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ABSTRACT

All repairs to airframes now need to be assessed as to their effect on the damage tolerance the
aircraft. To this end this Chapter first discusses difference between the analysis tools needed for
ab initio design and aircraft sustainment. It is shown that using small or physicaly short crack
da/dN versus AK data results in reduced through life costs and increased aircraft availability.

The tests procedures needed to validate composite, or supersonic particle deposition (SPD),
repairs to operational aircraft are also discussed as is their relationship to the ASTM fatigue test
standard E647-13a. This leads to an examination of the problem of crack growth from small
naturally occurring material discontinuities under operational load spectra. A range of tools are
available to account for crack growth in operational aircraft and several such tools are discussed,
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viz: cycle by cycle anaysis; the USAF characteristic K approach, etc. Specific attention is paid
to the growth of lead cracks in operational aircraft which are shown to exhibit near exponential
crack growth and to essentially have a cubic dependency on stress. It is shown that cracks
growing in composite repairs exhibit the same crack length and stress dependency. This finding
isthen linked to current approaches which use the cubic rule to assess repairs to RAAF aircraft.

1 INTRODUCTION

All repairs need to be assessed as to their effect on the damage tolerance of the aircraft/structure.
Consequently before we can design/assess the effect of a composite repair we first need to know
how to assess crack growth in operationa aircraft. In general the design of aerospace vehicles
requires that all structures be designed in accordance with damage tolerance design principles
which for military aircraft are detailed in the Joint Services Structural Guidelines JISSG2006 and
[1]. This design philosophy has evolved as aresult of a number of high profile incidents some of
which are reviewed in [2]. However, as explained in [3] the approaches and tools required for
initial design and for sustainment purposes differ. In this context it is widely accepted that a
significant proportion of the fatigue life of operational structures is consumed in crack growth
from small naturally occurring material discontinuities. This is reflected in the statement in
ASTM fatigue test standard E647-13a that:

“Fatigue cracks of relevance to many structural applications are often small or short for a
significant fraction of the structural life.”

As such in the context of aircraft sustainment and repair the need to be able to accurately
represent the growth of cracks from small naturally occurring material discontinuities and small
manufacturing defects is particularly important. When discussing the equations needed to
accurately predict the growth of cracks from such small naturally occurring material
discontinuities it is now widely accepted that there is generally little crack tip shielding (closure,
etc.) [3-5, 6, 7]. Thisis reflected by numerous statements in ASTM E647-13a Appendix X3. In
this context ASTM E647-13a states:

“the growth behavior of these small cracks is sometimes significantly different from what would
be expected based on large-crack growth rate data and standard fatigue crack growth analysis
techniques. Direct measurement of small-crack growth rates may be desirable in these
situations.”

In the absence of such small crack test data ASTM E647-13a has introduced the ASTM ACR
(adjusted compliance ratio) method in an attempt to determine the closure free da/dN versus AK
relationship. Indeed, this approach was used to assess the life of critical locations in the
Lockheed F-22 [8].

In this Chapter we first briefly discuss how the damage tolerance philosophies applied to ab
initio design [1] and aircraft sustainment [3] differ and the change in aircraft certification that has
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arisen as a result of the introduction by FAA of the concept of a Limit of Validity (LOV) [9,
10]*. We then illustrate how the Hartman-Schijve variant of the NASGRO equation, see [3], can
be used to compute the growth of small sub mm cracks growing under a measured operational
RAAF AP3C (Orion) load spectrum. This example, when taken in conjunction with previous
studies [3, 6, 7, 14-16] into cracks growing under combat aircraft load spectra, highlights how
for cracks that grow from naturally occurring material discontinuities under operational load
spectra there is little crack closure so that the crack growth history can often be easily and
accurately computed using what is essentially a simple Paris crack growth equation.

It is a common misconception that since the US damage tolerance design approach mandates an
initial flaw size of typically 1.27 mm that the associated crack growth analysis should ideally use
the da/dN versus AK curves determined as per the main body of the ASTM E647-13a fatigue test
standard. This concept is evaluated by considering crack growth in F-111 and F/A-18 aircraft
and is shown to be incorrect and that the small, or physically short, crack da/dN versus AK curve
is needed even when the initial crack is greater than 1.27 mm. Furthermore, in the examples
studied, as well as in the recent Lockheed studies performed as part of the C-130J (Hercules)
fatigue life extension program [17] and the F-22 program [8], it is shown that using long crack
da/dN versus AK data can yield inspection intervals that are too short and hence can significantly
reduce aircraft availability and increase both manpower requirements and maintenance costs
[15].

The USAF Damage tolerant Design Handbook [1] outlines how the USAF Characteristic K
approach can be used to assess both crack growth and the effect of repairs. This Chapter shows
how this approach can also be used to assess the growth of cracks from small naturally occurring
material discontinuities under a representative civil aircraft load spectrum (MiniTwist). This
example when taken in conjunction with the results presented in [18-20] means that the USAF
Characteristic K approach is applicable to the design/assessment of composite repairs to
operational aircraft.

The fundamental question of how to account for the large scatter seen in crack growth in
operational aircraft is also addressed. It is shown that, as first discussed in [3, 6], the scatter in
the growth of both long and small cracks can be accounted for by allowing for afamily of da/dN
versus AK curves and that these curves can be approximated by the Hartman-Schijve variant of
the NASGRO crack growth equation allowing for minor changes in the threshold term AKy. In
this context it is shown that the various experimental procedures commonly used to determine
small crack da/dN versus AK curves produce curves that are consistent with those determined
using the Hartman-Schijve crack growth equation setting closure to zero and allowing for small
variations in the threshold term AKjiy.

A means of determining the effect on the crack growth rate of a variation in the stress level, for
the same basic spectrum and materia, is often needed for the interpretation of an aircraft fatigue
test results, the design of repairs and/or for assessing the effect of a repair on the life of the

! For the background to this see [11 -13].
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airframe [23]. This Chapter describes one such tool colloguially known as the stress-cubed (or
cubic) rule [21, 23], which is based on the lead crack philosophy [22], and provides examples of
its application to a number of materials, spectra and stress concentrations. It is shown that the
growth of lead cracks, i.e. the fastest crack, in aircraft generaly shows a near linear relationship
between the log of the crack length/depth and the number of cycles (flight hours), i.e. that there
is exponential crack growth [19, 20]. It is also shown that for lead cracks the crack growth rate at
one stress level can be predicted accurately with knowledge of the second stress level and the
effective initiating crack size. The fundamental physics underpinning this exponential crack
growth and the cubic rule [24] is a so discussed.

It is mentioned that cracks repaired with composites patches also exhibit exponential crack
growth [25, 26] and that the crack length histories for lead cracks in operationa aircraft and
composite repairs can be described by the same master curve representation [27]. Consequently
having established the validity of the cubic rule and the fact that composite repairs do indeed
exhibit exponential crack growth, a requirement that is needed if the cubic ruleis to be used to
estimate crack growth, and noting that the cubic rule is routinely used to assess (and certify) the
effect of repairs on RAAF aircraft [23] it follows that this approach may be useful for estimating
the effect of composite and SPD repairs on operationa aircraft. This concept is discussed in
more detail in the Chapter 8 which also discusses the design/certification methodology needed
for composite repairs.

The ability of the Hartman-Schijve variant of the NASGRO equation to accurately compute the
effect of intergranular cracking at fastener holes representative of domenut holes in P3C (Orion)
aircraft, subjected to a measured flight load spectra, is also highlighted. Its ability to accurately
compute the effect of supersonic particle deposited (SPD) repairs, also known as Cold Spray, to
intergranular cracking isillustrated in Chapter 16, Section 9. Its ability to accurately compute the
effect of a boron epoxy patch on the growth of cracks that, prior to patching, have grown from
small sub mm surface defects to a size of approximately 1.27 mm is illustrated in Chapter 8,
Section 18.

Unless otherwise stated the stress intensity factor (K) solutions used in the various examples
discussed in this Chapter were determined using the methodology outlined in Chapter 4.

2 DAMAGE TOLERANT AB INITIO DESIGN AND AIRCRAFT SUSTAINMENT

2.1 Abinitiodesign

Let us begin by discussing the difference between the analysis tools needed for ab initio design
and aircraft sustainment. In general the design of aerospace vehicles requires that al structures
be designed in accordance with damage tolerance design principles which for military aircraft
are detailed in the Joint Services Structural Guidelines JSSG2006 and in the USAF Damage
Tolerant Design Handbook [1]. This design philosophy has evolved as a result of a number of
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high profile (military aircraft) incidents some of which?, together with a number of civilian
aircraft failures, are reviewed in [2]. Asexplained in [2]

“While there have been lessons learned from nearly all of the accidents and incidents, those that
were seminal with respect to the design and certification of aircraft structures were the 1954
Comet failures, the 1958 B-47 accidents, the 1969 F-111 accident, the 1976 AVRO 748 accident,
the 1978 Dan Air 707 Lusaka accident and the 1988 Aloha Boeing 737 accident. The Comet
failures resulted in the use of fail-safe design in commercia aircraft; the B-47 accidents resulted
in the development of the Air Force Aircraft Structura Integrity Program (ASIP); the F-111
accident accelerated the introduction of damage tolerance design requirements in military
aircraft; the AVRO 748 and Dan Air Boeing 707 accidents resulted in complementing
commercial fall-safe design with damage tolerance requirements; and the Aloha Boeing 737
accident brought attention to the importance that WFD? has in limiting the safe operation of
airplane structures.”

The basic principle underlying both the USAF and the FAA requirements® is: at no time during
the life of the aircraft should the residual strength reduce to beneath limit load. Full scale fatigue
tests play an essential part in meeting this requirement and, as a result of the introduction by the
FAA of the requirement for full scale fatigue tests to be performed in order to establish alimit of
validity (LOV)®, are now mandatory for civil transport [9, 10] above a takeoff weight of 75,000
pounds. As outlined in [9, 10] this requirement applies to:

a) Turbine-powered transport category airplanes, existing at the effective date of the rule
(January 14, 2011), that are operated under part 121 or 129 and have a type certificate
issued after January 1, 1958, and a maximum takeoff gross weight greater than 75,000
pounds as approved by the origina type certificate or an amended or supplemental type
certificate.

b) Transport category airplanes that have had the maximum takeoff gross weight reduced
from greater than 75,000 pounds to 75,000 pounds or less if the application for that
change was made after January 14, 2011.

c) All transport category airplanes with a current LOV, when that LOV is being extended.
This would include LOV's approved under Federal Aviation Regulations (FAR) sections

2 Reference [2] also provides an historical perspective as to how the military, the Federal
Aviation Administration (FAA) and industry have dealt with these threats.

