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Abstract. In machine component stress analysis, it usually assumed that the geometry 

specified in CAD provides a fair representation of the geometry of the real component.  While 

in particular circumstances, tolerance information, such as minimum thickness of a highly 

stressed region, might be taken into consideration, there is no standard practice for the 

representation of surface quality.  It is known that surface roughness significantly influences 

fatigue life, but for this to be useful in the context of life prediction, there is a need to examine 

the nature of surface roughness and determine how best to characterise it.  Non-smooth 

geometry can be represented in mathematics by fractals or other methods, but for a 

representation to have a practical value for a manufactured component, it is necessary to accept 

that there is a lower limit to surface profile measurement resolution.  Resolution and mesh 

refinement also play a part in any computational analysis undertaken to assess surface profile 

effects: in the analyses presented, a nominal axi-symmetric geometry has been taken, with a 

finite non-smooth region on the boundary.  Various surface roughness representations are 

modelled, and the significance of the characterized surface roughness type is investigated.  It is 

shown that the applied load gives rise to a nominally uni-axial stress state of 90% of the yield, 

although surface roughness features have the effect of modifying the load path, and give rise to 

localized regions of plasticity near to the surface.  The material of the test model is assumed to 

be elasto-plastic, and the development and evolution of plastic zones formed within the 

geometry are shown for multiple load cycles.   
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1.  Introduction 

In machine component stress analysis, such as performed high duty engineering components used in 

the aerospace or rail industry, the geometry of the component is typically provided electronically in 

the form of a CAD file.  The information included generally indicates the nominal geometry and 

tolerances.  If there is any definition for surface finish, it is generally descriptive rather than 

prescriptive, e.g. a “mirror finish”, or it is implied by a manufacturing instruction, e.g. “milling”, 

“lapping” or “interference fit”.  Depending on the component, 𝑅𝑎 values are also used, where 𝑅𝑎 is the 

“Arithmetical Mean Roughness” [1, 2]:   

 

𝑅𝑎 =
1

𝑛
∑ |𝑦𝑖|

𝑛

𝑖=1
 [1] 

 

where 𝑦𝑖 is the vertical distance from the 𝑖th measured surface point to the mean line of the surface. 

Often there are features, such as fillet radii, edge smoothing, as well as features such as metrology 

markers and component identification number markings, which are ignored for the purposes of stress 

analysis.  Furthermore, in complex geometrical constructions, it is sometimes the case that there are 

surfaces and vertices that do not quite meet, which might incur some geometry repair judgement to be 

made by the stress engineer.  It is therefore clear that there can be a subtle difference between the 

geometry of the actual component, the as-drawn geometry, and that used for the stress analysis. 

In usual practice, the stress engineer will take the nominal geometry, and use judgement to simplify 

the geometry; sometimes removing features that are unlikely to experience high stresses or influence 

the stress state in the regions of more interest.  On examination of the stress analysis results, he or she 

might refine the model, re-instate such details, adopt a higher resolution mesh, or possibly even 

modify geometry for worst tolerance: each of these actions might be required depending on how close 

the stress values are to the limits of acceptability for that particular component.  It is quite likely that 

there would be some feedback to the component designer, indicating beneficial geometry 

modifications: these days, this might be streamlined through the use of a design optimization design-

stress workflow. 

If the duty of the component includes cyclic loading, the stress engineer will also consider fatigue 

life.  Generally, this focusses on the loading regimes and the corresponding numbers of cycles.  

Although it is known and understood that surface finish influences fatigue life, this is often 

compartmentalized as a materials test issue: surface finish is specified for fatigue test coupons.  

Outside of the aerospace industry it is rare that a specific component surface finish is specified in 

order to meet a particular fatigue life requirement.  Generally fatigue life prediction is considered a 

crude assessment, so that it is necessary to validate the life of a component by testing to substantively 

higher numbers of cycles than the life to be certified.  The US Joint Services Structural Guidelines 

JSSG2006 requires that to certify an airframe the structure withstand two lifetimes of testing without 

failure [3]; for gas turbine engine critical parts, the requirement involves statistical analysis to of both 

the fatigue test data and component tolerance [4]. 

Where both tolerance and surface roughness are concerned, the question as to the significance of 

exact geometry is generally answered by invoking the Saint Venant principle [5], which is explained 

by Love [6] as “…the difference between the effects of two different but statically equivalent loads 

becomes very small at sufficiently large distances from load”.  Since small changes in component 

geometry will influence the load path and these the stress distribution within the component, the Saint 

Venant principle is also applied to small changes in geometry.  This question has been explored by a 

number of authors [7–9] in the context of the justification of geometric simplification in initial stress 

analyses and subsequent redesign for enhanced performance.  On closer consideration, it should be 

remembered that the Saint Venant principle applies to the gross stress distribution through the volume 

of the component: it clearly cannot apply to the regions of the component in close proximity to any 

geometric variation.  In other words, the stress state in a region at some reasonable distance from a 

geometric variation will not be significantly influenced by it; however, the stress state in the 



 

 

 

 

 

 

neighbourhood of the geometric variation will be substantively different to that predicted for the 

nominal geometry.  In some cases, the stress-raiser effects might lead to localized plasticity [10], and 

the evolution of the plastic zone over repeated load cycles should cast light on the understanding of 

fatigue where the nominal component stress state might be well below yield. 

2.  Surface Roughness 

2.1.  Implication of manufacturing process on surface geometry 

Different component manufacturing processes have a different impact on the surface finish.  A 

thorough consideration of this would include both additive [11] and subtractive manufacturing 

processes, but for high performance components, even those made to near net shape, the finishing 

process for the bulk of the component surface is usually subtractive.  Subtractive processes include 

machining techniques such as turning, drilling and milling, which result in a surface profile which has 

fairly regular spatial features with a length scale of between fractions to tens of micrometres [12].  The 

highest level of smoothness achievable by conventional mechanical machining is that of polishing, 

which, under very special process control, can reduce the length scale to the order of tens of 

nanometres [13]. 

