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 Abstract -Many researchers have discussed the effects of 

heavy-tailedness in network traffic patterns and shown that 

Internet traffic flows exhibit characteristics of self-similarity 

that can be explained by the heavy-tailedness of the various 

distributions involved.  Self-similarity and heavy-tailedness are 

of great importance for network capacity planning purposes in 

which researchers are interested in developing analytical 

methods for analysing traffic characteristics. Designers of 

computing and telecommunication systems are increasingly 

interested in employing heavy-tailed distributions to generate 

workloads for use in simulation - although simulations 

employing such workloads may show unusual characteristics.  

Congested Internet situations, where TCP/IP buffers start to fill, 

show long-range dependent (LRD) self-similar chaotic 

behaviour. Such chaotic behaviour has been found to be present 

in Internet traffic by many researchers. In this context, the 

'Hurst exponent', H, is used as a measure of the degree of long-

range dependence. Having a reliable estimator can yield a good 

insight into traffic behaviour and may eventually lead to 

improved traffic engineering.  In this paper, we describe some of 

the most useful mechanisms for estimating the tail index of 

Internet traffic, particularly for distributions having the power 

law observed in different contexts, and also the performance of 

the estimators for measuring the intensity of LRD traffic in 

terms of their accuracy and reliability. 
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I.    INTRODUCTION 

In the Internet, heavy-tailed distributions have been 

observed in the context of traffic characterization. Heavy-

tails can play an important role in traffic self-similarity. 

Heavy-tailed distributions characterise long-memory 

processes, with strong time-dependence structures that vanish 

very slowly. It has been observed that the Ethernet traffic is 

characterized by self-similar properties [1] and WAN traffic 

also exhibits self-similar properties [2] particularly when it is 

associated with WWW transfers [3].  The condition of self-

similarity is observed when the autocorrelation function 

(ACF) of a time-series declines as a power-law, leading to 

positive correlations among widely separated observations 

[4].  

When the sizes of files are transferred from a web-server, 

the distribution is heavy-tailed to a good degree of accuracy 

meaning that there are a large number of small files 

transferred but the number of very large files transferred 

remains significant. The superpositions of samples from 

heavy-tailed distributions aggregate to form long-range 

dependent time series. It is necessary to model the heavy-tail 

traffic so that networks can be provisioned based on accurate 

assumptions of the traffic that they carry. A heavy-tail 

distribution can characterise the Internet traffic more 

accurately as a number of multiplexed sources (e.g. video, 

audio, web requests, eamil, chat, game, etc.) exhibit the 

properties of selfsimilarity and LRD. 

Distributions having infinite variances are called heavy-

tailed with the weight of their tails determined by the 

parameter 2<α [5]. The properties of heavy-tailed 

distributions are qualitatively different to commonly used 

memoryless distributions such as the exponential, normal or 

Poisson distributions. The research in [2] concludes that such 

exponentiality assumptions are misleading when exploring 

the presence of heavy-tailed distributions. Heavy-tailed 

distributions are ubiquitous in the Internet. Paxson [6] noted 

wide variability in path characteristics such as losses, round-

trip times and bandwidth and high variability is one of the 

landmarks of heavy-tailed distributions. It is evident [1, 7] 

that the characteristic of the service process (provided by the 

webservers, routers etc.) in Internet-related systems is heavy-

tailed which affects the complexity of such systems.  

     Self-similar and long-range dependent (LRD) 
characteristics of internet traffic have attracted the attention 
of researchers since 1994 [1, 8]. It is particularly important to 
understand the link between self-similar and long-range 
dependence of traffic and performance of the networks. Thus, 
in [9], it was observed that the performance of networks 
degrades gradually with increasing self-similarity, which 
results in queuing delay and packet loss. The more self-
similar the traffic, the longer the average queue size. The 
queue length distribution is caused by self-similar traffic. The 
tail of the queue length distribution tends to be higher when 
the traffic is self-similar, thus resulting in a higher probability 
of buffer overflow (packet loss).  The performance results in 
[410 show that the degree of self-similarity in the traffic 
increases as the cell loss and cell delay increase for a certain 
output port buffer size. The LRD property of the traffic 
fluctuations has important implications on the performance, 
design and dimensioning of the network. Self-similarity in 
packetised data networks can be caused by the distribution of 
file sizes and by human interactions such as teleconferences, 
voice chat, online video and games etc.  
     A number of methods have been proposed to estimate the 
Hurst parameter. Some of the most popular include: 