3 Widespread fatigue damage (WFD) is defined [11] as the simultaneous presence of cracks at
multiple structural locations that are of sufficient size and density such that the structure will no
longer meet the residual strength requirements of FAR section §25.571(b).

* Damage tolerance requirements were not adopted by the FAA until 1978, see[12].

> Limit of validity - The period of time (in flight cycles, flight hours, or both) up to which
widespread fatigue damage will not occur in the airplane structure.
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§25.571, 26.21, or 26.23 and the fatigue life of civil transport aircraft above a weight of
75,000 pounds.”

The practical implications of the LOV rule for new (civil) aircraft designs is outlined on page 17
of [10] where it is stated: operators must not fly their aircraft beyond half of the number of
fatigue cycles seen in the associated full scale fatigue test. As such the operational life (LOV) of
civil transport aircraft above a takeoff weight of 75,000 pounds is now essentially set by the
results of full scale fatigue tests. Furthermore, since extension of the LOV can only be done on
the basis of full scale testing or flight experience [9, 10] the importance of modelling crack
growth in this class of civil transport aircraft has been significantly diminished. Thisis explicitly
stated in [7] where Robert Eastin, the FAA Chief Scientific/Technical Advisor for Fatigue and
Damage Tolerance, states.

“ Amendment 25-96 was a game changer when it comes to managing fatigue in WFD
susceptible areas. No longer could the applicant establish inspections or other procedures based
on the results of acrack growth and residual strength evaluation.”

One possible reason for this is that after more than twenty years of research into WFD in civil
aircraft the problem, which was first encountered in Aloha Airlines accident [13], was still
endemic [7]. Thisfinding also (unfortunately) supports the conclusion reached by Paris et a. that
“a specific accumulation damage model for the computation of damage growth under a wide
variety of service loadsis still lacking”

This situation, i.e. that aircraft can’'t be flown once the aircraft has exceeded haf of the number
of cycles seen in the associated full scale fatigue test, does not hold for military aircraft. As a
result design fatigue crack growth calculations play a more important role in establishing the
continuing airworthiness of military aircraft. However, it should be noted that, in the context of
the initial design, the size of the initiating flaw is mandated in the USAF Damage Tolerance
Design Handbook [1], typically 1.27 mm. The methodology outlined in Section 2, i.e. the use of
crack closure based equations together with ASTM E647 long crack da/dN versus AK crack
growth curves, and implemented in the computer codes AFGROW, NASGRO and FASTRAN
generally works well for such large initial flaws’. However, care must be taken when choosing
the appropriate da/dN versus AKg; relationship for use in the analysis. For example, when using
FASTRAN to compute the crack length versus cycles history associated with crack growth at
different fatigue critical locations in P3C (Orion) aircraft different crack growth curves’ had to
be used for locations that saw a tension dominated spectrum and for locations for which the
spectra experienced a combination of tension and compression loads. This particular
shortcoming was overcome in [7] by using a da/dN versus AKg relationship that was derived

® Unfortunately the same can’'t be said for sustainment related crack growth issues where the
crack grows from small naturally occurring material discontinuities. This topic will be discussed
later in the Chapter.

" By thisit is meant that at different fatigue critical locations a different relationship between the
constraint factor a and the crack growth rate da/dN had to be used.
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from the NASGRO (the Hartman-Schijve variant) crack growth equation fit to published da/dN
versus AK data.

As implied above the accuracy of any crack growth prediction is a strong function of the input
da/dN versus AK, or the AKgy, relationship. For ab initio design this data is generally obtained
from ASTM E647 tests. Unfortunately the ASTM constant R loading reducing test can yield
erroneous results with artificially large thresholds [3, 8, 17, 30, 31, 32] and can thereby result in
non-conservative estimates of the fatigue life, see ASTM E647-13 Appendix X3 for more
details. The work of Forth [30] is a good example of this. Here Forth [30] explains that using the
value of AKy, determined from K tests, rather than the value obtained via the ASTM load
reducing tests, led to areduction in the life of the US Space Shuttle from an effectively infinite
life to approximately four missions [30].

As aresult of this shortcoming (in the data generated using the ASTM load reducing standard to
determine the da/dN versus AK curve) a number of methods, viz: compression pre-cracking
(CPC) [33, 34], the ACR technique [8, 35-37], the partia crack closure approach [37, 38, 39]
and high Ky tests [30, 40] have been proposed to obtain a better estimate of the intrinsic, i.e.
crack tip shielding free, da/dN versus AK, or AKgs, relationship. Of these the ACR techniqueis
perhaps the most widely accepted technique and this approach has now been incorporated into
ASTM E647. An added advantage of this procedure is that it appears to yield a da/dN versus
AKg; curve that is relatively consistent with that seen by physically short cracks® [3, 41].
Interestingly [3] revealed that when using the ACR method to study R = 0.33 crack growth seen
in 7050-T7451 tested in a high humidity environment (RH > 95%) the resultant ACR (closure
corrected) da/dN versus AKg; data [42] coincided with the small crack lab air test data presented
in [43] where the initial flaw size was approximately 0.007 mm. Similarly in Section 4 it will be
shown that the closure free data obtained by Yamada and Newman 74] using a modified CPC
procedure in which local strain gages placed along the crack path were used to measure the crack
opening load aso yielded data that were consistent with measured 7050-T7451 small crack data.
These example are an illustration of the conclusion reached in [3, 4, 44, 45] that the growth of
short cracks is essentially crack tip shielding free and that short crack data can be obtained from
long crack data by accounting for crack shielding effects.

However, care must be taken since [3, 39] the ACR and the CPC approaches generally produce
da/dN versus AK curves that tend to resemble that obtained for physically short cracks. Such
curves do not have the same shape as the small crack da/dN versus AK curves which, as
explained in the review paper [7] that examined the data obtained in a large number of
small/short crack tests, often has a very low threshold and a da/dN versus AK curve that can
often be approximated by a simple Paris law. It is postulated that this is because these
approaches may not account for all of the crack tip shielding mechanisms that arise for long
cracks but have aminimal effect on the growth of cracks from small naturally occurring material
discontinuities [14, 44, 45]. In this context Lugo, Daniewicz and Newman [46] present an

8 As distinct from that seen by cracks that grow from small naturally occurring material
discontinuities.
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interesting computational study into the ACR method that discusses its sensitivity to the
measurement location.

2.2 Aircraft Sustainment

In Section 2.1 it was mentioned that whereas the methodology developed to compute the growth
of long cracks generaly works reasonably well this is not the case for cracks that grow from
small naturally occurring material defects such as those found in aerospace vehicles [22, 28, 29].
As a result it should be noted that the DSTO-RAAF approach to the management of fatigue
cracking in combat, maritime reconnaissance and trainer aircraft makes use of the “lead crack”
concept [22]. In this approach, the life of the fleet is determined by the growth of lead fatigue
cracks which in [11] were defined to have the following features:

a) Crack growth initiates from small naturally occurring material discontinuities, such as
inclusions and pits, which have dimensions that are equivaent to a fatigue crack-like size
typically of about 10 um in depth [18-29]°.

b) Crack growth essentially starts from the day that the aircraft enters service. (This implies
that the fatigue threshold AKy, is very small and is in agreement with statements presented in
ASTM E647-13aand [3, 20, 22, 47, 48].)

c) The shape of the crack growth versus flight hours curve can be approximated by a near
exponential crack growth curve. This finding is substantiated by the crack growth data presented
in[18-22, 48-51] aswell asin the compendium of F/A-18 crack growth data[52] which presents
data associated with more than three hundred and fifty different cracks in a range of aluminium
and titanium aloys.

In this context it should be noted that, as first postulated by Frost and Dugdale [53] for crack
growth in constant amplitude tests on centre cracked panels, the shape of the crack growth versus
cycles curve can often be approximated by an exponential crack growth curve|[ 3, 18, 19, 22, 26,
27,48, 51, 52, viz

oN

a=gé€e D

where g is the initial crack size, N is the number of cycles, or flight hours, and ® is a constant.
As such the fact that the shape of the crack growth versus flight hours curve seen in operational
aircraft and representative full scale fatigue tests can be approximated by an exponential crack
growth curve represents an extension of the Frost-Dugdale observation to operational aircraft.
This finding, i.e. a near an exponentia crack growth curve, is consistent with the USAF studies

*This (initiating defect) size is consistent with the work of Merati [54], where it was found that
the size of initial defects in civil transport aircraft lie in the range 0.009 to 0.029 mm and with
the paper by Schijve [55] where it was reported that the size of initial defects in civil transport
aircraft liein the range 0.007 to 0.030 mm.
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[48-51] where as aresult of fractographic examination of failure surfaces it was found that crack
growth in operational aircraft and full scale fatigue tests could approximated as

da/dN < a? (2

where b was approximately 1 so that crack growth is (near) exponentia. This exponential crack
growth law was subsequently built into the USAF approach to assessing the “Risk of Failure”
[48].

It has long been known [3] that for cracks that grow from naturally occurring material
discontinuities in operationa structures the mgjority of the life is consumed by the time to grow
to a size that is readily detectable by NDI. This conclusion, i.e. that the mgjority of the life is
consumed by the time to grow to size that is a readily detectable by NDI, is also found in [48,
56] as well as in a number of other reviews and also follows from the compendium of F/A-18
crack growth data presented in [52].

As such given that one of the primary conclusions reached in the USAF-McDonnell Douglas
(now Boeing) study into sustainment issues associated with cracking in F-15 aircraft [57] was
the need to use the short crack da/dN versus AK curve rather than the corresponding ASTM long
crack curve it is clear that understanding the growth of fatigue cracks from small naturally
occurring material discontinuities is of fundamental importance to sustainment related issues.
Indeed, the central role that small cracks play in understanding the durability of aircraft and other
engineering structures is highlighted in [55]. Furthermore, as stated by Lados, Apeliana, Paris
and Donald [41]: “The use of long crack data can lead to significantly non-conservative
estimates of the fatigue response and serious design errors.” This statement is echoed in
Appendix X3 of ASTM E647-13a. The extent of these non-conservative estimates is aptly
illustrated in [94] where it was shown that using FASTRAN together with a da/dN versus AK
curve obtained from tests on long cracks to predict the crack growth from a small 0.003 initial
defect in a F/A-18 centre barrel crack gave an estimate of the fatigue life that was more 300%
greater than that seen in the test. Indeed, even when used to compute the growth of cracks in
7050-T7451 where the crack length was greater than approximately 1 mm it was found that
when these cracks have grown from small naturally occurring material discontinuities, the use of
FASTRAN (even when used in concert with the high R ratio da/dN versus AK curve associated
with small cracks) gave non-conservative results [15]. Unfortnately this is not aways the case
and Section 6 presents two examples where by the use of FASTRAN gives overly conservative
lives.