A further aspect for consideration is post-manufacture surface treatments which are designed to 

introduce residual compressive stresses near the surface.  The purpose is to suppress the opening of 

cracks near the surface, thereby enabling the component to perform at a higher level of duty than 

would otherwise be the case.  Such techniques include shot peening, plasma-nitriding and laser shock 

peening, among others.  The question is this: if such treatments introduce surface texture 

modifications, how much does this detract from the benefit provided by the compressive residual 

stresses, particularly for components subject to cyclic loading [14]?  

2.2.  Representation of surface roughness 

Although “surface roughness” is a concept known by everyone, when used in the context of 

manufacturing, it is a descriptive concept.  What is required is a means to characterize it in a way that 

is representative of the essential aspects of reality, and which ideally defines a recipe for constructing 

sufficiently similar artificial geometries for the purpose of modelling.  In this context Mandelbrot [15] 

established that surface roughness can be uniquely characterized by the fractal box dimension D.  

Interestingly, fractal concepts are now used to characterize crack growth [16–18] and form the basis 

for assessing crack growth in RAAF operational aircraft [19]. 

Surface roughness can have an impact on numerous other engineering aspects in addition to 

strength and fatigue life.  Further consider that the method for achieving a particular surface might be 

through means other than conventional machining processes.  As such, there would be a requirement 

for a different method of surface characterization, and this also has implications for property model 

standardization, whereby the classification of surface roughness becomes another property to be 

incorporated within ISO standards such as STEP and the recently proposed ISO 25178 [2, 20].  

In the case studies to be presented here, the primary need was to simplify these geometric 

representation problems, and to present results that would be sufficiently indicative of reality as to 

prompt further more detailed study.  Representation of complex 3D geometry [21] is possible but 

problematic.  In this study an axi-symmetric geometry was chosen, on the basis that this could be 

considered representative of a component made by a turning process.  This enables a simpler geometry 

definition and aids in presenting the results. 

The computational analysis was performed using finite element analysis, and as far as possible to 

ensure a regular element distribution by using to “pixel” grid of elements in the surface roughness 

region.  This approach is limited at the lower bound, by both the limit to which the geometric profile 

can be represented, and by the computational approximations of the analysis. 

In practical terms, any physically direct measurement of the surface profile of a component will 

yield tabulated results of depth or height from nominal at a regular grid interval.  Such data lends itself 



 

 

 

 

 

 

naturally to a grid representation.  Lateral shapes, such as overhangs or tapered valleys, would not be 

captured directly, but should be considered.  

 

   

(a) (b) (c) 

Figure 1.  Three representations of surface roughness. 

 

2.3.  Fractal shapes applied to finite element geometry 

As previously mentioned, the representation of surface roughness as a fractal was first proposed by 

Mandelbrot [15].  This approach has the potential to provide the systematic recipe for surface 

roughness profile creation.   

The fractal family adopted for this study is known as the “Minkowski sausage” or “Koch curve 

(type 2)”.  It was chosen because it can be easily constructed using a regular grid, and this meets the 

need for a regular finite element mesh.  The basic form is shown in Figure 1(a), replicated and scales 

in Figure 1(b) and then the form is re-applied to the original, as shown in Figure 1(c). 

In a fractal representation of the boundary, the same form is re-applied, in descending scale, ad 

infinitum.  The Hausdorff dimension provides a measure of the ratio of the surface length to enclosed 

area.  For the Minkowski sausage, the Hausdorff dimension is 1.5.  In computational analysis, only a 

finite number of levels can be modelled, although the real limit to the minimum feature scale is 

potentially that of the atomic scale of material.  

 

 
Figure 2.  A domain with a rapidly oscillating boundary. 

 



 

 

 

 

 

 

2.4.  Mathematical bounds on the effects of surface roughness using the homogenization procedure 

The homogenization procedure [22–27] provides a method for substituting a problem involving a 

material domain with a rough boundary, by a corresponding domain with a smooth boundary, together 

with modified boundary conditions.  By defining bounds to the surface roughness profile, it is possible 

to create correspondingly bounded correction terms to the solution to the differential equation, in this 

case, the stress-strain. 

Let us consider a model plane in which a smooth domain Ω is situated in the upper half space of 

the ℝ2 plane, see Figure 2.  A part of its boundary coincides with the segment Γ, which is (𝑎, 𝑏) on the 

abscissa axis.  This segment Γ is the smooth replacement for the rough boundary, Γ𝜀.  The region of 

surface roughness is the domain enclosed above by segment Γ and below by the rough boundary, Γ𝜀 is 

denoted by Π𝜀.   
Π𝜀 is expressed mathematically as the domain {𝑥 ∈ ℝ2: 𝑥1 ∈ [𝑎, 𝑏], 0 ≥ 𝑥2 > 𝜀𝐹(𝑥1, 𝑥1 𝜀⁄ )}, 

where 𝐹(𝑥1, 𝜉1) is a smooth function for which 𝐹(𝑥1, 𝜉1) ≤ 0 if 𝑥1 ∈ [𝑎, 𝑏], and 𝐹(𝑎, 𝜉1) =
𝐹(𝑏, 𝜉1) = 0.  We also demand that 𝐹(𝑥1, 𝜉1) is “1-periodic” in 𝜉1 (periodic in 𝜉1 with period 1); thus 

𝐹 is a locally periodic, smooth function, which vanishes at the end points of the segment Γ, at (𝑎, 0) 
and (𝑏, 0), on the plane of ℝ2.  Additionally, the lower, rough boundary, Γ𝜀, of the set Π𝜀 is defined as 

rapidly oscillating locally periodic.  In other words, the function 𝐹 defines the rough boundary, Γ𝜀 
between the end points 𝑎 and 𝑏.  The behaviour of this function is illustrated in schematic form, in 

Figure 2: it intersects with the smooth boundary at the end points, and it always lies outside the 

smooth boundary between those end points.   

