
 Glyndŵr University Research Online

Conference Presentation

Algorithmic analysis and hardware implementation of a two-
wire-interface communication analyser

Schinagl, P. and Sharp, A.

This is a paper presented at the 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Schinagl, P. and Sharp, A. (2017). Algorithmic analysis and hardware implementation of a two-wire-
interface communication analyser. In: Proc. 7th IEEE Int. Conference on Internet Technologies and
Applications ITA-17, Wrexham, UK, 12-15 September 2017, pp. 189-193, DOI:
10.1109/ITECHA.2017.8101936. Available at: http://ieeexplore.ieee.org/document/8101936/

http://ieeexplore.ieee.org/document/8101936/

Abstract—This paper discusses the development of an

algorithm for the data analysis to monitor Two-Wire-Interface

operation in order to improve the reliability of communication.

This algorithm is designed to improve code-efficiency with

regards to hardware modelling. An algorithm for the protocol

used in the Standard-Mode, Fast-Mode, Fast-Mode Plus and

High-Speed-Mode was developed. The proposed algorithm has

been derived using the bus protocol specification and

implemented in hardware via a hardware description language.

The correct operation of the algorithm was proofed by applying

the hardware system on a sample communication. The paper also

describes the development process of embedded systems and

provides information on aspects regarding hardware modelling

including a mathematical description of the TWI protocol is

provided.

Keywords—I2C bus, two-wire-interface, FPGA, reliability

I. INTRODUCTION

With the rise of microelectronics, in particular integrated
circuits (IC), communication in the form of bus systems
gained importance in order to allow complex arrangement of
controllers and peripherals to execute their tasks both more
efficient and faster. Most commonly used Inter-Integrated-
Circuit (I²C) serial bus also known as Two-Wire-Interface
(TWI) has been developed by NXP Semiconductors in 1982
[1],[2]. Because of TWI’s significant role, the bus is a
potential failure source that must be considered in terms of
troubleshooting. Furthermore, it is crucial for reverse
engineering to understand ongoing bus communication in a
system [3],[4].

The bus operates using two lines: a data line (SDA) and a
clock line (SCL). Apart from the Start and the STOP-
Command, every intended signal must be applied on the data
line before the clock changes its state to high and must not
change until the next low period (Fig. 1). A falling edge of
SDA during a high cycle of the clock represents a Start or
Repeated-Start-Command whereas a rising edge indicates a
Stop-Command [1].

The frequency at which the master drives the SCL wire of
the bus depends on the operating mode. A complete listing of
the maximum SCL frequencies is shown in Table I. The
master oversees the clock cycle which is applied on the SCL
line. An exception is clock stretching, with the help of which a
slave can pause the communication. A TWI network can

accommodate 127 devices using a 7-Bit long address. An
address extension to 10-Bit was later implemented into the
standard [1],[2].

Communication via this bus must be seen as a data
exchange between a master and a slave notwithstanding that
the specification allows multi-master-operation. In the latter
case one of both masters must behave as a slave. The device
which initiates a communication by a Start-Command is
holding the status of the master. It is crucial to emphasise that
the Master and Slave statuses do not correspond with the
Transmitter and Receiver status. Instead, the data flow
direction is variable. TWI therefore is classified as a half-
duplex communication.

An extra bit after every byte is provided for verification
purposes. During the reserved Acknowledgement-Bit slot, the
receiver of the previous transmitted byte must pull the SDA
line on low to indicate the transmitter that it received the
preceding byte and is prepared for further communication. If
the receiver holds the status of the master, the bit is used to
indicate if another byte is expected. A positive
Acknowledgment is referred to as an ACK whereas a negative
Acknowledgement is referred to as NACK. Each data frame
must consist of at least one byte followed by an acknowledge
bit. This arrangement can be repeated as often as desired
within one frame. Within a byte, the bits follow a descendant
order from the Most-Significant-Bit (MSB) to the Least-
Significant-Bit (LSB) [1],[2]. The bitwise representation of
TWI sequence is shown in Fig. 2.