The reason for this is that, as explained in [3, 4, 5], there is little crack tip shielding associated
with cracks that grow from small naturally occurring material discontinuities. As such we expect
to find little R ratio dependency. This is confirmed in [7] which presents the small crack da/dN
versus AK curves for tests involving a large number of materials and R ratio’s and in [14] which
presents data associated with the growth of very small cracks from a notch.

As such, in contrast to the tools used for ab initio design, the use of crack closure based models
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and ASTM long crack da/dN versus AK curves in sustainment related problems is generally
inappropriate and any crack growth equation should allow for closure to decay as the crack
length reduces and should use the appropriate short crack da/dN versus AK curve.

These conclusions will be discussed in more detail in Sections 3-7.

3 COMPUTING CRACK GROWTH ASSOCIATED WITH AIRCRAFT
SUSTAINMENT RELATED PROBLEMS

Section 2 raises the question of how to compute the growth of cracks from small naturally
occurring material discontinuities under representative operational flight load spectra. In this
context the 2014 state of the art review paper [3] explained that the growth of cracks from small
naturally occurring material discontinuities can often be computed using the Hartman-Schijve
variant of the NASGRO crack growth equation, i.e. equation (3), with the constants obtained
from long crack data by setting crack closure to be zero™ and using a small value of AKy,. The
NASGRO equation can be written in the form:

da/dN = D AKet™ (AK st - AK e thr) P/ (1-K mand A)° )
where AKgr = AK — AKgp (4)
and AKop = (1'e_ka) AKOp| (5)

The Hartman-Schijve variant is obtained from equation (3) by setting m = p and g = p/2, see [3]
for more details. In many cases the value of p is approximately 2, see [3, 7, 58, 59]. In this
formulation D is a constant, Ky and Kpin are the maximum and minimum values of K seenin a
cycle, AKgpl is the long crack value of AKgp (= Kop - Kmin), Kop is the value of the stress intensity
factor at which the crack first opens, A is a material dependent constant and the terms AKy, and
A are best interpreted as parameters chosen so as to fit the measured da/dN versus AK data, see
[3] for more details. As such [3] noted that it follows that for cracks growing from small
naturally occurring material discontinuities for a significant proportion of the fatigue life
equation (3) can be approximated by what is essentially a simple Paris type law and that this
observation is consistent with alarge number of experimental studies, see [3] and Appendix D in

[7].

Crack growth in operational aircraft is often associated with a significant scatter in the crack
growth versus flight hours histories. In this context it has been shown [3, 6, 7, 14, 15] that

91t should also be noted that, as shown in Figure 12 in [60] which analysed the growth of small
cracks in 7050-T7451 even if small crack da/dN versus AK data is used not setting closure to a
small value can lead highly non-conservative crack length/depth histories seen in tests on cracks
that grow from small naturally occurring material discontinuities.
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variations in the crack growth histories™ can be modelled by alowing for small changes in the
value of AKy. In this context [3] illustrated how this approach can also be used to capture the
scatter seen in long crack tests in the paper by Virkler, Hillberry and Goel [61] which is
recognised [62] as being one of the definitive studies that illustrates the variability in crack
growth rates. This Chapter presented the results of sixty eight R = 0.2 tests on 2024-T3 panels
where the initial crack length was 9 mm. To illustrate how equation (3), withm=p=2andq=
p/2, see [3] for more details can be used to estimate the variability in fatigue life. The
representation given in [3, 58] for this material was used, viz:

da/dN = 1.2 10° (AK - AKn)7(1-K mad A) (6)
with A set at 70 MPa Vm. Reference [3] revealed that the variability in the crack growth histories
in these tests is captured reasonably well by merely allowing for small changes in the value of

AKin used in equation (6), i.e. using vales of 2.9, 3.2, 3.4, 3.6, 3.8, 4 and 4.2. As such the test
datareported in [61] leads to afamily of da/dN versus AK curves, see Figure 1.
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Figure 1 Family of curves associated with the test data presented in [16]

1 The ability of a variant of this approach, where in equation (3) the term K is replaced by VG,
to capture the scatter seen in Mode I, 1l and mixed Mode I/Il disbond growth in adhesively
bonded structures as well as Mode I, |11 and mixed Mode 1I/Il delamination growth composites,
and nano-composites is shown in [63-66].
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The review paper [3] aso illustrated how this approach can be used to compute the crack growth
history seen in operationa aircraft via the problem of crack growth in the 1969 Genera
Dynamics, now Lockheed Martin, F-111 wing fatigue test which used a representative F-111
usage spectrum. (An early F-111 in-flight failure was largely responsible for the USAF adopting
a damage tolerance approach [2].) Examples of how this approach can be used to compute crack
growth from etch pits at both low and high K features under representative combat aircraft
flight load spectraare givenin [14].

3.1 USAF Characteristic K approach

It was mentioned in [3] that for cracks that grow from small naturally occurring materia
discontinuities under operational loading, which as mentioned above generally see little crack
closure, that the USAF characteristic K approach outlined in [1], where the characteristic (also
called the reference) stress intensity factor is usually taken as either the root mean square value
of AK in the load block (AKms) or the maximum vaue of K (Kna) in the load block, is aso
often a useful approach. This was illustrated [3] by considering a range of (small) crack growth
tests in 7050-T7451 under both an operational F/A-18 (Hornet) flight load spectrum and
FALLSTAFF, which isan industry standard combat aircraft spectrum. In each case it was shown
that da/dN could be expressed as:

da/dN = 7x 10 (AK s - AK rmsttr) 7(1-K mad A) 7)

where Aoms 1S the root mean square value of the stress in the spectrum, B is the geometry
correction (beta) factor, AKims (= P Aoms\(@)) is the root mean square value of AK, and the
term AKmsinr 1S the equivalent threshold value of AK s It was aso shown [3] that equation (7)
described the constant amplitude representation for the growth of both long and short cracks in
thismaterial, see [3] for more details.

In this context it should be noted that, as mentioned above, the crack closure based anaysis
presented in [60] for the growth of small cracks in 7050-T7451 dogbone specimen under a Mini-
TWIST spectrum with a peak stress of 250 MPa gave a non-conservative crack length/depth
history, see Figure 2. This shortcoming vanishes if equation (5) is used, see Figure 2 which
presents a comparison of the measured [67] and computed crack depth histories using as per [14]
A = 47 MPa Vm. Here we see that, as discussed above, allowing for small variations in the term
AKmsthr €nables the scatter in the various tests to be captured reasonably accurately. The values
of AKimsihr Used inthisanalysisare givenin Table 1.
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Table 1. List of AKymsihr USed in the Characteristic K analysis

Coupon AKims thr
(MPavm)
LM727 0.58
LM737 0.67
LM804 0.36
LM848 0.45
LM900 0.41

The ability of the cycle by cycle formulation, with closure set to zero, to capture crack growth in
these test specimensis presented in [68].

10

o
[

* LM727
m LM737
A LM804
LM848
001 £ LM900

u ——Computed_LM727

=——Computed_LM737

Computed_LM804

=——Computed_LM848

——Computed_LM900

Crack depth (mm)

KA

0.001 -~

0 10 20 30 40 50 60
Load block

Figure 2.Measured and computed crack depth histories for specimens tested at 250M Pa under a
mini-TWIST load spectrum, from [68].

The paper by Molent and Gallagher [18], which examined sixty three 7050-T7451 specimen
tests where the specimens were subjected to arange of representative fighter aircraft spectrawith
each spectra having tests performed at four different load levels, found that the growth of cracks
from small naturally occurring material discontinuities conforms to a simple Paris like law where
da/dN is essentially proportional to K and that there was no apparent threshold. This finding
mirrors the observation discussed above and in [3] that for cracks that grow from small
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naturally occurring material discontinuities da/dN is essentially related to AK by a ssmple Paris
law.

3.2  Crack growth under arepresentative RAAF AP3C (Orion) spectrum

Prior studies have shown the ability of the Hartman-Schijve variant of the NASGRO equation to
accurately compute the growth of cracks from small naturally occurring material discontinuities
under combat aircraft load spectra [3, 7, 14, 15]. This raises the question: Does this approach
hold for other spectra?

To investigate this question consider the data presented in [69] for the growth of small cracks,
both for an “as machined” specimen and a specimen with etch pits, in a high K; (‘double-ear’)
specimen with a gross K; of 5 made from a 3.175 mm thick 7075-T6 aluminium plate subjected
to aRoyal Australian Airforce (RAAF) FCA-351 load spectrum with a peak remote stress of 139
MPa. The machined surface finish was to simulate the surface finish seen in reamed holes
present in F/A-18 structure [69]. The etched surface finish was to imitate one of the surface
treatments applied to certain F/A-18 components, see [69] for details. The test specimens
described in [69] had a working section of 114.3 mm (long) by 38.1 mm (wide) and a close up
view of the local geometry is shown in Figure 3. The FCA-351 spectrum is a repeated block load
spectrum that is a representation of the load time history seen at the lower front spar inboard area
near the inboard engine of RAAF AP3C (Orion) aircraft, see [70] for more details. It was
developed from the fleet operational usage data collected from 1991 through 1997. One block
consists of 1,264,912 cycles. This corresponds to 15,000 flight hrs and one load block represents
the nominal design life of the aircraft.
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Fig. 3. Schematic of the local specimen geometry, from [69].