The complete domain, Ω𝜀, including the smooth domain and the region of surface roughness, is 

defined as Ω ∪ Π𝜀.  It is useful to define the common boundary of both Ω and Ω𝜀, that is, the part of 

the boundary not including the segment Γ or Γ𝜀, as 𝛾.  This is written mathematically as 𝛾 =  𝜕Ω ∖ Γ. 

For the purposes of the example here, we present the model problem in Ω𝜀 for the Laplacian 

operator, △, although in principle any partial differential operator could be applied, including the 

mathematical system of elasticity, expressing Hooke’s law in terms of displacements and (strains) 

stresses. 

The problem can be expressed as follows: 

 

{
 

 
− △ 𝑢𝜀(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω𝜀 ,

𝑢𝜀(𝑥) = 0 𝑥 ∈ 𝛾,
𝜕𝑢𝜀
𝜕𝜈𝜀

+ 𝑝(𝑥1,
𝑥1
𝜀
)𝑢𝜀 = 𝑞 (𝑥1,

𝑥1
𝜀
) , 𝑥 ∈ Γ𝜀 ,

 [2] 

 

where 𝑝(𝑥1, 𝜉1) and 𝑞(𝑥1, 𝜉1) are sufficiently smooth non-negative 1-periodic functions in 𝜉1, and 𝜈𝜀 
is the outer unit normal to the boundary Γ𝜀. 

This can be compared with the following “limit” (homogenized) problem with an “effective” 

boundary condition: 

 

{
 

 
− △ 𝑢0(𝑥) = 𝑓(𝑥), 𝑥 ∈ Ω,

𝑢0(𝑥) = 0 𝑥 ∈ 𝛾,

−
𝜕𝑢0
𝜕𝑥2

+ 𝑃(𝑥1)𝑢0 = 𝑄(𝑥1), 𝑥 ∈ Γ,

 [3] 

where  

 

𝑃(𝑥1) =  ∫ 𝑝(𝑥1, 𝜉1)
1

0

√1 + (
𝜕𝐹

𝜕𝜉1
)
2

𝑑𝜉1, 𝑄(𝑥1) =  ∫ 𝑞(𝑥1, 𝜉1)
1

0

√1 + (
𝜕𝐹

𝜕𝜉1
)
2

𝑑𝜉1. [4] 

 



 

 

 

 

 

 

Here it can be seen that the problem defined over the domain with the rough boundary can be re-

written for a domain with a smooth boundary by modifying the boundary conditions that are applied to 

the replaced boundary.  Note that because the function 𝑢0 is sufficiently smooth, it can be evaluated 

for locations within the region of surface roughness 𝛱𝜀.  This makes approximation of the solution 

possible [28], making use of the following theorem: 

Theorem 0.1 The estimates 

 

∫ (𝑢𝜀 − 𝑢0 )
2

 

Ω𝜀

𝑑𝑥 ≤ 𝐾𝜀2, ∫ |∇𝑢𝜀 − ∇𝑢0|
2

 

Ω𝜀

𝑑𝑥 ≤ 𝐾𝜀 [5] 

 

hold true, where 𝐾 is independent of 𝜀.  This theorem can be reformulated for the model problem of 

elasticity, with the estimates written in terms of displacements and stresses.   

 

The case of very rapidly oscillating boundaries is treated in [29].  In very rough boundaries, the 

boundary Γε can be defined by 𝑥2 = 𝜀𝐹(𝑥1, 𝑥1 𝜀𝛼⁄ ), with 𝛼 > 1.  For the treatment of randomly 

defined surface roughness, see [30–33]. 

There are a number of difficulties in using Equation [5] in a practical determination of the change 

in the local stress or strain arising from a rough surface.  The biggest difficulty is that the expression 

involves an integration over the complete domain of the component, and therefore provides no easy 

method to assess local effects distributed over a small domain within the component.  A second 

difficulty is that although the bound is quantified by the factor 𝐾 there is no practical method for its 

calculation.  The third difficulty is that the theorem is stated for linear elasticity only.   

There is an additional observation that the rough surface is defined as being outside the nominal 

surface – it is defined differently to 𝑅𝑎 (Arithmetical Mean Roughness).  In the context of comparison 

of surface roughness metrology measures, one might consider alternatives to 𝑅𝑎, such that the 

definition is consistent with the definition of 𝐹.  In doing so, it becomes apparent that the choice of the 

measure is practically equivalent to the choice of Γε and drives the tolerance of the predicted result. 

3.  Computational test case: an axisymmetric specimen 

3.1.  Geometry and material considerations 

For the purposes of this investigation, a very simplistic nominal geometry has been chosen, based on 

an axi-symmetric axial test specimen.  Such a specimen has a narrow gauge section, wherein the state 

of stress is considered to be uniformly distributed and uniaxial.  In the manufacture of test specimens 

close attention is paid to the surface finish in the gauge section, as surface flaws can influence the test 

result, for example [34] specifies that the specimen be polished prior to testing.  Other studies of the 

effect of surface finish on mechanical properties include [35, 36].  Since, in general, this level of 

surface modification is not carried out on in-service components; one focus of the present paper is to 

quantify the effect of this surface polishing process.   

This computational study assumes the presence of flaws that extend circumferentially around the 

specimen.  Where such surface flaws arise from a turning type operation with a low feed-rate, then this 

assumption is reasonable.  Flaws of a more localized nature, or obvious helix form would require a 

different analysis model. 

 



 

 

 

 

 

 

 

Figure 3.  Axi-symmetric test-piece geometry. 

 

The modelled geometry is shown schematically (not to scale) in Figure 3.  The specimen has been 

truncated, to include only the gauge section, and within this, surface roughness is confined to a narrow 

central band.  This ensures that with surface pressure loading the stress distribution is sufficiently 

uniform above and below the central band.  Dimensions are given in Table 1.  These dimensions were 

chosen to be representative of a laboratory scale test specimen, where realistic sized surface roughness 

features would remain very small compared with the nominal geometry.   