 

aggregated variance time (V/T), Rescaled-range (R/S), 
Higuchi’s method, wavelet-based methods and HEAF(2). 
The various methods demonstrate variable performance. 

The remainder of this paper is organised as follows. 
Section II describes the methods for estimation of the tail 
index. Section III explores a robust mechanism for estimating 
the tail index. Section IV highlights the existing estimators 
for estimating the intensity of long-range dependence. 
Section V examines the reliability of the methods for 
estimating the Hurst exponent. Finally we draw conclusions 
in section VI. 

 
II.   METHODS FOR ESTIMATING THE TAIL INDEX 

In this section various methods for estimating tail index 

are described which are used in telecommunication network 

traffic. The principle for detecting the heavy tailed traffic is 

that the tail of the distribution decays much more slowly than 

exponential [11]. In general the Pareto model is widely used 

as it follows heavy tail distribution. The cumulative 

distribution for Pareto is  
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value of the random variable and α the shape parameter 

indicating the tail index. Suppose we have a random sample 
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where L is a slowly varying function satisfying 
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A random variable X follows a heavy tailed distribution [4, 

12] if [ ] ,~
α−> xCxXP as 20, <<∞→ αx . (2.1) 

The complementary cdf (ccdf) ][)(1)( xXPxFxF >=−= .  

where α  represents the tail index ; 20 << α . The presence 

of heavy-tailed distributions in observed data can be explored 

by equation (2.1) as follows: 
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    (2.2) 

which appears as a straight line on log-log axes with slope  -

α  for large x. 

A number of log-log complementary distribution (LLCD) 

plots have been illustrated in [5] to estimate the tail weight. 

These are plots of the ccdf on log-log axes. Having been 

plotted in this way, heavy-tailed distributions have the 

property that follows equation (2.2). The random variable X 

has infinite mean when ,1≤α finite mean but infinite 

variance when 21 ≤≤ α  and finite mean and variance when 

α<2  [13]. For the traffic rate process X, the autocorrelation 

function satisfies [14] 

( ) 15.0,;22 <<∞→≈ − Hkaskckr H                (2.3) 

where the Hurst parameter H measures the degree of long-

range dependence in X in terms of tail-index α  in (2.1) and 

H is given by ( ) 2/3 α−=H . 

A basic statistical calibration problem is to estimate the 

shape parameter α , which is the negative of the index of 

regular variation. A popular method to estimate α is called 

the Hill estimator, developed by B. M. Hill [15]. Suppose 

X1,………..,Xn are random variables (e.g. web file sizes) from 

a distribution F and  X1>X2>………>Xn are the order 

statistics. The Hill estimator of α  is 
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where k is the number of upper order statistics used in the 

estimation. The Hill plot can be defined as 

}11),ˆ,({ −≤≤ nkk α  and the index found from a stable 

region in the graph. 

The Hill estimator is the most favourable technique [16] to 

detect the heavy tailedness of the traffic when the underlying 

distribution is close to Pareto. The plot may sometimes 

exhibit excessive bias when the distribution is far from 

Pareto. In fact, the Hill estimator is designed for the Pareto 

distribution. The Hill plot is not always informative and the 

alternative estimators described in the literature give 

alternative Hill plots abbreviated as AltHill, SmooHill for 

smoothing Hill plot [16], qq estimator [16, 17] and De 

Haan’s moment estimator [18]. The dynamic qq – estimator 

[16] is given by  
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The dynamic qq-plot can be obtained by plotting  

 

( ){ }nkk nk ≤≤− 1,1, 1

,α
)

, which is similar to the Hill plot. 