As in [59, 7], which studied the (constant amplitude) growth of long cracks in tests, and [16]
which studied the growth of small cracks from a fastener hole surrounded by intergranular
corrosion as well as the growth of small surface cracks in this material crack growth was
computed using the Harman-Schijve variant of the NASGRO equation, i.e. equation (1) withm =
p, g = p/2 and p = 2. However, since in this instance we are analysing cracks that grow from
small naturally occurring material discontinuities closure effects were set to zero, as
recommended in [3]. The values of D and A used in the analysis were as given in [7, 59] for this
material so that the crack growth equation became:

da/dN = 1.86 10° [(AK — AKin)?]/(1-K max/111) (8)

The resultant measured and computed crack length histories are shown in Figure 4 where we see
good agreement both for the “as machined” and the “etched” specimens. This analysis used AKgy,
= 0.2 MPa Vm for the “etched” specimen and AKyy = 0.93 MPa Vm for the “as machined”
specimen.

When taken together with the results presented in [3, 7, 14-16] this example illustrates how, as
suggested in [3], the Hartman-Schijve variant of the NASGRO equation with closure set to zero
and the threshold term AKyy Set to a small value can be used to compute the growth of small
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crack under a representative maritime aircraft flight spectrum as well as under representative
combat aircraft spectra[3, 7, 14-16].

The use of the Hartman-Schijve variant of the NASGRO equation to accurately compute the
effect of intergranular cracking at fastener holes representative of domenut holes in P3C (Orion)
aircraft subjected to a measured flight load spectra in shown in Chapter 16. Chapter 16 also
illustrates how this methodology can be used to accurately compute the effect of SPD repairs to
intergranular cracking.

100
10
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1
E
é 0.1 O 351 etched
© ]
@ & 351 etched computed
4
0.01 A 351 Machined
0351 Machined Computed
0.001 ' : ' :
0 5000 10000 15000 20000 25000
Flight Hours

Figure 4. Measured and computed crack growth histories.
3.3  Crack growth at a dome nut hole containing intergranular cracking (IGC)
To illustrate the effect of intergranular cracking (IGC) on structural integrity this section focuses

on crack growth in dome nut hole specimens (DNHS) that were representative of those seen in
RAAF P3C (Orion) aircraft- see Figure 5, that contained had intergranular corrosion (IGC) that
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were tested at DSTO [3]. The geometry of the test specimensis shown inn Figure 6.

Figure 5 —Wing locations affected by intergranular cracking, from [71].
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Figure 6 Schematic of the DNH coupon tested in [71].

In this section attention is focused on specimens which had the fastest growing crack growth
rates, viz: P3-1G-33 and P3-1G-16, where the IGC was approximately 1.5 mm and 0.8 deep
respectively, which were subjected to a measured RAAF FCA-352 (clipped) spectra, which had
apeak stress in the spectrum of approximately 133 MPa, and specimens P3-1G-04 and P3-1G-01,
where the IGC was approximately 0.42 mm and 0.33 deep respectively, which were tested under
a RAAF FCA-16 spectrum, see [71] for more details. These specimens were approximately 1.5
mm thick. Both the spectra and the crack growth data were given in [71]. In these specimens the
IGC occurred at different depths beneath the surface, see Figures 7 and 8 which present both the
depth and location of the IGC for specimens P3-1G-16 and P3-1G-33.
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Figure 7. FEA model of dome nut hole coupon with an 0.8 mm deep 1GC representing the IGC
found in DSTO specimen P3-1G-16.

Figure 8. FEA model of dome nut hole coupon with an 1.5 mm deep 1GC representing the IGC
found in DSTO specimen P3-1G-33.

Three dimensional finite element models were created for each specimen. Models were created
for specimens both with and the without 1GC, see Figures 7 and 8. In each case crack growth
was allowed to occur naturally and the associated stress intensity factors were computed using
three dimensional weight function theory. The advantage of this formulation is that cracks do not
have to be explicitly modelled, there is no restriction on the aspect ratio’s which are allowed to
change asthe crack(s) grow and only the uncracked finite element model is required, see [4] for
more details. The depth of the initial equivalent precrack (EPS) was taken as per [22-28] to be
0.01 mm and as previously the computed crack growth histories were obtained using equation
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(8).

As can be seen in Figure 9 the computed and measured crack growth histories for tests under an
FCA352 spectrum are in good agreement. Of particular interest is the fact, in this instance, that
the computed results with and without IGC were almost identical. Similarly the nature of the
assumed initial cracks had little effect on the crack growth history.

FCA 352 P-3 Spectrum Loading
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Figure 9. Comparison of the computed and measured crack growth histories for specimens P3-
IG-16 and P3-1G-33, from [71].

As previously explained that the variation in crack growth histories can be captured by allowing
for small changes in the threshold term AKy,. The variation in the measured and computed crack
growth histories for test specimens P3-1G-03, P3-1G-16, P3-1G-24, P3-1G-032 and P3-1G-033 is
shown in Figure 10 along with the computed crack growth histories. The associated values of the
threshold AKy, used in the analysis are given in Table 2. Here it is clear that both the crack
growth history associated with the fastest growing crack and the scatter in the measured crack
growth histories are captured quite well. It can also be seen that the presence of IGC made little
difference on the computed crack growth history and that the nature of the assumed initia cracks
also made little difference on the computed crack growth history.
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Figure 10. Comparison of the computed and measured crack growth histories in DSTO
specimens tested under a FCA-352 spectrum, from [71].

Table 2 Vaues of the threshold used

Test Specimen AKiy (MPa Vm)
P3-1G-03 1.2
P3-1G-16 0.2
P3-1G-24 1.6
P3-1G-32 0.6
P3-1G-33 0.2

The analysis was repeated for DSTO DNH IGC specimens P3-1G-01, P3-1G-04, P3-1G-22 and
P3-1G-029 which were tested under a RAAF FCA-361 spectrum [71] with a peak stress in the
spectrum of approximately 124 MPa. These two specimens were analysed since they represent
the fastest and slowest crack growth for cracks in the first inner ligament. As previously to
evaluate the effect of different initial crack configurations analysis on crack growth in specimens
P3-1G-04 and P3-1G-01 two types of initial crack configurations were analysed, viz: an initia
corner crack and an initial semi-élliptical crack that spans the IGC, as was the case when there
was no IGC. The resultant experimental and computed crack growth histories are shown in
Figure 11. The values of the threshold AK, used in this anaysis are given in Table 3. As
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previously we see that the crack growth history associated with the fastest growing crack and
also the scatter in the measured crack growth histories are captured quite well. 1t can also be seen
that the presence of 1GC (again) made little difference on the computed crack growth history and
that the nature of the assumed initial crack also made little difference on the computed crack
growth history.
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Figure 11. Comparison of modelling predictions for specimen P3-1G-01 and P3-1G-04.

Table 3 Vaues of the threshold used

Test Specimen AKy (MPa Vm)
P3-1G-01 0.9
P3-1G-04 0.4
P3-1G-22 1.6
P3-1G-29 0.8

4 THE SHORT CRACK da/dN VERSUS AK CURVE

If, asin [72, 73], enough tests are performed then, as we have seen above for the growth of long
cracks in 2024-T3, the associated crack length histories can lead to a family of da/dN versus AK
curves. Thisraises the question: Does this also hold for the growth of small cracks?

To answer this question consider the extensive study presented in [72] into the growth of small
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cracks in 7050-T7451 auiminium alloy under a range of F/A-18 related flight load spectra. In
one series of specimen tests, designated KW, the surfaces were etched so as to produce a large
number of small (near micron) initial cracks, see Figure 12. These specimens were tested under
repeated block loading, with approximately 13,480 turning points, which represented a measured
F/A-18 flight load spectrum. Barter [73] presented the results for specimen KW4 which resulted
in nineteen cracks and the resultant crack growth per load block (da/dBlock) versus crack depth
relationships, from [73], are shown in Figure 13. Barter [73] aso included a line which
represented a linear relationship between da/Block and the crack depth. This line is also shown
in Figure 13.

Figure 12 A KW SHG coupon after testing, dye penetrant has been used to show the extent of
fatigue cracking, from [73].
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Figure 13 Crack growth in the KW SHG, from [73].

In another series of tests discussed in [73] specimen KY-SHG was first highly polished (to
remove as many of the natural surface discontinuities as possible) and 800 small slots were then
cut with a Coherent Industrial AVIA™ pulsed frequency tripled Nd-YAG LASER. The resulting
slots were measured to be approximately 50um long, 20um deep and about 2um wide [73]. They
were separated by a distance of 1mm in the x direction (i.e. across the width of the coupon),
while each row of notches was separated by 0.5mm in the y direction (the long axis of coupon).
The rows of dots were staggered so that each alternate row was 0.5mm offset to the rows above
and below it, see Figure 14 and [73] for more details. Each side of the coupon was cut with 400
dlots centred in the middle of the coupon. The failure surface associated with specimen KY-SHG
revealed forty cracks, which were labelled C1 to C40, and Figure 15 presents the crack depth
versus load blocks relationship for twenty of these cracks. In this instance Barter [73] did not
give the associated da/dB versus a (crack depth) relationship.
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Figure 14 Variation in the crack lengths in alaser slot specimens, from [73]

Figure 15 Crack depth versus number of load blocks for twenty cracksin the KS-SHG test, from
[73]
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Figures 13 and 15 revedl that, as first explained by Ritchie and Wu [45], for a given crack depth
the crack growth rate per block (da/dB) versus crack depth relationship is not unique. This in
turn extends the finding presented above for long cracks in that it implies that the da/dN versus
AK relationship is not unique and that for small cracks there also exists a family da/dN versus
AK curves.