The material is assumed to be steel, with material properties defined as a piece-wise linear elasto-

plastic model taken from a training example given in the Abaqus manuals [37], Table 2.  Yield begins 

for a von Mises stress of 300 × 106 Pa, and the hardening is defined linearly in each stress range.  The 

limiting strain defined in this model is 0.35, occurring at a stress of 400 × 106 Pa; however for this 

model element deletion is not applied for stresses exceeding this value – in order words, elongation to 

failure and fracture strength are not considered in the material model.  Note that the applied pressure 

loading gives rise to a nominal uniaxial stress of 270 × 106 Pa, which is within the elastic regime.  This 

is a simplistic model, and for the purposes of this current paper, modelling of dislocation plasticity and 

crack initiation are out of scope.  A basis for inclusion of these effects is given by Brinckmann and 

Giessen [38] in their study of crack initiation at rough surfaces. 

 

Table 1.  Model information. 

Parameter Value Unit 

Gauge diameter of specimen 4 × 10-3 m 

Gauge height 1 × 10-3 m 

Surface roughness band height 80 × 10-6 m 

Typical surface roughness size < 8 × 10-6 m 

FEA mesh seed size in the surface roughness region 0.25 × 10-6 m 

FEA global mesh seed size 20 × 10-6 m 

Applied pressure load, equal to nominal uniaxial stress state ±270 × 106 Pa 

 

  



 

 

 

 

 

 

 

Table 2.  Material data. 

Elastic properties Plastic properties 

Young’s Modulus (GPa) Poisson’s ratio Stress (MPa) Strain 

210 0.3 300 0.0 

  350 0.025 

  375 0.1 

  394 0.2 

  400 0.35 

 

Before turning attention the effect of the surface roughness, it is worth considering the simple 

calculation of the stress within the specimen.  Let us compare two specimens: the perfect specimen 

with a cross sectional radius of 2 mm, and another smooth specimen, but with a cross sectional radius 

of 1.992 mm, reduced by the maximum typical surface roughness of 8 μm.  This is thus the nominal 

surface as defined in Section 2.4. 

In both cases, the stress state is uni-axial, and the applied load is the same.  The stress in the perfect 

specimen is 270 MPa, but the stress in the other is increased by the square of the ratio of the two 

specimen diameters: 

 

stress in smaller specimen = 270 × (
2

1.992
)
2

≅ 272.2 MPa [6] 

 

This gives an increase of less than 1% in the stress, and is therefore still below 300 MPa, the yield 

stress.  The effect of surface roughness is far more significant that the effect it has on nominal 

dimensions.   

3.2.  Interpolation schemes 

In the measurement of surface profile, the results would typically be tabled from a grid of positions on 

the surface, with surface height relative to a datum.  In the axi-symmetric case, these can be shown in 

two dimensions, see Figure 4, where position on the surface is shown vertically, and profile height is 

shown horizontally from the left.  The large squares indicate measurements.  With no further 

measurement information, the question is then how to choose what form of interpolation to adopt, and 

whether that choice is important. 

Four of the most obvious interpolation schemes are illustrated, and presented in Figures 4 (a), (b), 

(c) and (d).  Figure 4 (e) shows the superposition of the square and triangular forms from which an 

“outer” and an “inner boundary” can be drawn.  By comparison with Figure 2, these two boundaries 

define two similar domains, for which the results of a linear elastic stress analysis should differ no 

more than the limiting value prescribed by Theorem 0.1.  Since both interpolation schemes lie on or 

within these two boundaries, the differences between their stress analysis results should also be within 

that limiting value.  The same argument can be applied to the other two interpolation schemes.  Note, 

however, that Theorem 0.1 is not necessarily true for results where the yield stress has been exceeded.   

In reality, the actual surface pattern depends on the manufacturing processing, and on the grain size 

and structure of the material relative to the machining cut size [39].  While it is probably the case that 

the triangular form is the more representative, by exploring different interpolation schemes we intend 

to show later in the paper that the choice of form is not as significant as the range and frequency of 



 

 

 

 

 

 

variation.  For the majority of the work presented in this paper, the square form (a) is adopted, as for 

this form, complete uniformity of the finite element mesh can be ensured.   

A deeper question concerns the effect of surface profile variation at a smaller length scale than is 

observable at the surface grid spacing.  In this paper, this effect is considered by investigating the 

effect of multiple scales of surface roughness.  A subsequent question concerns the effect of grain size, 

that is, the effect of the heterogeneity of grain stiffness and orientation, where the grain size is of 

comparable size to the surface roughness features.  This latter question will be addressed in future 

work. 

 

 

    
(a) (b) (c) (d) 

 

Figure 4.  Interpolation schemes for roughness measurement or 

modelling data 

(a) Square Form – the data value is assumed constant within 

the neighbourhood of each data point 

(b) Triangular Form – the data value is linearly interpolated 

between data points 

(c) Spline Range – a spline curve is fitted through the points 

defining the neighbourhood boundaries 

(d) Spline Point – a spline curve is fitted through the data 

points. 

(e) Square and Triangular Forms superimposed, in the style 

of Figure 2. 

 
(e) 

 

3.3.  Finite Element Modelling 

All the finite element analysis results presented in this paper were obtained using Abaqus Standard 

version 6.14-1.  The mesh employed in the region near the rough section of the boundary was a high 

density quad (CAX8R) mesh: and wherever applicable, this region is meshed with a regular array of 

square elements.  Away from the surface roughness region, the element size and shape is less 

significant, and occasionally CAX6 triangular elements were employed.  The basic meshing strategy 

adopted is illustrated in Figure 5.  The global seed size was set to 20 × 10-6 m, and edge seed sizes in 

the regions around the surface roughness region were set to 0.25 × 10-6 m.  Care was taken in 



 

 

 

 

 

 

partitioning, edge seeding and choice of meshing technique to ensure high quality meshing in the 

surface roughness region.   

 

 

Figure 5.  Meshing strategy. 

 

Results for von Mises stress throughout this paper are plotted using contour bands representing the 

piecewise linear stress ranges.  Results for plastic equivalent strain (PEEQ) are plotted on a 

logarithmic scale from 0.1 down to 10-7.  Legends for both scales are shown in Figure 6, with the 

von Mises stress values given in MPa.   