 

The moment estimator is defined as  
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where ( )1

, nkH  is the Hill estimator and X1>X2>………>Xn are 

the order statistics from a random sample size of n. Define 

2,1=r  and then  
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Then the moment is estimated by plotting { }nk γ̂, . 



 

In addition, the modified qq plot [19, 11] can be 

illustrated, which is obtained from the following equation by 

choosing and fixing k. 
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where m represents a higher order statistics of a distribution 

for the samples  X1,………..,Xn, i.e., 

k
XXXm ≥≥≥= LL

21
the order statistics of a 

distribution. If the data follow approximately Pareto, the plot 

will look like a straight line with slope .α  A least squares 

line can be fitted through the points with small deviation 

while computing the slope. 

A graphical procedure is introduced in [21], called the 

Sum plot which suggests a proper value for k by using the 

well-known Hill estimator. The sum plot is given by 
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nk
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,
 can be found from equation (5). The graph will look 

like a straight line when plotting Sk  against k and then the 

slope is estimated from the least squares line.  

 

III.   EXPLORING THE ROBUST MECHANISM FOR ESTIMATING 

TAIL-INDEX 

In this research, we have analysed six different traffic 

traces, each of sample length (N) 10000. The traces used in 

the analysis are EPA, NASA-Jul95, NASA-Aug95, ClarkNet, 

Saskatchewan and Calgary, all publicly available in [21].  

The tail index α  from these traffic traces is estimated by 

several methods. Figures 1 and 2 provide a graphical 

representation of EPA traffic.  Results from other estimates 

are presented in Table I.  An instability of the graph in some 

region has been observed for NASA-Jul95, NASA-Aug95, 

ClarkNet and Calgary traffic when plotting the moment 

estimate of gamma.  Clearly the moment estimator is not so 

informative for these traffic traces. The Dynamic qq (dyn-qq) 

plot was also somewhat unstable for NASA-Jul95, NASA-

Aug95 and Saskatchewan traffic.  

Here, a number of order statistics, k=9000 have been 

chosen for the Static qq (stat-qq) and Sum plots.  In most 

traffic cases, α was found to be less than 2, i.e., there is an 

infinite variance observed in the traces, which implies the 

existence of heavy-tailedness in the data traffic.  The Sum 

plot yields an index greater than 2 (i.e., α >2) for NASA-

Jul95, NASA-Aug95 and ClarkNet.  In particular, the Hill 

plot, Static qq plot and LLCD plot are in good agreement as 

they provide close results to each other as shown in Table I.  
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Fig. 1. Estimation of tail index by Hill plot, Dehaan’s 

moment estimator and dynamic-qq plot (EPA-http traffic) 

 

Table I. Estimation of tail index for various http traffic by 

different methods. 
Tail index for various methods 

Web File sample 

length  

(N) 

Hill moment dyn-qq stat-qq Sum 

plot 

LLCD 

EPA 10000 0.764 0.92 0.94 0.74 1.88 0.802 

NASA-Jul95 10000 0.583 0.79 1.08 0.57 2.57 0.601 

NASA-Aug95 10000 0.619 0.76 0.99 0.60 2.39 0.703 

ClarkNet 10000 0.788 1.28 1.11 0.73 2.04 0.810 

Saskatchewan 10000 0.830 1.07 1.02 0.82 1.71 0.816 

Calgary 10000 0.697 0.80 0.89 0.70 1.76 0.713 
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Fig. 2. Estimation of tail index by LLCD plot, static-qq plot 

and Sum plot (EPA-http traffic) 

      

IV.   ESTIMATION OF THE HURST PARAMETER 

    In this research, we have used five different methods to 

estimate the Hurst exponent, H: 

 

A.    Variance time (V/T) Analysis 

    The self-similarity involves a stationary sequence 

( ){ }1, ≥= iiXX  according to standard time series theory. 