Algorithmic Analysis and Hardware Implementation

of a Two-Wire-Interface Communication Analyser

Peter Schinagl, Andrew Sharp

School of Applied Science, Computing and Engineering,

Glyndwr University, Plas Coch, Mold Road,

Wrexham, LL11 2AW, UK

Fig. 2. Bitwise representation of a TWI sequence [1].

Fig. 1. Signal change at Start and Stop-Commands [1].

978-1-5090-4815-1/17/$31.00 ©2017 IEEE

be programmed after manufacturing. This enables the design
of a specific IC in order to meet the requirements of a
particular project [8]. The implementation of the desired
logical function into the FPGA is realised using HDL.

HDLs differ from software programming languages
substantially due to the fact that they describe the
interconnection and thus the hardware behaviour instead of a
sequence of instructions [9]. In addition, HDLs are counted
among parallel languages. This is due to the nature of
hardware programming, which does not follow the concept of
a processor polling its commands in serial order [10],[11].

In order to implement a bus-monitoring function into a
FPGA chip with the aid of a HDL, an algorithm was
determined to be designed to provide a mathematical model
which acted as a pattern, based on which the programme was
coded. Furthermore, an improvement of the code’s efficiency
was expected by utilising such an algorithm.

II. TWI PROTOCOL

Fig. 3 illustrates a complete sequence on the TWI-bus
including the potential branches from the master’s point of
view. The master executes a Start-Command to initiate the
communication, followed by the seven-bit long slave address
and the indicator, whether it desires to write or read data. In
both cases, the slave must acknowledge that it has been
addressed. Depending on the data flow direction either the
master or the slave must send a byte which must be
acknowledged if the slave is the receiver, whereas the master
as a receiver uses this acknowledgement to indicate if it
expects another byte. In the position of the transmitter, the
master can send another byte without declaring upfront. Either
way the communication must be terminated by a STOP
condition from the Master.

Two supplementary notes on the process are listed below:

 Instead of a Stop-Command, the Master can apply another
Start-Command on the bus, which is referred to as a
Repeated-Start.

 Acknowledgement-Bits which the slave is responsible for
must not carry a NACK. Otherwise, an error will occur
and the Master is in charge of ending the communication.

III. MATHEMATICAL BACKGROUND

A. Bit Index

The protocol of a serial bus purports the appearance of
high and low states on the data line with regards to the
transmitted data. Therefore, under consideration of the
possible branches of the protocol, the number of bits to be
transmitted can be predicted. By using Boolean algebra, above
mentioned branches can be interpreted and utilised to identify
the current state of the communication and predict the number
of following bits. In the following, an elaboration of the
number of the appearing bits dependent on the course of the
communication is provided.

The communication must start with a Start-Command,
which occupies one bit of the sequence. The end or restart of
the communication is indicated by a Stop-Command or

Operating Mode Max. Frequency Unit

Standard-Mode 100 kHz

Fast-Mode 400 kHz

Fast-Mode Plus 1 MHz

High-Speed

Mode

100 pF max 3.4 MHz

400 pF max 1.7 MHz

Ultra-Fast Mode 5 MHz

TABLE III. MAXIMUM FREQUENCY OF THE TWI MODES [1]

Fig. 3. Flowchart of TWI protocol.

Previous studies had been carried out with the proposed
work to develop a hardware model of a TWI-bus participant.
Dependent on the mode of participation, the models’ extent
ranged beyond the scope of an analyser. Any development of
a master device implied, that monitoring a TWI
communication can be realised utilising a state machine in
Hardware Description Languages (HDL) code [5]-[7].
However, the previously published papers are not focused on
mathematical elaborations and analysis. In general, there was
a lack of papers which investigated the derivation of an
algorithm from the TWI bus. This work focuses on the
performance analysis of the TWI in terms of assessment of the
reliability of communication. It includes analysis of code-
efficiency with the aid of an analysis of the protocol and its
mathematical interpretation.