Where practical, the mesh lines are shown, but in all cases the plot style is “quilt”, so that the stress 

or PEEQ value within a single element is indicated by a single colour.  This means that, for analysis 

results presented for regions of high mesh density, the pixilation of colour is indicative of the mesh 

refinement. 

 

(a) 

 

(b) 

 

Figure 6.  Legends for analysis 

results: (a) von Mises stress results 

(MPa), (b) PEEQ results 

 

  



 

 

 

 

 

 

4.  Systematic representation of surface roughness 

4.1.  Representation of surface roughness using fractals 

Initially, to have a systematic approach to modelling surface roughness, the Minkowski sausage form 

was employed at two scales, Figure 1(a) and 1(b), and in combination, Figure 1(c).  In all three cases, 

the grid square length illustrated in Figure 1 is 0.25 × 10-6 m, such that there are 20 repeats of styles (a) 

and (c) within the 80 × 10-6 m gauge length, and 80 repeats of style (b). 

Since the features shown in (a) and (b) are simply different in scale, and both are much smaller 

than the overall test geometry, comparison of analysis results should only reveal mesh-scale effects.  

To explore the notion of surface roughness complexity, the results obtained from geometries (a) and 

(c) are then compared, Figures 7 and 8.  

4.2.  Results showing effects of surface roughness on the near boundary stress-strain state 

For a perfectly smooth test geometry, the applied loading would equate to a uniform von Mises stress 

state of 270 × 106 Pa throughout.  In the case of the rough geometry, well away from the boundary 

region, this same nominal stress state is observed; however, the surface roughness features have the 

effect of influencing the stress distribution, Figure 7.  Although the nominal stress state is below the 

yield stress for the material, some regions close to the surface roughness features exhibit stresses in 

excess of the yield stress. 

In Figure 7, the boundary between the dark and light blue represents stress at exactly the nominal 

stress; dark blue represents lower stresses and light blue stresses between nominal and yield.  Green 

represents stresses above yield.  Figure 8 shows the equivalent plastic strain (PEEQ) results.  Regions 

below yield are shown in pale grey, while PEEQ values above 1 × 10-7 are shown on a logarithmic 

scale.  NB: the legends for Figures 7 and 8 (and all subsequent figures showing von Mises stress and 

PEEQ contour plots) are given in Figure 6. 

Since the surface roughness features are applied to only a part of the boundary, it is reasonable to 

think that the stress-strain state shown in the middle of this surface roughness section should be 

representative of the stress-strain state where the complete surface had that same roughness, Figures 7 

and 8 (a, b and c).  The results for (a) and (b) are similar and to scale, as anticipated.  Comparing von 

Mises stress results, Figure 7(a) and (c), there is some clear similarity at a distance from the surface 

feature, but close to the surface other features are observed.  The PEEQ results show regions of similar 

sizes, but the positions of the regions with higher levels of PEEQ are determined by the finer detail 

surface roughness.   

It is also interesting to observe the stress-strain state where the surface roughness section transitions 

abruptly to the smooth geometry, Figures 7 and 8 (d, e and f).  Notice that the size of the PEEQ 

regions increase and the levels of PEEQ within those regions are also higher.  This transition effect 

seems to extend over a region of about three repeat feature lengths. 

5.  The effect of repeated loading 

The results presented in Section 4 demonstrated that surface roughness can lead to local regions of 

plastic deformation.  In this section the effects of repeated fully reversed loading are explored. 

The load cycles were applied as a sequence of Steps (in Abaqus), first in tension and then in 

compression, so that during each half cycle the nominal von Mises stress is 270 × 106 Pa.  
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Figure 7.  Three styles of surface roughness – von-Mises: upper row – middle of rough section;  

lower row – lower end of rough section. 
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Figure 8.  Three styles of surface roughness – PEEQ: upper row – middle of rough section;  

lower row – lower end of rough section. 

 

  



 

 

 

 

 

 

 

     
(a) (b) (c) (d) (e) 

Figure 9.  Large defect von Mises stress on five load reversals. 

(a) Initial tension load; (b) 2nd half cycle, 1st compression load; (c) 3rd half cycle, 2nd tension load; 

 (d) 4th half cycle, 2nd compression load; (e) 5th half cycle, 3rd tension load. 

 

5.1.  Test geometry with five simple surface roughness features 

The geometry used here is again similar to that used before, but scaled up by a factor of four.  In order 

to obtain high resolution results, the same 0.25 × 10-6 m square mesh size is adopted.   

The surface roughness feature length is 16 × 10-6 m, equal to 64 elements’ length.  To be able to 

present data with such a high fidelity mesh it has been necessary to suppress the mesh lines, but the 

presentation style is “quilt”, so in Figures 9 and 10 each square element is effectively a single pixel of 

colour. 

The results for von Mises stress (Figure 9) show very little obvious change with increasing number 

of load reversals, except near the surface, on very careful inspection.  The PEEQ results (Figure 10), 

are more useful, and indicate that the outer boundary of the plastically strained material remains 

constant.  Plotting PEEQ for much smaller values, not presented here, made no discernible difference, 

so it would seem that the plasticity remains regionally confined.  Within the plastically strained region 

the level of PEEQ gradually increases, either from the boundary inwards, or radially from the centre of 

regions that are fully internal.   

5.2.  Specimen with a large irregular defect 

The test case considered here modifies the surface roughness type as shown in Figure 7(c) to include a 

larger scale surface roughness feature, with feature length 16 × 10-6 m: i.e. third order Minkowski 

sausage geometry.  The same 0.25 × 10-6 m regular grid meshing strategy was employed as before. 

The same five load reversals were applied, and the results presented in Figures 11 and 12.  In 

Figure 11(c) and (d), notice that the light blue region, representing stresses above nominal, but below 

yield, has expanded, compared with that in Figure 11(a) and (b).  Also note that the oval lobes of green 



 

 

 

 

 

 

have become slightly shorter and wider.  These are relatively small effects, indicative of some stress 

redistribution. 

