayed two sets of overlapping signals due to the two species, viz. 

[PtMe3(ppdm)(H2O)] and [PtMe3(ppdm)([D6]acetone)]; as a result, the chemical  

shifts and scalar coupling constants could not be measured with confidence.   

Hydrogen-1 NMR data are reported in Table 2.   The spectrum of 1 in 

[D6]acetone at 243 K is shown in Figure 6.    

 

On warming the [D6]acetone solution of 1, the two sets of Pt-Me signals 

broadened.   The 1H NMR band shape changes indicated the onset of both an 

intermolecular exchange between the two solution-state species, and the 

expected windscreen-wiper rearrangement (in both species).   Attempts to obtain 

accurate rate data were frustrated.   The presence of four independent rate 

constants (vide infra), plus Pt-Me scrambling at elevated temperatures, renders 

simulation of standard one-dimensional NMR spectra unreliable; the band shape 

changes cannot be fitted to a unique set of rate constants in such circumstances. 

 Also the large difference in the magnitudes of the rate constants prevented their 

accurate measurement by 2D EXSY; there was no mixing time which enabled the 

four independent rate processes (Figure 7)  to be measured simultaneously at a 

given temperature.   However, from the 2D EXSY experiments, it was found that 

the magnitudes for the four rate processes are in the order: k1 > k3 ≈ k4 > k2 (see 

Figure 7). 
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The magnitude for the free energy of activation for windscreen-wiper fluxional 

rearrangement of 1 in [D4]methanol (Table 4) is, within experimental error, the 

same as that obtained for the complex [PtMe3(bdm)] in [D4]methanol.1   Thus 

changing the nature of the monoxime has a negligible effect on the energy barrier 

of the process.   In contrast, the effect of the different solvents is very marked.   

The rates of the windscreen-wiper fluxion for the complex species 

[PtMe3(bdm)(solvent)] were shown qualitatively to be in the order:1 k(DMSO) < 

k(methanol) < k(acetone).   Comparison of the magnitudes for  ∆G
‡ (298 K) 

obtained for 1 in [D6]DMSO and [D4]methanol (Table 4), enables a quantitative 

estimate of the effect of the solvent on the windscreen-wiper rearrangement to be 

made.   The trend in the free energy of activation, viz. ∆G
‡ (DMSO) > ∆G

‡ 

(acetone), is in accord with the trend expected from the relative strengths of the 

Pt-E(solvent) interactions (E = S or O).    A qualitative comparison of the relative 

strengths of these interactions can be made by inspection of the 2JPtH scalar 

couplings18,19 for the Pt-Me signals trans solvent; the larger the scalar coupling 

constant, the weaker the trans Pt-solvent interaction.  The magnitudes for the 
2
JPtH scalar couplings are (Table 2) 69.2 Hz {trans S(DMSO)} and 83.1 Hz {trans 

O(methanol)}; this lends support to the hypothesis that the mechanism of the 

rearrangement (vide infra) involves cleavage of the Pt-solvent bond.   While it 

was not possible to obtain a value for the free energy of activation for the 

windscreen-wiper fluxion in [D6]acetone (vide supra), the (much) broader 1H NMR 

band shapes observed at ambient temperature (298 K) clearly indicate that the 

rate of the rearrangement is more rapid in this solvent.   The 2JPtH scalar coupling 

constant for the platinum-methyl group trans acetone is also, as expected, 

greater (84.5 Hz at 233 K) than that for the methyl group trans solvent in either 

DMSO or methanol solution, indicating that the Pt-O(acetone) interaction is 

weaker.   

 

Although caution should be exercised when interpreting entropy of activation 

data, the sizeable positive magnitudes of ∆S
‡ measured for the windscreen-wiper 



 
 

10 

fluxion point towards a transition state which is at least partially dissociated.   

However, even at fast rates of exchange, the 4J{Pt-N=C-CH3} scalar coupling is 

retained.   The Pt-N(oximate) bond must therefore remain intact during the 

course of the rearrangement; this provides an insight into the mechanism of the 

fluxional process.   Although the precise nature of the mechanism is not known, it 

is believed to involve cleavage of the Pt-O(oximate) bond, followed by a 45o 

rotation of the ligand about the Pt-N(oximate) bond and displacement of the 

solvent molecule (vide supra).   A possible transition state structure for the 

rearrangement is depicted in Figure 8.    

