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Abstract— This paper presents two WR-3 band (220-325 GHz) 

filters, one fabricated in metal using high precision computer 

numerically controlled milling and the other made with metallized 

SU-8 photoresist technology. Both are based on three coupled 

resonators, and are designed for a 287.3 GHz to 295.9 GHz 

passband, and a 30 dB rejection between 317.7 GHz and 325.9 

GHz. The first filter is an extracted pole filter coupled by irises, 

and is precision milled using the split-block approach. The second 

filter is composed of three silver-coated SU-8 layers, each 432 µm 

thick. The filter structures are specially chosen to take advantage 

of the fabrication processes. When fabrication tolerances are 

accounted for, very good agreement between measurements and 

simulations are obtained, with median passband insertion losses 

of 0.41 dB and 0.45 dB for the metal and SU-8 devices 

respectively. These two filters are potential replacements of 

frequency selective surface (FSS) filters used in heterodyne 

radiometers for unwanted sideband rejection.  

 

Index Terms—Micromachining, SU-8, Waveguide Filter, 

Terahertz components  
 

I. INTRODUCTION 

ULTICHANNEL air and spaceborne sounders are employed 

for spectroscopic characterization of the Earth’s 

atmosphere [1]. These instruments perform molecular 

spectroscopy at millimeter and submillimeter wavelengths in 

relatively narrow frequency channels. Within the instrument, 

linearly polarized signals are frequency de-multiplexed by a 

quasi-optical feed chain using frequency selective surfaces 

(FSSs). FSSs are also used to prevent the signals in the 
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unwanted sideband from reaching the double sideband 

heterodyne mixers [2]. As the atmospheric signals are weak, the 

sideband rejecting FSS needs to have a very low insertion loss 

and a high isolation between two adjacent channels which are 

close to each other in frequency [3]. For instance, the FSS 

reported in [3] transmits 316.5–325.5 GHz radiation with a 

maximum insertion loss of 0.6 dB and achieves greater than 30 

dB rejection from 349.5–358.5 GHz. To achieve this 

specification a transmission zero is required and we believe this 

paper describes the first filter to achieve this at these high 

frequencies. 

Waveguide technology is potentially an attractive alternative 

to FSS for sideband selection, due to its low loss and the 

possibility to construct lower volume filters. For waveguide 

components in general, device dimensions decrease as 

frequency increases. This means a reduction in size and mass of 

components, but also a tighter dimensional tolerance is required 

during fabrication. Different micromachining techniques such 

as computer numerically controlled (CNC) milling [4-6], Si 

deep reactive ion etching (DRIE) [7-9], lithographic 

micromachining technique (LIGA) [10] and SU-8 photoresist 

technology [11-13], have been developed and employed to 

achieve high-dimensional accuracy in the fabrication of high 

frequency waveguide filters. Laser micromachining [14] and 

3-D printing [14] have also been utilized for high frequency 

filters by the authors using different designs at about 100 GHz. 

This paper is complementary showing how alternative 

technologies cope, at higher frequencies, for a filter with 

demanding specifications. 

CNC milling is a traditional way of fabricating metal 

waveguide components, especially at lower frequencies. 

Waveguide components fabricated by CNC milling with 

excellent performance have been reported. References [4] 

and [5] describe fourth order W-band filters. In [4], the filter is 

measured to have 0.5 dB insertion loss and a 4.53% (4.20 GHz) 

bandwidth, and in [5], the filter is measured to have 0.6 dB 

insertion loss and a 10% (10 GHz) bandwidth. For the 220 to 

325 GHz WR-3 band, waveguide features and tolerances 

decrease by a factor of around three. Fabricating waveguide 

filters at such a frequency requires an expensive, high precision 

CNC mill. Filter design flexibility is also limited by tool sizes 

and depth to diameter aspect ratios [5]. However, the limits of 

conventional CNC milling are still being pushed: examples of 

WR-3 band CNC milled filter can be found in [6], where two 

fourth order bandpass filters are presented, one with measured 

0.7 dB insertion loss and 8.77% (22.6 GHz) bandwidth and 

another with measured 0.5 dB insertion loss and 
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9.83%(25.2 GHz) bandwidth. In this paper, we present a WR-3 

band CNC milled extracted pole filter with an improved 

performance, which is designed specifically for sideband 

rejection. 