The more interesting effects can be seen in Figure 12.  Notice how the boundary of the region 

containing plastically strained material, i.e. non-zero PEEQ values, remains constant, while plasticity 

levels grow within the region.  Notice also that the extent of this PEEQ region is about twice that of 

the length scale of the defect in both depth and breadth. 

 

     
(a) (b) (c) (d) (e) 

Figure 10.  Large defect PEEQ on five load reversals. 

(a) Initial tension load; (b) 2nd half cycle, 1st compression load; (c) 3rd half cycle, 2nd tension load; 

 (d) 4th half cycle, 2nd compression load; (e) 5th half cycle, 3rd tension load. 

 

6.  Effect of surface profile interpolation method 

The geometries used in Sections 4 and 5 were based on a square form interpretation of a notional 

surface roughness measurement set.  Insisting on a square form was convenient, as this meant that all 

elements in the region of significance would be identical in shape and size.  With alternative 

interpolation schemes the guarantee of mesh size equivalence is much harder to meet; however, the 

results shown Figures 7 and 8(d) and (e) and Figures 9 and 10(a) indicate that similar distributions are 

obtained for different scales of model, so it might be reasonable to expect results to be reasonably 

mesh size independent. 

On that basis, the regular case as studied in Figures 7 and 8(a) and (d) was re-drawn using the 

alternative interpolation schemes as illustrated in Figure 4.  The more interesting and revealing results 

are those for PEEQ, for the initial loading case and for the 5th half cycle (Figure 13). 

Notice that although mesh seed sizes employed were broadly equivalent for the meshing of each 

geometry, the resulting meshes are somewhat variable in mesh density.  The size of the elements, and 

their orientation and conformity to the PEEQ distribution does seem to have an effect; however, the 

results obtained suggest that PEEQ distribution is largely independent of the interpolation used. 



 

 

 

 

 

 

7.  Modelling of random surface roughness 

7.1.  Comparison of interpolation schemes 

The purpose of examining particular features and systematic combinations of features is to understand 

what is important and significant in the modelling of surface roughness.  While a fractal approach like 

the Minkowski sausage provides a systematic method for creating details within details, it does not 

actually create a realistic looking surface roughness profile.  On the other hand, it is clear that the 

relative periodicity of the largest surface roughness feature size determines the approximate 

penetration depth of the plasticity region within the material.   

In the final test cases presented in this section, a random surface roughness profile was generated, 

according to an algorithm.  The surface roughness region, of length 80 × 10-6 m, was divided into 80 

regions of length 1 × 10-6 m, 40 regions of length 2 × 10-6 m, 20 regions of length 4 × 10-6 m, and 10 

regions of length 8 × 10-6 m.  Padding regions at the top and bottom of the surface roughness region of 

length 8 × 10-6 m were defined, enabling a further division for the middle 64 × 10-6 m into four regions 

of length 16 × 10-6 m, two regions of length 32 × 10-6 m and one region of length 64 × 10-6 m.  Each of 

these regions defines a periodicity of surface roughness, and an offset from the nominal geometry can 

be defined for each region.   

To create the geometries shown in Figures 15 onwards, the offset was defined randomly, with the 

probability given in brackets: + 1 × 10-6 m (0.25); 0 (0.5) and – 1 × 10-6 m (0.25).  For each position on 

the surface of the test geometry, the total offset is the sum of the offsets for each region for which that 

position is a member.  This principle is illustrated in Figure 14. 

7.2.  Extended load cycles 

In the results presented so far, it can be seen that the plasticity region is localized and remains almost 

constant during load cycling.  The level of plasticity within that region does, however, increase. 

Figures 18 show the effect of increasing the number of cycles, at the 1st, 2nd, 5th and 10th tensile load 

application.  The elements coloured black in Figure 18(d) indicate PEEQ values exceeding 0.1.  The 

overall PEEQ values grow more slowly with increasing numbers of load cycles, but with such high 

levels of PEEQ it is probably unreasonable to develop the analysis further without considering other 

material failure effects. 

8.  Discussion 

The results presented here explore a range of subtly different issues, so it is appropriate to review these 

findings as a whole, and then to consider particular aspects. 

8.1.  Relationship between surface roughness feature size, regularity and “zone of influence” 

Each of the analyses results presented here indicate that the size of a surface roughness feature has a 

significant influence on the extent of the region affected by higher than nominal stresses.  Because of 

the choice of applied load level and elasto-plastic material model, the resulting zone of non-zero 

PEEQ provides an unequivocal measure for what might be described as the “zone of influence” for the 

surface roughness feature. 

The regularity of the surface roughness feature is of importance.  In each case, the largest “zone of 

influence” effects are seen in the location of an isolated feature, or at the transition from the smooth 

boundary to the central band where the surface roughness is applied. 

In Figures 7 and 8 we see that the size of the PEEQ zone is similar to that of the height variation 

and extent of the surface roughness feature.  In Figures 7(f) and 8(f), it is the larger scale feature which 

is important: the smaller scale feature changes the shape and some details of the PEEQ zone near the 

boundary, but the area and extent is similar to the equivalent result shown in Figures 7(d) and 8(d).   
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Figure 11.  Irregular large defect: von Mises stress at first and fifth load reversals. 

(a) Initial tension load, full surface roughness region; (b) zoomed view; 

(c) 5th half cycle, 3rd tension load, full surface roughness region; (d) zoomed view. 
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Figure 12.  Irregular large defect: PEEQ at first and fifth load reversals. 

(a) Initial tension load, full surface roughness region; (b) zoomed view; 

(c) 5th half cycle, 3rd tension load, full surface roughness region; (d) zoomed view. 

 

  



 

 

 

 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 13.  PEEQ, regular surface roughness, various interpolation schemes, first tensile and fifth load 

reversal. 