 

NMR Spectra of Complexes 2 and 3.-   The hydrogen-1 NMR spectrum of 

[PtMe3(ppdm)(3,5-lut)] 2, in CDCl3 at 303 K  showed three Pt-Me signals, with 
195Pt satellites, in a 1:1:1 intensity ratio.   The assignment of these signals (Table 

2) was based on the magnitudes of their 2JPtH scalar coupling constants.1,13-16  

The signals at δ = 1.92 (3 H) and 2.30 (6 H) were assigned to the oximate-methyl 

group (4
JPtH ≈ 3.8 Hz) and the two methyls of 3,5-lutidine, respectively.   The 

overlapping signals due to the oximate-phenyl ring hydrogen nuclides and the 

para-hydrogen of the lutidine ring were not fully resolved; this frustrated the 

measurement of reliable chemical shift and coupling constant data.   The signal 

at δ = 8.16 was unambiguously assigned to the ortho-position hydrogen nuclides 

of the lutidine ring, on account of their measurable coupling to platinum-195; 3JPtH 

≈ 11.1 Hz.   Hydrogen-1 NMR data are reported in Table 5. 

 

The 1H NMR spectrum of 3 in CDCl3 at 303 K displayed two Pt-Me signals (with 
195Pt satellites) in a 2:1 intensity ratio; the 2JPtH scalar couplings (69.1 and 70.9 

Hz, respectively) indicate that all three methyl groups are trans N1,13-16 (cf. trans O 

scalar couplings of ca. 80 Hz; see Table 2).   The bipyridyl ligand must therefore 

be co-ordinated to the metal moiety in a bidentate chelate fashion, with the 

oximate ligand bound only through the oximate N donor atom.   The signal at δ = 

1.77 was assigned to the oximate methyl group, on the basis of its chemical shift 

(vide supra); however, no 195Pt satellites were observed, indicating that the 
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magnitude of the long range (4
J) Pt-H coupling is strongly dependant on the 

conformation of the oximate ligand.   This is in accord with data previously 

reported for the complex [PtMe3(bdm)(bipy)] (bdm =  butane-2,3-dione 

monoximate anion).1   The α-hydrogens of the bipyridyl ring gave rise to a 

doublet, with 195Pt satellites, at δ = 8.65; 3JPtH ≈ 11.9 Hz.   Overlap of the other  

aromatic signals prevented their unambiguous assignment.   Hydrogen-1 NMR 

data for 3 are reported in Table 5. 

 

Conclusion. 

Analytical and NMR data for the complexes [PtMe3(ppdm)(H2O)] 1, 

[PtMe3(ppdm)(py)] 2 and [PtMe3(ppdm)(bipy)] 3, are consistent with the 

complexes having the structures shown in Figure 2.   The parent complex, 1, 

dissolves in polar solvents to form a solvent co-ordinates species, which 

undergoes a "windscreen-wiper" fluxional rearrangement.   The kinetics of the 

fluxional process are dominated by the strength of the Pt-E(solvent) (E = S or O) 

interaction, and appear to be essentially independent of the nature of  

monoximate ligand.   The Authors are currently investigating the behaviour of 

related N/O and N/S chelate ligand complexes of trimethylplatinum(IV) in order to 

establish whether or not the windscreen-wiper fluxional rearrangement occurs 

more generally; the results of these investigations will be published shortly. 
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Figure Legends. 

 

Figure 1. The two possible configurations for the ionised ligand butane-2,3-

dione   monoxime. 

 

Figure 2. Proposed structures for the complexes [PtMe3(ppdm)(H2O)] 1,  

   [PtMe3(ppdm)(3,5-lut)] 2 and [PtMe3(ppdm)(bipy)] 3. 

 

Figure 3. 400 MHz 1H NMR spectrum of 1 in [D6]DMSO at 298 K, showing  

  the platinum-methyl region.   See Table 2 for assignments. 

 

Figure 4.  The "windscreen-wiper" fluxional rearrangement of 1, showing the 
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effects   of the fluxional process on the platinum-methyls.   The 

numbers refer to   the three sites of the fac-oriented methyl groups, and 

the letters identify the   chemical environments. 

 

Figure 5. 400 MHz 1H two-dimensional exchange NMR spectrum of 1 in 

[D6]DMSO   at 323 K.   Cross peaks are displayed between the platinum- 

   methyls trans solvent and trans O(oximate).   Further, weak 

cross peaks    are displayed between the platinum satellites of each 

of the signals. 

 

Figure 6. 400 MHz 1H NMR spectrum of 1 in [D6]acetone at 243 K, showing 

the   platinum-methyl region.   The signals due to the major- and minor-

isomers   are labelled (*) and (·), respectively.   Refer to Table 2 for the 

    assignments. 

 

 

Figure 7. The four solution-state species of the complex [PtMe3(ppdm)(H2O)] 

in   [D6]acetone, and the six interconversion pathways between them.   

Note   that k2≡k5 and k1≡k6, giving four independent rate processes. 

 

Figure 8. A possible transition state structure for the "windscreen-wiper" 

fluxional   rearrangement of 1. 
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