SU-8 photoresist is a promising technology for 

manufacturing millimeter and submillimeter waveguide 

components, and is used for the second filter discussed in this 

paper. SU-8 is a photolithographically patterned, epoxy-based, 

resin that is resistant to organic solvents once cured, and can 

have a thickness ranging from 0.5 µm to 1 mm [15]. There are 

several advantages of using SU-8 micromachining over CNC 

machining. For example, SU-8 can achieve a similar high 

dimensional accuracy with potentially lower cost. It may also 

allow sharper internal corners and higher corner radius to depth 

ratios. Meanwhile, SU-8 process is a batch fabrication which 

allows repeatability between devices as well as production of 

several devices in a single fabrication run [15]. Compared with 

DRIE, standard photolithography processes are used with SU-8 

with better surface roughness on the sidewalls of waveguide 

structures [15]. SU-8 photoresist technology has been 

employed to demonstrate filters in the WR-10 [11], WR-3 [12], 

and WR-1.5 bands [13]. In this paper, a new WR-3 band 

waveguide filter is designed for the SU-8 process to meet a 

specification similar to the FSS filter described above. 

For both the CNC and the SU-8 filters presented and 

compared below, the specifications in [3] were adjusted to cope 

with the available measurement capability. Both filters have 

transmission zeros with the CNC filter having a conventional 

design, however the SU8 filter is a completely new design 

topology to produce the transmission zero. Frequencies have 

been scaled down by a factor of 1.1, so that the new passband is 

287.3-295.9 GHz and the stopband attenuation specification 

becomes 30 dB between 317.7 GHz and 325.9 GHz. 

Structural details and design methods of the two filters are 

presented in Sections II and III, which is followed by a 

description of fabrication process in Section IV. Measurements 

and discussions are presented in Section V, and conclusions are 

given in Section VI. 

II. DESIGN OF CNC MILLED EXTRACTED POLE FILTER 

The CNC filter design is shown in Fig. 1. It is based on three 

coupled resonators operating at TE101 mode and an extracted 

pole resonator [16]. The material conductivity is assumed to be 

 
 

Fig. 1. Diagram of extracted pole filter structure. a = 864, b = 432, l1 = l3 = 
510, l2 = 517, le = 619, lx = 383, de = 205, dp1 = dp3 = 432, d12 = d23 = 309. (Unit: 

µm)  

 
Fig. 2. Simulated S-parameters for the CNC milled extracted pole filter. 

Passband and stopband specifications are shown in gray and red respectively. 

 

 
Fig. 3. Diagram of WR-3 band filter formed of three SU-8 layers with same 

thickness of 432 µm. (a) Diagram of the filter structure. Dimensions of the test 

ports are: ap = 864 µm, bp = 432 µm. Dimensions of the resonators are: a = 876 
µm, b = 432 µm, l1 = l3 = 647 µm, l2 = 589 µm. (b) Illustration of the whole filter 

device including dowel holes and screw clearance holes designed to match the 

UG-387 waveguide flange. (c) A perspective front-view of the filter structure. 
The blue rectangle represents the input/output of test port. The black rectangle 

represents the first (or third) resonator, whereas the cavities in the second layer 

are represented by red rectangles. d = 327 µm, h = 578 µm, lc = 1100 µm, hc = 
143 µm. 

 

 
Fig. 4. Simulated S-parameters for the SU-8 micromachined filter. Passband 

and stopband specifications are shown in gray and red respectively. 
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that of gold (i.e., 4.10×10
7
 S/m). A third order waveguide cavity 

filter which has a Chebyshev response was designed first, using 

the synthesis technique described in [17], to have a center 

frequency of 291.6 GHz, a bandwidth of 3% (8.6 GHz) and a 

return loss in the passband of ≥ 20 dB. For this structure, an iris 

between the test ports and the first/last resonators controls the 

external coupling (Qe), the iris between resonator 1 and 2 (or 

resonator 2 and 3) controls the coupling coefficient k12 (or k23). 

To meet this specification, the external Q and coupling 

coefficients are calculated to be Qe1 = Qe3 = 28.87, k12 = 

k23 = 0.030. To meet the upper stopband specification, a steep 

roll-off is needed on the high frequency side of the passband. It 

has been shown [16] that the selectivity of a conventional 

waveguide filter can be improved by using inductively coupled 

stopband cavities connected to the broad wall of the 

waveguide [18]. In [19], the advantages of this extracted pole 

technique have been demonstrated. A single extracted pole 

resonator, added to the third order waveguide filter using the 

method of reference [20] and [21], provides a transmission zero 

in the rejection band and achieves a very high cut-off rate into 

the upper sideband.  