First tensile: (a) Square form; (b) Triangular form; (c) Spline range; and (d) Spline point 

Fifth reversal: (e) Square form; (f) Triangular form; (g) Spline range ; and (h) Spline point 



 

 

 

 

 

 

In Figures 11 and 12, the main feature displayed is a three level feature embedded in a region 

comprised of an otherwise regular set of two level features.  In this case, the result is similar but depth 

of the PEEQ zone into the material is somewhat larger than the height variation of the larger surface 

roughness feature, and the extent is also larger: in both cases by a factor of about 1.5.  The same is true 

for the randomly generated features shown in Figures 15, particularly near the transition to the smooth 

boundary at the top and bottom of the central surface roughness band, where there are relatively large 

and relatively isolated surface roughness features; however, for the surface roughness clump which is 

shown enlarged in Figures 16, the extent follows the surface roughness profile quite closely to give a 

“sea-horse” shape with nearly square PEEQ zones.   

In conclusion, the “zone of influence” is somewhat greater for an irregular surface roughness 

feature, but in general the extent is well defined and can be characterized by the height variation of the 

surface roughness feature. 

 

 
Figure 14.  Algorithm for defining surface roughness profile. 

 

 

  



 

 

 

 

 

 

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 

Figure 15.  PEEQ, random surface roughness, various interpolation schemes, first tensile and fifth 

load reversal. 

First tensile: (a) Square form; (b) Triangular form; (c) Spline range; and (d) Spline point 

Fifth reversal: (e) Square form; (f) Triangular form; (g) Spline range; and (h) Spline point. 



 

 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 16.  Small region of random surface roughness, PEEQ, first tensile load. 

(a) Square form; (b) Triangular form; (c) Spline range form; and (d) Spline point form. 

  



 

 

 

 

 

 

 

  
(a) (b) 

  
(c) (d) 

Figure 17.  Small region of random surface roughness, PEEQ, fifth load reversal. 

(a) Square form; (b) Triangular form; (c) Spline range form; and (d) Spline point form. 

  



 

 

 

 

 

 

  
(a) 1st  load (b) 3rd load reversal 

  
(c) 9th load reversal (d) 19th load reversal 

Figure 18.  Small region of surface random roughness, square form, at various load reversals. 

 

  



 

 

 

 

 

 

8.2.  Effect of interpolation method 

As already discussed, Theorem 0.1 suggests that for linear elastic stress analysis, the differences 

between the analysis results obtained using different interpolation methods for defining the boundary 

can be contained within a limiting tolerance.  In the case of elasto-plastic analysis, when the yield 

stress is exceeded within a region in the model, then this defines additional internal boundaries within 

the model domain.  In finite element analyses, these boundaries are linked to the definition of the 

elements, so for two identical geometries but with different meshes, these internal boundaries would 

be slightly different.  The length scale of the boundary variations is determined by the local mesh size.  

Now consider the effect of the interpolation methods for describing the external boundary: until first 

yield, Theorem 0.1 suggests that the stress field in each model would be similar.  Therefore, the 

locations for first yield should be similar.  The question to be posed is this: do all these small 

variations remain small as the PEEQ region expands, or can there be substantively different 

developments of the PEEQ region arising only as a result of the external boundary interpolation 

scheme? 

The results in Figures 13 are similar and suggest that the interpolation scheme is not particularly 

significant.  There are differences in mesh density, a factor which is difficult to avoid completely, but 

general “zone of influence” prediction is similar, with the main differences being caused by the 

particular geometry at the high PEEQ region on the boundary. 

The results shown in Figures 16 and 17 suggest that there is a small difference between the 

triangular form straight line joining of points (b) and a smooth spline point interpolation (d).  The 

square form interpolation (a) shows the most difference to the other three forms.  In all four cases, it 

can be seen that the regions of PEEQ that are well within the domain have similar values in similar 

locations.  As with Figures 13, close to the boundaries, the shape of regions with high values of PEEQ 

do differ, as might be expected, since the choice of interpolation scheme determines whether a notch is 

smooth sided, blunt or a V-notch.  It should also be remembered that results can also be influenced by 

local mesh density.  

These four interpolation schemes provided methods for construction of surface profile geometry 

without making further inferences about surface texture or surface roughness at a smaller length scale.  

If one had such information, perhaps obtained by inference from another type of surface metrology 

method, then it would be legitimate to question further.  The first issue is how to represent that within 

the interpolation: this would require an algorithm to add an appropriate stochastic variation onto the 

basic interpolation scheme.  The second issue is how that level of detail would influence the “zone of 

influence”.  In answer to the second issue, observe the differences between Figures 7 and 8(d) and (f), 

and also Figures 11 and 12.  Notice that it is the big features that dominate and the smaller ones have 

comparatively little influence over the majority of the “zone of influence”.   

In conclusion, the choice of interpolation scheme is mainly a matter for modelling convenience, as 

the size of the “zone of influence” is primarily governed by the largest feature size.  The only 

significant exception to this is where there is a particular interest in the near surface region, when 

higher resolution modelling would be necessary.  As a corollary to this conclusion, it might seem that 

fractal aspects in the surface profile – the scale and frequency, and in particular, fractal dimension – 

are less significant.  Nevertheless, the nature of fractals is to add multiple levels: this work has only 

considered three levels.  Small differences arising from smaller features, could therefore combine to 

give a non-negligible effect, and the relative influence of the lower level features will be related to the 

fractal dimension. 

8.3.  Effect of repeated loading 

It would seem that on repeated reverse loading, the “zone of influence” remains constant, although the 

level of the PEEQ values increases.  There is very little evidence for growth of the non-zero PEEQ 

zone, although that is difficult to rule out completely.  In the results presented, very careful inspection 

will reveal that after several cycles, the zone might expand by one element on part of the zone 



 

 

 

 

 

 

boundary, for example compare Figure 18(b) and (c), but a very much finer mesh would be required to 

make any conclusive judgement on this. 

Although it is tempting to think of this as a model for fatigue, this modelling method does not lend 

itself to very large numbers of load reversal.  As the PEEQ values increase, it should be remembered 

that the material model is of limited applicability, and it would probably be appropriate to introduce 

failure mechanics into the model. 