Let 
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be the corresponding aggregated sequence with level of 

aggregation m which can be obtained by dividing the original 

series X into non-overlapping blocks of size m and averaging 

over each block. Here the index, k, labels the block. Then the 

plausible estimator [22] is  
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    The estimate for H is found from the estimate of the slope 

2H-2 which is measured by fitting a straight line through the 

points. The Equation (1) is biased in the presence of non-zero 

correlations, particularly long-range dependence [22]. It is 

also noted in the literature that if the estimates of the 

variances are based on few observations (i.e., large m), it 

becomes unreliable. Another weakness of this method is that 

the fitting region may arbitrarily be chosen which results in a 

non-robust estimate. 

 

B.    R/S Analysis 

    Self-similar processes are well defined by the rescaled 

adjusted range (R/S) analysis [1, 23], which is expressed as 
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    The parameter H can therefore be estimated by plotting log 

(E[R(n)/S(n)]) versus log(n) and  measuring the slope by 

least-square linear approximation technique. 

 
C.    Higuchi method 

    The method was proposed by Higuchi [24]. It involves 

taking the partial sums ∑ =
=

n

i
iXnY

1
)(  (i.e., constructing 

the cumulative process from the increment process iX ) of 

the original time series { }NiX i ,.....,2,1, = . Then, we find the 

normalized length of the curve, namely 
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where N is the length of the time series, m is essentially a 

block size and [.] denotes the greatest integer function. Then 

the estimate of H is found by plotting L (m) versus m in a 

log-log plot and adding 2 to the slope of the fitted straight 

line. 

 
D.    Wavelet method 
    The wavelet-based estimator was introduced by Abry et al. 

[25, 26]. The method was based on the generation of the 

wavelet coefficients and has some attractive properties. So 

far the method is the most widely used to estimate the long-

range dependence parameter in the networking community. 



 

Let 0ψ denote the mother wavelet.  Then construct other 

wavelets kj ,ψ such that  
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Let ),( kjd x denote the projection of the data set X onto the 

wavelet kj ,ψ , namely 
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where .., denotes the inner product. Then the variance of 

the wavelet coefficients is estimated by  
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=
 

    The wavelet estimate of the Hurst parameter is not found 

by computing jv  for the fractional Brownian motion sample 

and making a least squares fit of log ( jv ) on j. Instead, the 

following modified method has been applied by performing 

the same procedure on the wavelet coefficients of the 

corresponding fractional Gaussian noise sample.  

)(log2)12()(log 22 σ−−−=∈ jHv jj  
    The slope is then obtained from a linear regression of 

{ }
21

)()(log 2 jjjjjv
≤≤

∈− E on { }
21 jjjj ≤≤ , weighted by 

{ }
21

)(/1
jjjjVar

≤≤
∈ . The plausible estimator is found by the 

relationship, slope = 2H-1. The method is implemented in 

“C” and Matlab programming languages provided by Darryl 

Veitch [27]. 

 

E.     HEAF: A ‘Hurst Exponent by Autocorrelation Function’ 

Estimator  

     A new estimator, HEAF, is introduced in [28]. For given 

observed data iX  (i.e. nXX ,,.........1 ), the sample 

autocorrelation function can be calculated by the following 

method: 

Let ∑
=

=
n

i
iX

n
n

1

1
µ̂    (4.1) 

and ( ) ( ) ( )nkiX
kn

i
niX

n
kn µµγ ˆ

1
ˆ

1
ˆ −+∑

−

=
−=  , (4.2) 

where k=0,1, 2, ….., n,    

with ( )0ˆ
2

ˆ nn γσ = .   (4.3) 

Then the sample autocorrelations of lag k are given by 

( )
2ˆ

ˆ
ˆ

n

kn
k

σ

γ
ρ =     (4.4) 

(Equations (4.1), (4.2), (4.3) and (4.4) denote the sample 

mean, the sample covariance, the sample variance and the 

sample autocorrelation, respectively). A second-order 

stationary process is said to be exactly second-order self-

similar, with Hurst exponent 12/1 << H , if 

]
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)1([5.0
H

k
H

k
H

kk −+−+=ρ   (4.5) 