This finding, i.e. that there exists a family da/dN versus AK curves, is consistent with the results
given in [14] where it was shown that, for small semi-élliptical surface cracks in 7050-T7451
and for small cracks that emanated from a fastener hole in 7050-T7451 specimen tested under an
operational F/A-18 load spectra, crack growth could be expressed as:

da/dN = 7x 1070 (AK - AK ) ?/(1-K max/ A) (9)

with A = 47 MPa Vm. Here it was also shown that the scatter in these various crack growth
histories could be captured by using small values for the threshold term AKy, and by allowing
for small variations in the value of the term AKy,. The values of AKy, determined in these
studies were AKir = 0.1, 0.4, 0.65, 0.77 and 1.1 MPa Vm. Substituting these values into equation
(9) yieldsafamily of R = 0.1 small crack da/dN versus AK curves, see Figure 16. Here it should
be noted that for da/dN < 107" m/cycle the resultant curves are essentially R ratio independent.
To illustrate this Figure 17 presents the measured small crack da/dN versus AK curves for a
range of R values as well as the predicted curves for R = 0.1 and 0.7 using A = 47 MPa Ym and

AKinr = 0.1 MPa Vm. Figure 17 also contains the NASA high Knya (= 35 MPa \/m) and R =0.1
curves givenin [43].
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Figure 16 Comparison of the family of R = 0.1 da/dN versus AK closure free curves determined
in [14] with those givenin [74].
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Figure 17 Comparison of the measured and computed small crack growth curves and the NASA
Kmax test given in [58]

As previously noted ASTM E647-13a Appendix X3 and [3, 4, 7, 8, 15, 75,] notes that small
cracks are distinguished from large cracks by a reduced closure. As a result several approaches
have been developed to produce such da/dN versus AK curves. A number of methods, viz:
compression pre-cracking (CPC) [74, 76, 77,], the offset opening load technique (with a typical
offset value of 2%) [78], the ACR technique [79, 80, 81], the partial crack closure approach [81-
83] and high K tests [84] have been proposed to obtain a better estimate of the intrinsic, i.e.
crack tip shielding free, da/dN versus AK, or AKes, relationship. The offset opening load
technique was adopted as an ASTM E647 standard, Appendix X2, in 1995. The ACR method
was adopted as an ASTM E647 standard, Appendix X3, in 2014 and application of the ASTM
ACR method to assess crack growth in the Lockheed F-22 isgivenin [§].

However, as discussed in Section 2.1 and in [3], care must be taken since the ACR and CPC
approaches produce da/dN versus AK curves that are more representative of physically short
cracks and as such do not have the same shape as the small crack da/dN versus AK curves which
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as shown in [3, 7] are essentially R ratio independent™, i.e. are essentially closure free, generally
have a very low threshold and a da/dN versus AK curve that can often be approximated by a
simple Paris like equation. A discussion on the sensitivity of the da/dN versus AKg; CUrve,
determined using ACR method, to the measurement location is given [86].

With this in mind let us examine the study by Yamada and Newman [74] which evaluated the
use of the ASTM offset opening load technique (corresponding results in Figure 9 are labelled
OP1), Kmax tests (tests a Kma = 22 and 6.6 MPa Ym), compression pre-cracking followed by
constant amplitude tests at various R ratio’s (which [74] labelled CPCCA) and compression pre-
cracking followed by ASTM load reducing tests (which [74] labelled CPCLR) to determine the
“closure free” da/dN versus AK curve for 7050-T7451. Yamada and Newman [74] also
presented the “closure free” R = 0.7 da/dN versus AK curve obtained when strain gauges, placed
on the back face (BFS) and local strain gages placed along the crack path, were used to measure
the crack opening load. In [74] the latter results were labelled “R = 0.7 local” and this labelling
convention is also used in Figure 9. The results of these various tests for R = 0.1 are also shown
in Figure 9.

The ACR method has also been used [85] to examine crack growth seen in 7050-T7451 tested at
R = 0.33 in a high humidity environment (RH > 95%). In [3] it was shown that the resultant
ACR (closure corrected) da/dN versus AK data essentially coincided with the small crack lab air
test data presented in [58] where the initia flaw size was approximately 0.007 mm. This data is
shown in Figure 18 along with the NASA Ko test data givenin [43].

Figures 16 and 18 show that, allowing for experimental error, each of these independent
approaches to determining the closure free da/dN versus AK curves are consistent with the
family of curves (independently) determined in [14]. Some of these curves are close to the fastest
curve determined in [14], others are closer to the slower curves determined in [14].

In this context it should be noted that in [7] it was shown that the growth of both long and short
cracks in 7075-T6 tested under constant amplitude loading could be expressed as per equation
(3), withm =p =2 and q = p/2, and that this approach resolved what appeared to be an anomaly
associated with long crack test data reported in [87, 88] where different test geometries gave
significantly different da/dN versus AK curves. Indeed Section 2.1 has shown how equation (3),
withm =p =2 and q = p/2, aso holds for the growth of small cracksin 7075-T6 tested under a
RAAF AP3C maritime aircraft spectrum.

The paper by Jones, Peng, Singh, Huang, Tamboli and Matthews [15] reinforces the findings
outlined above in that, alowing for the assumptions made in [89] when determining AK, the
scatter in the of da/dN versus AK curves presented in [89] for the growth of small cracks from
corrosion pitsin 7075-T651 was shown to be essentially bounded by the da/dN curves computed
using equation (3) with closure switched off D = 1.86 10°, A = 111 MPa Vm, p = 2 and AKj
values of 0.0 and 0.8 MPa Vm, see Figure 19 which also presents the result obtained using AKy,

12 Appendix D in [7] presents arange of examplesthat illustrate this near R ratio independence
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=0.12 MPa Vm, see [15] for details.
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Figure 18 Comparison of arange of “closure free” da/dN versus AK curves
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Figure 19 Measured [72] and computed [15] crack growth curves for 7075-T651, from [15].
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The paper by Jones, Tamboli, Huang and Peng [90] has also shown that, allowing for
experimental error, the cracks growth data presented in [91] for the growth of small cracks from
an edge notch in 7075-T6 can also be accurately captured by modelling crack growth using a
family of da/dN versus AK curves with the same values of D, A and p, i.e. D = 1.86 10°, A =
111 MPa Vm, p =2. In this case the family of curves were determined using the values of D, A

and p given above together and using AK, values of 0.6, 0.795, 0.825, 1 and 1.1325 MPa Vm,
see Figure 20.

Figure 20 Measured [91] and computed [90] small crack growth histories, from [90].

The experimental approaches mentioned above, i.e. CPC, ACR, K« tests and the ASTM E647
crack opening approach, are predated on the assumption that the primary difference between
small and long cracks is primarily due to the difference in the level of closure. However, it is
clear that when assessing/evaluating in-service crack growth the crack growth curve to be used
should correspond to that associated with the fastest possible, i.e. most severe, crack growth
curve which in Figures 16-18 and in [3, 7, 57] are shown to essentially exhibit a simple power
law relationship between da/dN versus AK. Another feature of these da/dN versus AK curves is,
as remarked in [3] and ASTM E647-13a, a significant reduction in the fatigue threshold, see
Figure 17. Indeed Appendix X3 of ASTM E647-13a remarks. “It is not clear if a measurable
threshold exists for the growth of small fatigue cracks’.
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Forth, James, Johnston, and Newman [92], revealed that crack closure approaches are
inappropriate for modeling crack growth in materials that have a weak R ratio dependency. In
this context they stated: “there is little closure in high strength steels’. To illustrate this consider
the (long) crack growth data presented by Forth [93] for D6ac steel. Figure 21 presents the
experimental (long crack) da/dN versus AK curves for specimens Ct3-10b-It, Ct3-12-1t, Ct3-25-
It, Ct3-27-It, Ct3-29-It, Ct3-46-It and Ct3-47-It which were tested at R ratio’s that varied from
0.1 to 0.9. Figure 21 also presents the result for specimen Ct3-5-tl which was tested as per the
ASTM K recommended procedure, see Table 4 for more details. This test data reveals that the
R=0.9, 0.8, 0.5, 0.3 and 0.1 da/dN versus AK curves essentially coincide. From this it follows
that for D6ac steel there is essentially no crack closure. This data set thereby supports the
conclusions given in [92] that “there is little closure in high strength steels’. Furthermore, we
also see that the K« test gave a da/dN versus AK curve that was essentially identical to those
obtained inthe R=0.9, 0.8, 0.7, 0.3 and 0.1 tests.

This study when taken in conjunction with the F-111, F-15, F/A-18, F-22 and C-130J tests [ 8-18,
57, 94] suggests that the CPC, ACR, Kax tests and the ASTM E647 crack opening approach may
not yield a small crack like da/dN versus AK curve for this steel. As such valid short crack test
data is essential to assessing the operational life of an aircraft [3, 8] and thus for any associated
composite repair to an operational aircraft.
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Figure 21 Measured and computed crack growth in D6ac steel

Table 4: Description of the various tests

Specimen Type of test

Ct3-5-tl Kmax=20 LR 18 Hz*
Ct3-10b-It R=0.3LI,20Hz
Ct3-12-It R=09LI,20Hz
Ct3-25-It R=0.7LI,20Hz
Ct3-27-It R=09LI,22Hz
Ct3-29-It R=0.3LI,10Hz
Ct3-46-It R=0.1LI,20Hz
Ct3-47-It R=0.8LI,10Hz

LR =ASTM Load reducing test, LI = ASTM Load increasing test, K = constant K max test,*
Test frequency (when reported).
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A more detailed discussion on the ability of the Hartman-Schijve variant of the NASGRO
equation to capture the variability in da/dN versus AK curves, for both long and small cracks, by
allowing for small variationsin theterm is presented in [6].

S IMPLICATIONS FOR SMALL CRACK GROWTH

The question thus arises: What are the implications of this finding for the growth of small
cracks?

To answer this question it is important to recall that, as noted in [3], one of the primary
conclusions reached in the USAF-McDonnell Douglas (now Boeing) study into sustainment
issues associated with cracking in F-15 aircraft [57] was the need to use the short crack da/dN
versus AK curve rather than the corresponding ASTM long crack curve.

Furthermore, as previously mentioned in this Chapter and is apparent in the crack growth curves
determined as part of the F-22 program [8], these short crack curves generaly have a Paris like
shape with no clear threshold. (This means that AFGROW and Nasgro can be used to compute
the crack growth histories for both repaired and unrepaired airframes.) Examples of this can be
seen in Figures 17 and 22 and also in Appendix D in [7]. (To the best of the author’s knowledge
the paper by Rao, Yu and Ritchie [95] was one of the first papers to reveal that the growth of
short cracks in aerospace quality aluminium and auminium-lithium alloys often took a form
similar to that shown in Figures 17 and 22.)

Unfortunately, the experimentally determined da/dN versus AK curves for D6ac steel, which are
essentially R ratio independent and hence exhibit little (if any) closure, shown in Figure 21 do
not exhibit this feature, i.e. a Paris like relationship with a low fatigue threshold (by this it is
meant with athreshold that is significantly lower than that seen in the long crack tests[3, 7]). As
such this suggests that, as mentioned in the previous section, the absence of crack closure is not
sufficient to guarantee a small crack like da/dN versus AK curve. Consequently the generality of
the use of Knax, ACR and CPC testing to generate an appropriate small crack curve is
questionable. That said it should be recalled that for many aluminium and titanium alloys these
tests do appear to yield reasonable estimates for the da/dN versus AK curves associated with
physically short cracks.