The other main technology used in this study is Field
Programmable Gate Array (FPGA) where function of ICs can

respectively a Repeated-Start-Command. Both of the latter
mentioned occupy one bit as well. Another fixed slot is
captured by the Direction-Bit. Therefore, three bits of the
sequence can be predicted to appear regardless of the course
of the communication. The address of the slave which is
transmitted as the first information after the Start-Command
seizes seven bits [1].

The core of the communication is occupied by data bytes.
The number of bits concerning data to be transmitted therefore
is equal to the sum of all data byte’s bits and can be obtained
multiplying the number of data bytes with eight.

All data bytes must be followed by an Acknowledgment-
Bit. Hence, the number of data bytes also determines the
number of Acknowledgement-Bits. Because the direction-
indicating-bit is also followed by an acknowledgement bit, its
quantity is equal to the number of data bytes plus one.

Combining these elaborations, the overall number of bits
can be determined:

 (1)

where the constant Cs represents the number of bits that must
appear on every issued communication, consisting out of the
Start-Bit, the direction-indicating-bit and the Stop-Bit
respectively the Repeated-Start-Bit. Hence, this constant is
equal to 3; the constant A depicts the address which in this
study is assumed to be 7 bit long; n indicates the number of
transmitted data bytes. This number is either known upfront
or, in case of a monitoring function, derived during the
monitoring process by evaluating the binary values of the
acknowledgement bits.

 Overall Bits 8 1

Overall Bits 9 1

s

s

C A n n

C A n

B. Boolean Branch Operations

The prediction whether another data byte follows an
Acknowledgment-Bit must be obtained by using Boolean
algebra. As shown in Fig. 3 the acknowledgement that follows
every data byte that is read from the master is used to indicate
whether the master expects another byte to read. The logical
composition of direction status and the acknowledgement
value (ack) therefore was utilised to forecast the next state of
the communication.

Presupposing that ‘Write’ correlates with the false state of
the Boolean value of the direction (dir) and ‘Read’
corresponds with its true value, the following equations could
be set up to predict the following state:

 (2)

 (3)

 (4)

 (5)

The equations’ results are summarised in Table II.

IV. ALGORITHM

The electrical specification of the bus defines that every
transmitted bit must hold a consistent logical level over the
whole period of the clock. The Start, Stop and Repeated-Start
commands however differ from that specification. Instead of
operating on a Boolean value, these commands are indicated
by providing a rising or respectively falling edge of the data
signal during a high clock level. [1]

This restriction allowed to identify a command that issues
the start or end of a communication and therefore were utilised
as the entry and exit conditions of the algorithm. Once the
algorithm is entered, the number of bits to appear until the first
branch is expected to have an impact on the communication is
counted. Due to the fact that every information can be
identified via the corresponding bit index, the direction can be
obtained and stored for later usage.

When eventually the bit to indicate the branch is
transmitted, its value – together with the direction value – is
fed into the Boolean equations that form the truth table shown
in Table II. The results of these Boolean operations determine
the following progress of the communication as shown in
Fig. 4 and hence allow the algorithm to predict which
information is expected to follow.

 Stop-Command dir ask dir ask

Error dir ask

 Next Data Byte dir ask dir ask

Stop-Command dir ask

TABLE II. TRUTH TABLE THE BRANCH OPERATION

Fig. 4. Flowchart of a whole sequence of the algorithm

Direction Acknowledge Prediction

Write 0 Stop-Command or next byte

Write 1 Error

Read 0 Next data byte

Read 1 Stop-Command

V. ALGORITHM IMPLEMENTATION

As the target system, a Cyclone II chip from the
manufacturer Altera was elected. The developed algorithm
was transferred into a VHDL code. The sequential nature of
the algorithm advocated in favour of the utilisation of a state
machine to implement the algorithm into hardware [12],[13].
Due to hardware limitations, the maximum number of data
bytes was limited to 2. This restriction however did not
confine the algorithms capabilities because further
communication is subject of the same recurring procedure of
the algorithm. An illustration of the state machine is given as a
flowchart depicted in Fig. 5. The single states of the state
machine were derived from the algorithm and its
corresponding entities of communication within a sequence of
a TWI communication.