From equation (4.5), Kettani and Gubner suggest a moment 

estimator of H . They consider the case k =1 and replace 1ρ  

by its sample estimate 1ρ̂ , as defined in equation (4.4). This 

gives an estimate for H of the form 

)1
ˆ1(log

2log2

1

2

1
ˆ ρ++= e

e

H   (4.6) 

Clearly, this estimate is straightforward to evaluate, requiring 

no iterative calculations. For more details of the properties of 

this estimator, see Kettani and Gubner [29]. 

An alternative estimator of H is proposed based upon 

equation (4.5), by considering the cases where k>1. Note that 

the sample equivalent of equation (4.5) can be expressed as 
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H
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           (4.7) 

Thus, for a given observed kρ̂ , k>1, a suitable numerical 

procedure can be used to solve this equation, and find an 

estimate of H. This is denoted as an HEAF(k) estimate of H. 

To solve equation (4.7) for H, the well-known Newton-

Raphson (N-R) method is used. This requires the derivative 

of f(H). Here note that k ≠ 1,  
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Hence, the algorithm to estimate HEAF(k), for any lag k, 

consists of the following steps: 

1. Compute the sample autocorrelations for lag k of a 

given data set by equation (4.4). ( iX  can be denoted 

as the number of bits, bytes, packets or bit rates 

observed during the i th interval. If iX  is a Gaussian 

process, it is known as fractional Gaussian noise). 

2. Make an initial approximation for H, e.g. H1 = 0.6, 

then calculate H2, H3, H4,….., successively using 

)(/)(1 rHfrHfrHrH ′−=+ , until convergence, to 

find the estimate Ĥ  for the given lag k. An initial 

consideration is the case where k = 2 in equation 

(4.2); i.e. HEAF(2) is considered first. 

One of the major advantages of the HEAF estimator is 

speed, as the N-R-method converges very quickly to a root. 

There is no general convergence criterion for N-R. Its 

convergence depends on the nature of the function and on the 

accuracy of the initial approximation. Fortunately, the form 

of the function (i.e., equation (4.7)) appears to converge 

quickly (within at most four iterations) for any initial 

approximation in the range of interest, namely H in (0.2, 1). 

If an iteration value, Hr is such that  ( ) 0≅′ rHf , then one 

can face “division by zero” or a near-zero number. This will 

give a large magnitude for the next value, Hr+1 which in turn 

stops the iteration. This problem can be resolved by 

increasing the tolerance parameter in the N-R program. All 



 

HEAF(k), for k = 2, …,11, have been considered and no 

difficulty in finding the root in (0.5, 1) has been encountered. 

 

V.     EXPLORING THE RELIABILITY OF THE ESTIMATORS 

     In this section, we discuss how to determine a reliable 

estimator based on simulation experiments. In most cases, 

researchers use the biased mean square error (mse) and 

confidence interval (CI) of the estimator to explore its 

reliability and robustness. Sometimes, however, it is hard to 

make a decision merely by looking at the CI of the estimator. 

For instance, for H = 0.7, 100 different realisations of self-

similar sequences have been generated, each with sample 

length N = 10000. For a particular estimator, the CI is found 

to be (0.583, 0.605). Looking at such a CI for this estimator, 

one could easily conclude that the estimator outperforms for 

that particular Hurst parameter. But the real scenario can be 

observed when looking at the 20 lowest (say) and the 20 

highest (say) values of the Hurst parameter out of those 100 

realisations. Here, we show a comparison of the reliability of 

the estimators, such as rescaled-range analysis (R/S), 

variance-time analysis (V/T), the wavelet-based estimator 

and Higuchi method in conjunction with the HEAF(2) 

estimator.   