The highest values for PEEQ are observed at the surface boundary where the surface roughness 

flaw is at its deepest, and these regions connect up with neighbouring ones, in a wavy band formation 

which is approximately a smoothed mirror image of the surface profile.  Given that the increasingly 

high values of PEEQ represent regions of material where plastic slip zones have been activated and 

reversed, this suggests material that is beginning to be pulled apart.  In reality, under such working, 

porosity would be growing within the material, which would then be subject to environmental aging. 

In view of this, the modelling results might be interpreted to provide some understanding of the 

process of corrosion-fatigue and corrosion pit formation.  If elements in the model were deleted on 

reaching a particular level of PEEQ, then would that result in failure following the wavy band path, 

and result in flaking and corrosion pitting? 

In this context, it should be noted that [40] presented a simple methodology that uses measured 

surface roughness, in conjunction with the Hartman-Shijve crack growth equation [41], for accurate 

computation of both the fatigue life and the crack growth history associated with a test on a corroded 

bridge steel specimen.  This methodology has the advantage that it captures the total fatigue life, not 

just the time to initiation. 

8.4.  Computational modelling considerations 

Finite element method is a robust general purpose tool for modelling a wide range of problems, and it 

is because of the capability and commercial development of packages such as Abaqus that the analysis 

presented here was carried out as conveniently as it has been.  Notwithstanding this, finite element 

does not lend itself particularly well to the problem: most of the problem domain is uninteresting, but 

it is difficult to generate efficient meshes that capture the surface roughness regions in sufficient 

resolution and then to manage a mesh transition through a factor of about 100.  While this can be done 

for a simplistic 2D axi-symmetric geometry, as presented here, it would not be convenient for a more 

complex specimen shape. 

More sophisticated meshing tools exist than used in this present work, as do commercial finite 

element packages which include automatic mesh refinement.  These might suggest an appropriate 

approach; however, the modus operandi of these tools is that of practicality for “normal” engineering 

analysis problems, and controlling exact element sizes and mesh formations in one region, and forcing 

a particular mesh transition is a requirement not anticipated by the developers of the packages.  This 

means that model preparation is time consuming: acceptable for research purposes, but not for routine 

application. 

Now suppose that the ideas presented here are adopted by industry and a stress engineer needs to 

assess the effect of surface roughness on a complex component.  The technique of adding surface 

roughness geometry to the main component model would be, at best, inconvenient.  The surface 

profile height variation should provide a first estimate for the depth of the “zone of influence”, and this 

would enable appropriate model partitioning, such that mesh sizes for the geometry details and for the 

plastic zone would be appropriate.  A further computational saving could be made by setting all 

material outside of the “zone of influence” to be linear elastic only, since it should only see a stress 

state in the elastic regime. 

Despite the fact that these steps are all possible, the industrial stress engineer wants a more 

automated approach: so this is the right time to be considering which computational methods and 

algorithms lend themselves to a more effective solution to the problem.  Options which present 

themselves include: (i) a finite element model of the basic geometry, with a refined mesh substructure 

to capture the surface profile and plastic zone; (ii) a finite element model of the basic geometry, with a 



 

 

 

 

 

 

meshless enrichment zone approach to capture surface profile, plastic zone and potential crack growth; 

(iii) a boundary element model of the complete geometry with defined elasto-plastic zones, (iv) a 

boundary element model of the complete geometry, with a finite element model of the “zone of 

influence” running under co-simulation, or (v) a user element encoding the mathematical correction 

term as described in Section 2.3.  Other permutations are also possible.  Each technique has 

advantages and disadvantages which relate to computational efficiency, model set-up convenience, 

and the physical attributes that can be included in the modelling. 

It should be noted that, whereas the methodology discussed in this paper focuses on the role of 

surface roughness in the initiation process, the studies [19, 40–45] have found that for aerospace 

structures, the total life, including the life prior to “initiation”, of operational aircraft can be 

determined accurately without the need to model the accumulation of the inelastic damage during 

cyclic loading.  Nevertheless, this paper is particularly useful in that it gives a more detailed 

understanding of the role of surface finish on fatigue performance. 

9.  Conclusions 

In typical finite element analysis of the stresses in an engineering component, the surface of the 

component is assumed to be perfectly smooth.  In this work, we demonstrate that surface roughness 

can give rise to localized regions with significantly higher stresses state than would be predicted 

assuming a perfectly smooth surface.  For a component comprised of ductile, elasto-plastic material 

and subject to a load case leading to nominal stresses at 90% of yield, there is a “zone of influence”, 

caused by a surface roughness feature, where the stresses exceed the nominal stress by significantly 

more than 10% and the material strains plastically.  A simplistic calculation based on a reduced 

nominal cross sectional area predicts an increase in stress of less than 1%.  In the models presented, 

the “zone of influence” extends a distance from the nominal surface of the component into the body of 

the component which is between 1 and 1.5 times the surface roughness profile height variation.  

Although a fractal representation of the surface roughness is an attractive method for representing 

and replicating different surface types, the size and extent of the “zone of influence” is mainly 

determined by the size of the largest anticipated flaw.  The regularity of the distribution flaws is also a 

contributing factor.  This concurs with the conclusions presented in [44, 45].  Further work, exploring 

the effect of multiple fractal levels and comparing directly with interpolation schemes could shed more 

light on this. 

The analysis methods presented here can be applied to repeated reversed loading.  In this case, the 

size of the “zone of influence” seems to remain largely constant, but the level of predicted PEEQ 

increases with each load cycle.  The modelling of high numbers of cycles leads eventually to 

unrealistically high PEEQ levels, indicating that failure mechanics or corrosion modelling could be 

introduced into the model.  Techniques for modelling damage such as damage constitutive equations 

[46] or modelling crack propagation using XFEM [47, 48] could also be employed in anticipated 

future work. 

The current capability in mathematical analysis to bound the stress-strain prediction error arising 

from surface roughness is still at a preliminary level, and there is significant work needed before this 

can become a robust tool for engineers. 

The computational methods described here are feasible and robust, but the effort required to 

generate a suitable mesh means that further development work is required, to align the methods better 

for industrial application. 
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