Fig. 5. Flowchart of the state machine.

Hereinafter the states of the state machine and their
transition conditions were explicated.

IDLE

When no communication has been tracked or a reset
command was entered, the IDLE state is occupied. A Start-
Command causes the transition into the READ_ADDR state.

READ_ADDR

To enable processing of the value using the same sub-
entities as the data registers, the register in which the address
is stored was defined to be eight bit long, carrying a ‘0’ as the
MSB. For the duration of seven clock cycles on the SCL line,
the programme tracks the level on the SDA line and stores the
values in this register. While doing so, the decreasing counter
value is used as the index of the bit of the register in which the
value is stored. An abstraction of this procedure is presented
in (6).

 (6)

When the bit counter ran through seven cycles, the
READ_DIR state is entered.

READ_DIR

The bit which indicates the communication direction
specified by the master is caught and sets the corresponding
READ or WRITE flag. For further usage the value is also
stored in a signal.

ACK_DETECT

This state may be entered from different stages. Every byte
-long sequence is followed by an acknowledge bit and
therefore demands this state to be run through. This applies on
the data bytes as well as the seven bit address combined with
the subsequently transmitted direction indicating bit. This state
moreover possesses different branches to navigate the
programme flow into. An overview of the possible exit states
is given in Table III.

It was predicted that this state must be called for the
second time after and the first data byte and hence could be
used to count the overall number of data bytes. The state
therefore is used to branch into the BUSY state when the
processing capacity of data bytes is reached. In this test, this
capacity was set by the hardware which allowed to display
two data bytes. The exit condition into the BUSY state was
therefore hardcoded to a compare condition of the data byte
counter with the value of two. If the acknowledgement bit
suggests an error, the current state changes to ACK_ERROR.
If none of the above mentioned exit conditions are met, the
state machine proceeds its normal procedure by entering the
SNIFF_DATA state.

ACK_ERROR

Accessed by the acknowledge detection in case of an error,
this state sets the error flag and awaits a reset command.

BUSY

The programme’s inability to track data frames beyond the
length of two bytes due to hardware limitations legitimates the

 adderss bitcounter bitcounterSDA

Byte Count < 2 Direction ACK Target State

False READ 0 BUSY

False READ 1 ACK_ERROR

False WRITE 0 BUSY

False WRITE 1 BUSY

True READ 0 SNIFF_DATA

True READ 1 BUSY

True WRITE 0 SNIFF_DATA

True WRITE 1 ACK_ERROR

TABLE III. TRUTH TABLE OF THE EXIT CONDITIONS

existence of this state. When no further monitoring is possible,
this state is called. This however is not an error handler. It is
expected that the communication finishes with a Stop-
Command which causes a transition into the DONE state.

SNIFF_DATA

The eight bits that follow this state’s invocation are stored
in a temporary register to be written to the entity’s output
afterwards. The bitwise value assignment was designed the
same way as in the READ_ADDR state. Before accessing the
ACK_DETECT state, the data byte counter is incremented.

DONE

Every error-free cycle of the state machine terminates in
this state. An operator input is necessary to switch from here
into the IDLE state to start a new measurement.

Supplementary Notes:

 Every state was provided with a reset handler. By resetting
the system, all temporary registers and flags are set to their
initial values and the IDLE state is accessed

 A STOP command terminates the state machine regardless
of the current state.

 A START or REPEATED START command leads to a
transition into the READ_ADDR state regardless of the
current state.

VI. TESTING

The verification of the algorithm’s implementation was
carried out by setting up a sample TWI-communication and let
the system monitor it. As sample parameters, the slave address
was set to 126 and the transmitted data was set to the value of
255. An oscilloscope track of the transmitted data frame is
depicted in Fig. 6.

The system on which the algorithm was implemented was
hooked up to the test system and a communication was issued.
After verifying the operation to this point, a two byte long data
frame with the same parameters was transmitted to provide a
different branch decision for the algorithm. The second byte
also was detected and correctly displayed. The monitored
information is listed in Table IV.