     Figure 3 illustrates the performance of the estimators 

showing the values of Hurst parameters (Hs) for 100 different 

realisations. For the simulation experiment, we generated the 

exact self-similar sequences by a fractional Gaussian noise 

process with the Deitrich-Newsam algorithm [30]. Note that 

each realisation implies a set of data that contains the sample 

length, N = 16384. In Figure 3, for H = 0.6, H = 0.7, H = 0.8 

and H = 0.9, the wavelet based estimator and HEAF(2) 

estimator are more stable than the other estimators. However 

the wavelet based estimator is more stable than HEAF(2) for 

H = 0.6, H = 0.7 and H = 0.9 when considering the first 50 

realisations. For the last 50 realisations, HEAF(2) 

outperforms the other estimators for H = 0.6, H = 0.7, H = 

0.8 and H = 0.9. Note that R/S analysis, V/T analysis and the 

Higuchi method show a greater fluctuation (i.e. 

overestimation and underestimation) of Hs for corresponding 

Hurst parameters. 

     Figure 4 depicts the performance of the estimators by 

simulation experiments, with self-similar sequences 

generated by a FARIMA (0, d, 0) process [31] for a particular 

Hurst parameter (H). It is clear that the HEAF(2) and 

wavelet-based methods are more stable than other estimators 

and that the values of H are in an entirely acceptable range. 

Again, after the first 3 realisations of Figure 4, HEAF(2) 

outperforms the other estimators for the corresponding H = 

0.6, H = 0.7, H = 0.8 and H = 0.9. Based on the comparison 

of simulation experiments, for both the fGn and FARIMA (0, 

d, 0) processes, it is evident that HEAF(2) is a stable method 

which quantifies the reliable degree of long-range 

dependence.  

It is also evident from the simulation experiment that R/S 

analysis, V/T analysis and the Higuchi method are not 

reliable when estimating the LRD traffic, as they sometimes 

underestimate or overestimate the Hurst values for the 

corresponding generated realisation (data set) for a particular 

Hurst parameter.  
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Fig.  3.  Reliability of the estimators.  A simulation experiment using the 

fGN process.  Sample length N = 16384.  
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Fig.  4.  Reliability of the estimators.  A simulation experiment using the 

FARIMA(0, d, 0) process.  Sample length N = 16384.  

  

       Table II.  10 lowest Hurst values (out of 100  

        realisations), fGn process, H = 0.8. 

No.  HEAF(2) Wavelet R/S V/T Higuchi 

1 0.777 0.806 0.515 0.388 0.612 

2 0.778 0.809 0.568 0.428 0.630 

3 0.778 0.809 0.594 0.441 0.635 

4 0.779 0.810 0.596 0.537 0.639 

5 0.779 0.811 0.609 0.563 0.644 

6 0.779 0.812 0.648 0.573 0.658 

7 0.780 0.812 0.650 0.573 0.661 

8 0.780 0.813 0.651 0.590 0.668 

9 0.781 0.813 0.663 0.594 0.671 

10 0.781 0.813 0.665 0.599 0.677 

 

      Table III.  10 highest Hurst values (out of 100  

       realisations), fGn process, H = 0.8. 

No.  HEAF(2) Wavelet R/S V/T Higuchi 

1 0.805 0.830 0.879 1.048 0.880 

2 0.806 0.831 0.885 1.065 0.885 

3 0.808 0.831 0.891 1.066 0.886 

4 0.809 0.832 0.908 1.076 0.892 

5 0.809 0.833 0.924 1.077 0.892 

6 0.810 0.833 0.928 1.087 0.904 

7 0.811 0.835 0.942 1.119 0.929 

8 0.812 0.835 0.986 1.128 0.930 

9 0.813 0.835 0.993 1.131 0.932 

10 0.814 0.836 1.047 1.152 0.951 

 
      Table IV.   10 highest Hurst values (out of 100   

      realisations), fGn process, H = 0.9. 