Figure 22 The short crack curves used in the F-15 study, from [42].

The need to use the short crack da/dN versus AK curve rather than the corresponding ASTM
long crack curve is supported by the analysis presented in [96] which revealed that using
AFGROW together with D6ac long crack data gave un-conservative™ estimates for the crack
growth history seen in the 1969 F-111 wing fatigue test. However, [3] reveadled that using the
Hartman-Schijve representation, i.e. equation (3) with m = p, g= p/2 and the values of D, A and p
determined from long crack da/dN versus AK data, ignoring closure and setting the fatigue
threshold to a small value, as recommended in [3], gave a computed crack length history that
was in excellent agreement with the measured F-111 wing crack growth data.

This analysis [3] used D = 2.05 10™°, A =220 MPa Ym, AKyy= 0 MPa Ym and m = p = 2. The
associated computed small crack D6ac da/dN versus AK curve is shown in Figure 21 where we
see that this results in what is essentially a ssmple Paris law and that the resultant da/dN versus
AK curve resembles that shown in Figures 17 and 22. At this point it should be noted that the
long crack representation of these tests can be captured using AK—= 2 MPa \Vm. This computed
(long crack) curve is aso shown in Figure 21 where we see that the computed long crack curve
is in excellent agreement with the experimental (long crack) data. As such, as proposed in [3],
we see that using the Hartman-Schijve representation as determined from long crack da/dN
versus AK data then setting closure effects to zero and using a small value of AKyy, yields a
curve, see Figure 21, that is consistent with the small crack growth curves seen in Figures 17 and
22.

Reference [3], aso revealed how this approach, whereby both closure effects and the threshold

13 Thiswill discussed further in the next section.
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term were set to zero, enabled small crack growth in the 1969 F-111 wing test to be accurately
computed. This approach has also been shown to capture crack growth in an F/A-18 centre barrel
test [15]. As previously mentioned this approach has aso been shown [59] to account for
anomalies seen in long crack tests on 7075-T6511 [87] and to essentially collapse the long crack
test datagiven in [87] onto the small crack test data givenin [88].

6 WHICH CRACK GROWTH CURVE?

As discussed above different analyses are needed to assess design and sustainment related crack
growth problems. In this context, the paper by Jones and Tamboli [7] was one of the first to
show that when assessing the effect of repairs to aircraft the use of ASTM like test specimens
was inappropriate in that they had the potential to yield un-conservative estimates of the effect
on the repair on the operationa life of the aircraft. In this section we will show that when
assessing the remaining life of aircraft from US Joint Services Sructural Guidelines (JSSG2006)
mandated initial flaw sizes the use of ASTM (long crack) is often inappropriate since it can yield
inspection intervals that are too short and hence can significantly reduce aircraft availability
and thereby increase both manpower requirements and maintenance costs. To this end we will
illustrate this by considering crack growth in:

)] The 1969 General Dynamics, now Lockheed Martin, F-111 wing fatigue tested under a
representative F-111 usage spectrum, see [96] for details. (This example was chosen
since an early F-111 in-flight failure was largely responsible for the USAF adopting a
damage tolerance approach [1, 2].)

i) Cracking from a small etch pit in an F/A-18 Y488 bulkhead tested as part of the DSTO
Flaw IdeNtification through the Application of Loads (FINAL) test program, see [94, 97].

1)) Crack growth tests performed on coupons as part of the RAAF AP3C repair assessment
program [108].

6.1  Fatiguecrack growth in the 1969 F111 wing test

In this test a crack initiated at a cut-out location designated as fuel flow hole** number 58 on the
lower (tension) surface of the D6ac steel wing pivot fitting, see Figures 23 - 25. The crack
growth data and crack growth predictions obtained using AFGROW together with long crack
da/dN versus AK data were presented in [96] and are reproduced in Figure 20 which shows the
time for the crack to have grown from a 1.27 mm crack to failure.

Jones [3] adso presented an analysis of this problem. In this instance the analysis used the
following Hartman-Schijve variant of the NASGRO equation together with the small crack

da/dN versus AK representation for D6ac steel, viz:

da/dN = 2.05 10° [(AK)?/(1-Kmad 220)] (10)

14 This feature is also termed a mousehole or aweep hole.
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which was obtained from the long crack representation by setting both closure effects and the
threshold term to zero™, see [3]. Equation (10) is essentially a simple Paris crack growth law
that has been modified to reflect the increase in growth rate that occurs when K approaches
the fracture toughness of the material. The stress intensity factors were computed using the stress
field determined from the finite element analysis of the full three dimensional model of the wing
shown in Figures 23-25 see [3] for more details. In this analysis the size of the initiating crack
was 0.010 mm, which is similar to the depth of etch pits reported above, and the crack growth
history, post 1.27 mm, is aso shown in Figure 26.

Figure 23. Full 3D F-111 model, from [94].

Mousehole 58

}

Figure 24. Interior of the DSTO 3D F111 model, from [94].

> Appendix X3 of ASTM test standard E647-13a states that: “It is not clear if ameasurable
threshold exists for the growth of small fatigue cracks’.
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Figure 25. Interior of the DSTO 3D F111 model, from [94].
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Figure 26 Measured and computed crack growth in the F-111 wing test, from [15]

Comparing the various predictions shown in Figure 26 we see that unlike the AFGROW analysis
presented in [96], which used the long crack da/dN versus AK relationship, which predicted
failure after approximately 859 flight hours, which is significantly shorter than the
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(approximately) 2724 flight hours seen the test, the use of the short crack representation yields a
crack growth curve that is excellent agreement with the measured crack growth history.

6.2  Fatiguecrack growth in an F/A-18 aircraft bulkhead

The next problem considered involved cracking that initiated from an etch pit in an F/A-18 Y 488
bulkhead tested as part of the DSTO Flaw ldeNtification through the Application of Loads
(FINAL) test program, see [97]. This test program utilised ex-service Canadian Forces (CF) and
U.S. Navy (USN) wing attachment centre barrel (CB) sections, which are fabricated from
AAT7050-T7451, loaded using an industry standard modified mini-FALSTAFF spectrum, see
[97], which is representative of flight loads seen by fighter aircraft. Since cracking in the
bulkhead was three-dimensional, a three-dimensional FE model was required, see Figures 27 and
28. As explained in [98] in the case of the F/A-18 Hornet it is known that a significant
proportion of cracking initiates from pits from the chemical etching of the AA7050-T7451 which
Is conducted as a precursor to the VD aluminium corrosion preventative scheme. In such cases
the equivalent pre-crack size (EPS), correlates strongly to these pit’s depth, has atypical (mean)
depth of 10 um, see [98]. As such this analysis assumed an initial crack size of 10 um and the
approximate location of the etch pit from which the crack grew is shown in Figure 28, where
node 4390 represents the centre of the initial semi-elliptical surface flaw. As in the previous
example and in [94] a weight function technique together with the stress field as determined
from the FE model of the bulkhead was used to compute the associated stress intensity factors.
Reference [94] aso presented the measured crack growth history and the crack growth history
computed using FASTRAN, together with the long crack da/dN versus AK relationship, see
Figure7.

L

Figure 27. A plan view of the finite element model of the F/A-18 bulkhead, from [94].
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Figure 28. The local mesh, from [94].

The crack depth history, allowing for changes in the aspect ratio of the flaw as the crack grows,
was computed using the NASGRO small crack growth equation given in [14, 58] for AA7050-
T7451, viz:

da/dN = 7.0 10%° (AK — 0.1)%/(1-K el 47) (11)

The corresponding computed crack depth history is also shown in Figure 29. Here we see that, as
was the case for crack growth in the F-111 wing test, using the NASGRO equation together with
the associated small crack da/dN versus AK equation yields a computed crack depth history that
isin good agreement with the measured data. We aso see that using FASTRAN, together with
the long crack da/dN versus AK data, predicted failure at approximately 1300 cycles whereas
failurein the test occurred at approximately 2800 cycles.

The examples presented in this section substantiate the conclusions given in Appendix X3 of the
ASTM test standard E64713a that, for aircraft sustainment related problems, the use of long
crack da/dN versus AK data to compute the life to failure is inappropriate. Whereas in Appendix
X3 it is stated that this approach can give non-conservative lives the examples presented in this
Chapter show that using long crack da/dN versus AK data to compute the life from an initial
crack size of 1.27 mm, which corresponds to the mandatory size stated in the USAF Damage
Tolerance Design Handbook, can also yield remaining lives, and hence inspection intervals, that
are much too short. This would results in significantly reduced aircraft availability and a
significant increase in both manpower requirements and maintenance costs. Hence fleet
management decisions and assessment of the effect of repairs on the fleet need to be based on
analyses that use realistic small crack da/dN versus AK data.
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Figure 29. Measured and predicted crack growth histories.

6.3 TheRAAF AP3C repair assessment tests

As part of the RAAF AP3C repair assessment program tests were performed on 7075-T6 centre
notched panels under a measured RAAF AP3C (Orion) flight load spectrum corresponding to
control point FCA301. This control point isin the outer wing lower front spar cap. In one test the
peak stress was approximately 182 MPa, Test 1. Test 2 had a peak stress of approximately 172
MPa. The measured and predicted, using long crack da/dN versus AK curves are shown in
Figure 30. Here we again see that using the the predictions obtained using the long crack da/dN
versus AK curves significantly under predicted the actual crack length histories.
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Figure 30 Comparison of the computed and measured crack growth histories, from [108].

6.5 Implicationsfor compositerepairs

This finding raises the question: What effect does this have on the tests needed to assess the
effect of a composite repair on an operationa aircraft? To answer this question let us consider
the conclusion reached in [99]. This paper studied the effect that elevated temperatures and the
environment, including the effect of combined temperature and moisture, has on composite
repairs have on both static strength and fatigue. It highlighted the role that 1% ply failure plays,
which for composite repairs to operational aircraft was first reported in [128, 129], in composite
repairs and concluded:

“The fracture paths in this bonded system indicated that the environment appeared to have
affected the adhesive and/or composite matrix materials to a greater extent than the adhesive-
adherend interfaces. Additionally, the crack growth rate sensitivity of this bonded metal-
composite system far exceeded that of metals. Though unaffected by long-term environmental
exposure, this high sensitivity suggests that continued operation of bonded structures below the
identified threshold is necessary to avoid unanticipated rapid Mode | crack growth.”
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In the tests described in [99] hot/wet exposure for 5000 hours resulted in a reduction in the load
carrying capacity of up to 50%. In these tests the fracture surfaces of the hot/wet exposed
specimens were similar to those of the as-received specimens. This led to the realisation that
hot/wet environment adversely affected the adhesive and/or composite matrix rather than the
metal-adhesive interface. Similar findings have been reported for CFRP to stedl joints/repairs.
The design methodology needed to account for these failure mechanisms is discussed in Chapter
7.