The sample parameters and data which had been
configured to be transmitted by the sample communication

system had been monitored successfully. It could be shown
that the algorithm meets the requirements and was
mathematically correct.

V. CONCLUSION

It has been shown that the developed algorithm for the
communication monitoring was correctly derived from the
protocol specification. It was also demonstrated that a TWI
communication can be transformed to a more abstract stage by
utilising mathematical methods to index the transmitted bits
and assign these indices to correlating information
respectively states of the communication. An interpretation of
the course of events on a Boolean level was elaborated and
applied to provide a logical model for branches.

The findings could be reasonably implemented into
hardware by transferring the worked out relations into
hardware-description-language expressions and designing a
finite state machine to assign each incremental step of the
communication to its corresponding code segment.

Further work proposes the improvement implementation of
the 10-Bit address range as well as the Ultra-Fast-Mode into
the algorithm which has not been considered in this study.

REFERENCES

[1] NXP Semiconductors. (2014, 4 April). I2C-bus specification and user
manual UM10204 [Online]. Avalable: http://www.nxp.com/documents/
user_manual/UM10204.pdf

[2] I2C Info. (2017). [Online]. Available: http://i2c.info

[3] S. Freiberger, M. Albrecht and J. Kaufl, “Reverse engineering
technologies for remanufacturing of automotive systems communicating
via CAN bus,” Journal of Remanufacturing, vol. 1, no. 6, pp. 1-15, Dec.
2011.

[4] Yan-Jie Chai, Ji-Yin Sun, Jing Gao, Ling-Jiao Tao, Jing Ji, and Fei-Hu
Bao, “Improvement of I2C bus and RS-232 serial port under complex
electromagnetic environment,” in Proc. Int. Conf. on Computer Science
and Software Engineering, 12-14 Dec. 2008, Hubei, China, pp. 178-181.

[5] R. Archana, and J. V. Rao, “Implementation of I2C master bus protocol
on FPGA,” Int. Journal of Engineering Research and Applications, vol.
4, no. 10, pp. 6-10, 2014.

[6] B. Eswari, N. Ponmagal, K. Preethi, and S.G. Sreejeesh,
“Implementation of I2C master bus controller on FPGA,” in Proc. Int.
Conf. on Communication and Signal Processing, 3-5 April 2013,
Melmaruvathur, India, pp. 678-681.

[7] A. Oudjida, M. Berrandjia, R. Tiar, A. Liacha, and K. Tahraoui, “FPGA
implementation of I2C & SPI protocols: A comparative study,” in Proc.
16th IEEE Int. Conf. on Electronics, Circuits and Systems, 13-16 Dec.
2009, Yasmine Hammamet, Tunisia, 2009, pp. 507-510.

[8] W.A. Najjar, and P. Ienne, “Reconfigurable computing,” IEEE Micro,
vol. 34, no. 1, pp. 4-6, Jan-Feb 2014.

[9] D.J. Smith, “VHDL and Verilog compared and contrasted-plus modeled
example written in VHDL, Verilog and C,” in Proc. 33rd Design
Automation Conf., 3-7 June 1996, Las Vegas, NV, pp. 771-776.

[10] P.J. Ashenden, The Student's Guide to VHDL, 2nd ed. Burlington, USA:
Elsevier, 2008.

[11] IEEE Computer Society, IEEE Standard VHDL Language. New York:
IEEE, 2009.

[12] H. Wallace. (2003). Using state machines in your designs [Online].
Available: http://aqdi.com/articles/using-state-machines-in-your-designs
-3

[13] J. Brownlee. (2002). Finite state machines (FSM) [Online]. Available:
http://ai-depot.com/FiniteStateMachines/FSM-Background.html

Fig. 6. Oscilloscope trace of the sample sequence.

Information Value

Slave Address 126

Data Byte 1 255

Data Byte 2 255

TABLE III. TRUTH TABLE OF THE EXIT CONDITIONS