No.  HEAF(2) Wavelet R/S V/T Higuchi 

1 0.891 0.933 0.984 1.151 0.978 

2 0.892 0.934 0.990 1.152 0.982 

3 0.892 0.934 0.993 1.164 0.982 

4 0.892 0.935 0.994 1.178 0.989 

5 0.896 0.937 0.995 1.180 0.990 

6 0.897 0.937 1.019 1.186 0.995 

7 0.898 0.938 1.050 1.203 0.997 

8 0.900 0.939 1.052 1.209 0.999 

9 0.906 0.939 1.054 1.251 1.001 

10 0.909 0.941 1.073 1.291 1.011 

 

      Table V.  10 lowest Hurst values (out of 100 

       realisations), FARIMA (0,d,0) process, H = 0.8. 

No.  HEAF(2) Wavelet R/S V/T Higuchi 

1 0.755 0.749 0.579 0.362 0.591 

2 0.755 0.754 0.589 0.380 0.604 

3 0.758 0.755 0.609 0.394 0.613 

4 0.758 0.755 0.611 0.432 0.636 

5 0.759 0.756 0.617 0.536 0.644 

6 0.761 0.757 0.617 0.563 0.645 

7 0.761 0.757 0.626 0.565 0.645 

8 0.762 0.758 0.628 0.602 0.650 

9 0.762 0.758 0.628 0.608 0.662 

10 0.762 0.758 0.634 0.610 0.666 

 
      Table VI.  10 highest Hurst values (out of 100  

      realisations), FARIMA (0,d,0) process, H = 0.9. 

No.  HEAF(2) Wavelet R/S V/T Higuchi 

1 0.873 0.864 0.991 1.098 0.938 

2 0.874 0.864 0.995 1.101 0.947 

3 0.875 0.865 1.008 1.104 0.948 

4 0.875 0.865 1.009 1.109 0.955 

5 0.876 0.865 1.012 1.110 0.958 

6 0.877 0.865 1.012 1.116 0.963 

7 0.878 0.865 1.014 1.116 0.968 

8 0.883 0.866 1.018 1.144 0.976 

9 0.889 0.866 1.025 1.149 0.978 

10 0.892 0.867 1.104 1.215 0.992 



 

The performance of estimators is outlined in Tables II to VI. 
These tables essentially reflect Figures 3 and 4. However the 
tables (from II to VI) provide a clearer view of the 
performance of the estimators in terms of their reliability. For 
reasons of space limitation we only provide the simulation 
results for the 10 lowest and 10 highest values of H, while 
simulating 100 realisations (dataset) for H = 0.8 and H = 0.9. 
Clearly, in most cases, HEAF(2) outperforms the other 
estimators. 

 
VI.   CONCLUSIONS 

The performance of several estimators of the tail index for 
heavy-tailed Internet traffic have been studied in this 
research.  In most cases, the moment estimator, dynamic qq 
plot and sum plot are unable to provide an acceptable 
measured index due to an unstable region observed in the 
graph.  The Hill plot, static qq plot and LLCD plot show a 
good level of agreement when estimating the index from 
graphs.  Our results show that there are infinite variances (i.e. 
α < 2) observed in the traffic, which is indicative of the 

existence of heavy-tailedness in Internet traffic. 
It has been found that established estimators for the Hurst 

parameter (with the exception of the wavelet method) can 

give poor estimates, as they sometimes underestimate or 

overestimate the degree of self-similarity. For example, for 

the simulation of H = 0.6 and H = 0.8, the estimated H values 

by R/S analysis were found to be 0.38 and 1.059 respectively. 

(Due to space limitations we cannot provide an exhaustive 

report our simulation results here.). This is significant 

because it is possible to derive wrong conclusions and wrong 

models when measuring the intensity of the LRD with 

unreliable estimators. Also, based on the comparison of 

simulation experiments for both fGn and FARIMA (0, d, 0) 

processes, it is evident that HEAF(2) is a stable method that 

quantifies the reliable degree of long-range dependence. 

Through its simplicity, capability of yielding quick 

estimation, robustness and reliability, we believe that 

HEAF(2) can be used to estimate the intensity of LRD in real 

time network traffic. 
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