However, the with respect to this proposed design approach whereby arepair is designed such that
the associated value of AK after patching is below its (long crack) threshold AKy it is explained
above, and in in Appendix X3 of the ASTM fatigue test standard E647-13a, that for cracks that
occur in operational structures the fatigue threshold is very low. Indeed, E647-13a Appendix
questions if athreshold exists.

The conclusion stated in [99], and repeated above follows from using tests on specimens with long
cracks grown from an artificial notch and then repaired. As such the proposed design methodol ogy
follows from a common misunderstanding in the nature of the tests needed to assess the effect of
composite repairs to operational structures, albeit either aerospace or civil infrastructure. Let us
examine this statement in more detail.

Until recently tests used composite repairs applied to long cracks that were generated using ASTM
like specimens, viz: centre notch panels or edge cracked specimens with initial cracks that were
grown from artificial initial notches. As explained in ASTM E647-13aand [7] such specimensyield
a da/dN versus AK curve that has a sigmoidal shape with a well defined fatigue threshold AKih. AS
such this “no growth” design philosophy is based on the concept that when repaired with a
composite patch if the value of AK after patching is less than the long crack value of AKy, then
cracked growth is stopped. However, as explained in Appendix X3 of ASTM E647-13a, and also in
[7], for cracks that have arisen and grown naturally in operational structures the threshold is
dramatically lower that the AKy, for such specimens. As such even though the stress intensity factor
after patching is greatly reduced it can still be greater than the true threshold value that is seen in the
real structure and hence even though the laboratory test would suggest that the patch would stop
crack growth when applied to the real structure crack growth will occur. (Here it should be recalled
that, as mentioned above, E647-13a questions whether a threshold exists for cracks that arise and
grow naturally in operational structures.) As such, asfirst explained in [40], if laboratory tests are to
be performed to evaluate the effect of composite patches to an operational structure then it is
essential that in these tests the cracks are first alowed to developed naturally and then
patched/repaired. One means of achieving thisis to grow cracks from small etch pits [14, 72, 73],
another way is to use lasers, as per Section 4 and [72, 73], to create small near micron size initial
notches.

At this point it should be stressed that, the inability of tests on long cracks that have been grown
from a long artificialy induced initial starter notch and then repaired with a composite patch to
represent the growth of cracks that had been grown from smaller starter notches and then patched at
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the same crack length was one of the primary conclusions of experimental tests performed as part of
the Mirage |11 patch repair program [100]. As such tests on cracks grown from relatively large, i.e.
more than 1 mm, initial starter notches and then patched should not be used to assess the effect of
composite patches on operational structures.

Unfortunately this realisation means that whilst most of the studies conducted to date on composite
repairs are very valuable in that they highlight the potential benefit that may be obtained using
composite repairs such tests can’t be used to assess the effect of the repair on operational aircratft.

It should be stressed that patches designed in this fashion can still dramatically retard crack growth.
Indeed the results of the boron epoxy repairs to the Mirage 111 [101], where the patch reduced the
stress intensity factor by more than 90% [102] and hence was indeed beneath the long crack
threshold, and the C-141 repair program [103] show that such repair designs can be very effective.
However, a valid analysis, which uses valid da/dN versus AK small crack data as per the F-22, F-15
and F-18 programs [8, 52, 57], and a test program using specimens whereby the (patched) cracks
are grown from small initial material discontinuities is fundamental to composite repairs to
operational aircraft.

7 LOG LINEAR (EXPONENTIAL) CRACK GROWTH

This finding raises the question: If we know from quantitative fractography the crack growth
history associated with lead cracks that have been cut from operational fleet aircraft is there a
simple means for rapidly assessing the effect of a composite repair, or a repair using supersonic
particle deposition (SPD), on the fleet?

To answer this question let us recall that Section 2 revealed that for cracks that grow from
small naturally occurring material discontinuities in operational aircraft and in full scale fatigue
tests there is generally a linear relationship between the log of the crack depth/length and the
number of cycles'® (or flight hours). This is shown in Figure 31, from [20], which presents the
crack depth/length histories associated with a range of aircraft, both full scale fatigue tests and
operational aircraft. As mentioned in Section 2 this relationship can be written in the form, viz:

where SFH is the number of “simulated flight hours”, ® is a parameter that is geometry and
load dependent, ais the crack depth/length and ay is the initial crack-like flaw size (depth of the
crack at the start of loading) which is referred to as the equivalent pre-crack size (EPS). The
relationship between EPS and the equivalent initial flaw size (EIFS) is explained in [3, 18, 29].
As a first approximation the parameter o is proportional to the cube of the maximum stressin the
spectra omax. The dependency of the crack growth rate on the stress is a feature of both the

16 Both the log-linear relationship and the cubic stress dependency follow from the fractal nature
of the fracture surface, see [24, 104], which suggests that it is due to surface roughness effects.
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British standard BS7910 [105] and the American Association of State Highway and
Transportation Officials Design Specifications [106]. The cubic approximation is now used by
the Royal Australian Airforce (RAAF) for both the F/A-18 Classic Hornet and the AP3C (Orion)
fleets[23, 107, 108].
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Figure 31. Crack growth historiesin arange of aircraft, from [20].

The problem of crack growth in operational aircraft is further smplified by the fact that it is
now known [3, 98, 109-110] that that for combat and civil transport aircraft true corrosion-
fatigue interaction may not occur and that the effect of the environment on the growth of fatigue
cracks from small naturally occurring materia defects in combat and civil transport aircraft
essentially decouples with the environment:

e Creating material discontinuities of various sizes, which depend on the material and the level
and nature of the corrosion damage, such that cracks subsequently grow from these
discontinuities;

e Growing existing cracks/discontinuities during extended periods of inactivity (down time).

This means that for combat and civil transport aircraft the environment has little effect on growth
that occurs in flight [3, 98, 109-110]. This, in turn, simplifies the determination of the
appropriate inspection intervals/repair time scale(s). It aso means that when establishing the
Limit of Validity (LOV) of civil transport aircraft, which is defined as the period in which the
aircraft is free from widespread fatigue damage (WFD), ground based full scale tests can be
performed without an attempt to mimic the operational environment and that, as per [10], an
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additional scatter factor, to account for the variability due to environmental effects, is not
required.

7.1 A non-dimensional master curve representation of crack growth in full scale
structures

As explained in the USAF approach to assessing the Risk of Failure associated with crack
growth in operationa aircraft [48] crack growth in service aircraft is exponential. As explained
in [3] when using the Hartman-Schijve variant of the NASGRO equation to compute the growth
of cracks from small naturally occurring material discontinuities under operational load spectra
provided that the crack length is small with respect to the dimensions of the panel, so that the
beta function (B) is (as a first approximation) relatively independent of the crack length, and
there are a large number of load blocks (B) to failure. In such instances, ignoring the region
where K approaches its toughness, the crack length histories associated with centre cracked and
surface cracked specimens often conform (approximately) to the master curve:

(B-Bi)/(Br -Bi) =1- In(ala) / In(a/a) (13)

regardless of the nature of the load spectra. Here Bj and B; and & and & are the starting and end
values of the number of load blocks (or simulated flight hours) and crack length respectively. At
this point it should be noted that, as explained in [3], as the crack size approaches its critical
length we need to account for K s approaching its fracture toughness. However, this effect often
tends to be small and, as shown in [3], generally only affects the region ala > 0.75. It was also
explained in [3] that a similar deviation from equation (13) occurs as the crack length approaches
the initial discontinuity size. As a result the dope of the (B-B;)/(Bs -Bij) versus ¢(a) (= 1-
In(a/&)/In(a/a)) curves sometimes differs slightly from that suggested by equation (13). Figure
32, which presents the crack growth histories shown in Figure 31 plotted as per equation (13),
reveals that, allowing for scatter and errors in the crack length measurements, this master curve
representation also often holds (approximately) for crack growth in full scale aircraft structures
subjected to arange of operational load spectra. The values of Bjand Bs and g and & used in this
figure are given in Table 5. Given that it has been shown [3] that this master curve representation
also holds for crack growth in centre cracked and surface cracked specimens tested under a wide
range of load spectra this finding suggests that the use of crack growth equations that have
significantly more than four disposable constants is questionable.
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Fig. 32. Non-dimensional crack growth historiesin arange of aircraft, from [15].

Table 5: Full-Scale Fatigue Test and In-Service Crack Growth Data Summary, from [15]

Aircraft Test - Location Description Materia Bi, Br, &, &
(Flight hours,
Flight hours, mm,

mm)
F/A-18 IFOSTP (FT46) Y598 frame vertical tail stub | Al7050- 258, 7840,
radius. Manoeuvre + buffet spectrum. T7451 0.00602, 4.05

F/A-18 IFOSTP (FT55) Y 453 bulkhead web taper Al7050- 2314, 11737,
T7451 0.0325, 1.1933

F/A-18 OEM (ST16) Y453 Web Taper Al7050- 4500, 8700,
T7451 0.0983, 0.917
USN P3C lower wing weep hole Al7075- 14238, 16390,
T6511 5.976, 15.65
Swiss Mirage wing bolt hole (BH) No.2 AU4SG 3343, 4675, 3.83,
(Similar to | 6.32
Al2014-
T6)

Australian (DSTO) Mirage wing blind BH main spar | AU4SG 24335, 31872,
0.35, 8.75




Australian F111 lower wing FAS 281 location, fuel Al2024- 0.1, 3704, 0.027,

flow groove (FFG). T851 2.35

OEM (A4) F-111 lower wing pivot fFitting (WPF) D6ac 6400,12000, 0.159,

fuel flow hole (FFH) No.58 3.71

F-111 (A4) WPF splice BH Al2024- 6600, 16600, 0.40,
T851 4.32

F-111 (A4) WPF splice BH D6ac 18000, 20000,

1.38, 2.27

USAF T-37A Wing sted splice strap radius. 1.27mm | 4340 steel | O, 14602 ,1.27,

initial flaw. 5.88

USAF F-16 wing. BH 12L/Spar 6 Zone |1l Al7475- 5000, 16000, 0.58,
T7351 8.78

USAF F-16 wing. BH RP-10 Zone 111 Al7475- 11000, 16000,
T7351 0.36, 3.63

Australian PC9 wing spar BH Al2024- 20906, 434014,
T3511 0.044, 3.07

USAF A-7D lower wing BH. Here one block was Al7075- 7992, 17282, 2.91,

assumed to represent 200 flight hours. T6 15.7

USAF F-4 lower wing skin BH Al7075- 3800.8, 11773,
T651 0.103, 2.27

Israeli Mantra Jet lower wing assess panel hole. 1 Al7475- 48869, 63543,

mm crack induced after 40,000 flights. T7351 2.27,10.9

Australian Mustang P51D lower wing skin BH. Note | Al24 ST | 170856, 47683,

constant amplitude loading. Specimen No. 40. 1.27,4.34

RAAF Aermacchi MB326H In-service wing spar BH | AI7075T6 | 1292, 1895,

failure. Oneflight assumed = 1 hr. 0.3612, 3.796

RAAF F111 wing in-service — upper FFH No. 13 D6ac 336, 893, 6.95,

(hours from last cold proof load test (CPLT)) 11.36

RAAF F111 wing in-service — stiffener runout D6ac 1.5, 448, 0.338,

(SRO) No. 2. (hoursfrom last CPLT) 1.095

RAAF Mirage BH#2 lower spar AU4SG 904, 2003, 0.11,

0.58

7.2  Crack growth in compositerepairs
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These findings raise the question: Do we see exponential growth in composite repaired
specimens? The answer to this question is yes. References [25-27] revealed that not only do
cracks in auminium and steel structures repaired with a composite patch also exhibit a near
linear relationship between the log of the crack length and the number of cycles but that the
exponent is also proportional to the cube of the stress. Similarly [27] reveals that patched cracks
also conform to the “Master Linear” curve given by equation (13).
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7.3  Fractalsand log-linear crack growth in operational air craft

The breakdown of physical similitude in fatigue crack growth was pioneeringly revealed in the
early work of Barenblatt and Botvina [111]. Since then, severa attempts have been made in
order to understand the impact of this incomplete similarity on the Paris and Wohler
representations of fatigue. Experimental confirmation of size-scale effects has been reported by
Ritchie [112] and generalized theories of fatigue based on dimensional analysis and incomplete
similarity have been proposed [113, 114] to interpret this anomalous phenomenon. Using these
concepts, a dependency of the Paris' law on the grain size has a so been put into evidence).

Supported by these dimensional analysis considerations, a new fatigue crack growth theory
based on fractality of crack profiles has been developed [113-122] to interpret the
(experimentally evidenced) anomalous crack growth rate of short cracks and crack-size effects
on the fatigue threshold, facts that are not fully explained in previous theories, viz:

da/dN= Cy(a) (AK)™ =C &’ (AK)™ (14)

where m and ¢ are constants. This law is formally identical to the classical Paris law except that
the coefficient C; depends on the crack depth a whereas in the Paris law it is assumed to be a
material constant.

In this context it should be noted that it is now known that fracture surfaces can be considered as
an invasive fractal set, see Manddbrot et d [123]. In thiswork Mandelbrot wrote:

“When a piece of metal is fractured either by tensile or impact loading the facture surface that is
formed is rough and irregular. Its shape is affected by the metal’ s microstructure (such as grains,
inclusions, and precipitates where characteristic length is large relative to the atomic scale), as
well as by ‘macrostructural’ influences (such as the size, the shape of the specimen, and the
notch from which the fracture begins). However, repeated observation at various magnifications
also reveal avariety of additional structures that fall between ‘micro’ and ‘macro’ and have not
yet been described satisfactorily in a systematic manner. The experiments reported here reveal
the existence of broad and clearly distinct zone of intermediate scales in which the fracture is
modelled very well by afractal surface.”

Analysis of the power-spectral density functions of profilometric traces associated with a large
number of fatigue crack surfaces [24] has revealed that, as first suggested by Bouchard [124], a
predominance of the fractal dimension D = 1.2. This result leads to a particularization of the
fatigue crack growth equation based on fractality which is very close to the generalized Frost-
Dugdale equation [24, 43, 94, 104, 125], viz:

da/dN = C* d¥? (Ak) - (daldN)o (15)

where Ak isacrack driving force
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Ak = AKP (Kimna) &P (16)

that has been successfully used to compute crack growth in operational aircraft. Here p, y, which
in most instances is approximately equal to 3, and C* are constants, and the term (da/dN)g
reflects both the fatigue threshold and the nature of the notch (defect/discontinuity) from which
cracking initiates. It has been shown [104] that this equation leads to exponentia (log-linear)
crack growth (log-linear) with a cubic stress dependency. At this point it should be noted that it
follows from [3, 24, 43, 58, 94, 126] that the NASGRO equation and the Generalised Fros-
Dugdal e equation are operationally equivalent.

8 THE USAF APPROACH TO ASSESSING RISK OF FAILURE AND THE CUBIC
RULE

Section 2 noted that the growth of lead cracks, which as shown in Section 7 and in the USAF
Risk of Failure report [48], generally exhibit exponentia crack growth, could be predicted using
the cubic stress rule'’ (equation). Thisisimportant because it allows us to estimate the effect of a
structural modification/repair on the airframe by merely accounting for the change in stress due
to the modification/repair. To illustrate the cubic rule consider the experimental data presented in
[127] which included surface-etched and as-machined AA7050-T7451 coupons with a high K;
configuration and were fatigue tested under the fighter aircraft WRBM spectrum. Here simple
‘dog bone’ coupons containing a 6.35mm diameter hole in the centre were tested. The thickness
and width of the specimen were 10mm and 32mm respectively. The net K; of 2.66 (the gross K;
is 3.32) for the hole was calculated by FEA. The net-section stress range tested was 155 to 250
MPa. The stress ranges were chosen such to avoid gross section yield, but given that the yield
stress of the material was approximately 470 MPa, loca yielding of the hole in the high K;
specimens would have occurred. The effect of yielding was not specifically addressed.

As can be seen in Figure 33 the fastest growing crack in the 155 MPa tests has a value of ®'® =
0.1302. The values of ® for the 200, 225 and 250 MPa tests were then calculated using the cubic
rule, for example:

o (for fastest crack in the 200 MPa test) = 0.1302 x (250/200)% = 0.28
o (for fastest crack in the 225 MPa test) = 0.1302 x (250/225)° = 0.40 (a7
o (for fastest crack in the 250 MPa test) = 0.1302 x (250/155)% = 0.55

and the resultant predicted crack growth histories are shown in Figures 34-36 where we see that
this approach yields good estimates for the (fastest) crack growth histories. However, as
previously mentioned it is important to note that in this approach it is best to base predictions on

7 As previously mentioned the dependency of the crack growth rate upon the cube of the stress
is discussed in both the British Standard BS7910 [105] and the AASHTO Design Standard [106].
'8 Here it should be noted that w is as defined in equation (1).
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the fastest crack (i.e. the lead crack which has small fatigue threshold). The application of this
methodology to predict the crack growth in composite repairs will be discussed in Chapter 7.

10 o
: y = 0.0173e01113«
Fastest growing crack at 155 MPa R? = 0.9949
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Figure 33: Measured and computed crack depth histories for etched specimens tested at 155
MPa
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Figure 34: Measured and computed crack depth histories for etched and as-machined

specimens tested at 200 M Pa.
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Figure 36 Measured and computed crack depth histories for etched and as-machined specimens
tested at 250 MPa.

Having established the validity of the cubic rule and the fact that composite repairs do indeed
exhibit exponential crack growth, arequirement that is needed if the cubic ruleis to be used to
estimate crack growth, the ability of the cubic rule to predict crack growth in composite repairs
will be discussed in the next Chapter. At this point it should be noted that this use of the cubic
ruleisroutinely used to assess (and certify) repairs to RAAF aircraft [ 21, 23].

9 CONCLUSION

This Chapter first discussed difference between the analysis tools needed for ab initio
design and aircraft sustainment. Attention is then focused on the problem of aircraft sustainment.
In this context it is shown that there islittle crack tip shielding (closure, etc.) associated with this
problem set and that the ASTM ACR method and CPC can sometimes be used to determine an
approximate da/dN versus AK short crack relationship. It is next shown how the Hartman-
Schijve variant of the NASGRO equation, with closure switched off, and using a small value for
the threshold term can be used to accurately compute the growth of small cracks under arange of
representative flight load spectra

In this context the conclusions given in Appendix X3 of the ASTM test standard E647- 13a viz:
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that for aircraft sustainment related problems the use of long crack da/dN versus AK data to
compute the life to failure is inappropriate, are further discussed. However, whereas in Appendix
X3 it is stated that this approach can give non-conservative lives the examples presented in this
Chapter show that using long crack da/dN versus AK data to compute the life from an initial
crack size of 1.27 mm, which corresponds to the mandatory size stated in the USAF Damage
Tolerance Design Handbook, can also yield remaining lives, and hence inspection intervals, that
are much too short. This would result in significantly reduced aircraft availability and a
significant increase in both manpower requirements and maintenance costs. Hence fleet
management decisions need to be based on analyses that use the realistic small or physically
short crack da/dN versus AK data. It is also shown that tests to establish the effect of repairs,
either composite and SPD repairs, should involve specimens where by prior to repair cracks are
first grown from small material discontinuities.

It is shown that the growth of lead cracks in operational aircraft is exponential, i.e. thereis anear
linear relationship between the log(a) and the number of cycles and the physical basis for this
law is explained. It isthen shown that crack growth in structures repaired with a composite repair
also exhibit a near linear relationship between the log of the crack length and the number of
cycles. We also show that crack growth in composite repairs can be represented by the same
simple master curve relationship that has been found to hold for cracks growing in operational
aircraft and in full scale fatigue tests.

These findings are important since they suggest that the methodology used by the Royal
Australian Airforce to certify structural modifications to operational aircraft, which are based on
the observation that crack growth in operational aircraft is near log-linear and that that crack
growth is proportional to the cube of the stress, may aso be applicable to composite
repairs/modifications to civil infra-structure and also to SPD repairs.

The use of the Hartman-Schijve variant of the NASGRO equation to accurately compute the
effect of SPD repairs to intergranular cracking is shown in Chapter 16.
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