In order to be compatible with CNC milling process, the 

corners of the resonators have a radius of 0.10 mm (see Fig. 1) 

to permit fabrication with a 0.20 mm end mill. Meanwhile, the 

minimum dimension in the E-plane must also be larger than 

0.20 mm. After initial design of the structure using the coupling 

matrix approach [17], full-wave simulation and optimization 

for this filter are carried out by CST Microwave Studio (version 

2016) using the Trust Region Framework algorithm. The cavity 

dimensions achieved after optimization are shown in Fig. 1. To 

give an idea of scale, the total length of the filter structure is 4 

mm. 

In order to test the filter, a CNC machined block which 

contains the filter is designed. The input and output waveguides 

have both been extended by 8 mm in order to accommodate 

standard waveguide flanges and screws. A 20 mm length of 

straight WR-3 waveguide is included as a measurement 

reference in the same block as the waveguide filter. Standard 

UG-387 waveguide flanges were machined in the block. By 

utilizing an E-plane split-block technique, the transmission loss 

is minimized as no surface current flows across the contact 

plane. The simulation results after optimization for 

S-parameters are shown in Fig. 2. The predicted passband 

insertion loss for the extracted pole filter (4 mm filter structure) 

is below 0.4 dB and the rejection in the unwanted sideband is 

above 30 dB. Passband reflectivity, S11, is below -20 dB. 

III. DESIGN OF SU-8 MICROMACHINED FILTER 

The SU-8 photoresist filter is designed [16] to meet the same 

specifications. It exploits the stacked metallized layer approach 

associated with SU-8 [22]. The filter has three coupled 

resonators and a cross-coupling between the first and third 

resonators and is shown in Fig. 3. With this topology and by 

setting the frequency of the transmission zero at 317.7 GHz, 

which is the lower boundary of the upper stopband, external Q 

and coupling coefficients are calculated as: Qe1 = Qe3 = 27.65, 

k12 = k23= 0.031, k13 = 0.006, k11 = k33 = 0.002, k22= -0.006. Each 

of the silver-coated SU-8 layers has a thickness of 432 µm and 

contains one resonator. As shown in Fig. 3(a), the value of the 

SU-8 layer thickness determines the WR-3 waveguide 

resonator height, b. Since the central resonator couplings k12 

and k23 are equal, layers 1 and 3 are identical and the whole 

structure is symmetrical. Rather than controlling the coupling 

through a conventional iris, the relative positions of the 

resonators are shifted to obtain the desired coupling 

coefficients. In other words, the horizontal displacement h, 

shown in Fig. 3(c), determinates k12 and k23, whereas the offset 

d between the test port and first/third resonators controls the 

external coupling. The cross-coupling between first and third 

resonators is accomplished by a slot in the middle layer. The 

frequency of the resulting transmission zero is controlled by the 

width of this cross-coupling slot, hc. The above geometric 

design parameters, shown in Fig. 3, are optimized by the 

SMEAFO method [23] using CST Microwave Studio (version 

2016). Fig. 3 provides the detailed dimensions of this filter after 

optimization. 

The filter is designed to be inserted between standard 

UG-387 waveguide flanges for measurement. As shown in 

Fig. 3(b), holes to accommodate the flange dowels, thereby 

accurately aligning the different SU-8 layers, are incorporated 

in the design. Larger clearance holes for the waveguide flange 

screws are also introduced.   

The optimized S-parameter response of the filter is shown in 

Fig. 4. The predicted passband insertion loss is below 0.4 dB 

and the rejection in the unwanted sideband is better than 35 dB. 

Passband reflectivity, S11, is below -20 dB. The simulations 

predict two unexpected transmission zeros, one located 

between passband and upper stopband at 302.5 GHz and 

another at 326.2 GHz, just above the waveguide band’s upper 

edge. These zeros are caused by unwanted cancellation effect 

of the signals transmitted by different paths from the input to 

the output due to the special structure of the design. That is 

                              

  
Fig. 5. Photograph of the internal cavities of the fabricated CNC milled 
extracted pole filter.  

 

 
Fig. 6. (a) Photograph of the 3 silver-coated SU-8 layers, 20 × 20 mm for each 

layer with a thickness of 0.432 mm. (b) Scanning electron microscope image of 
the cavity structure for the second SU-8 layer.  

  



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

 

4 

apart from cross-coupling accomplished by the slot on the 

middle layer, there is an additional coupling path between 

resonators 1 and 3. 

IV. FABRICATION DETAILS 

The extracted pole waveguide filter was fabricated at the 

Rutherford Appleton Laboratory using a high precision Kern 

milling machine and tungsten carbide cutters with diameters 

down to 0.20 mm. The block material was copper alloy which 

was then coated with a thin film of gold (around 3 µm) by 

electroplating. As mentioned above, the internal corners of the 

filter had a radius of 0.2 mm. Fig. 5 shows a photograph of the 

split plane of the CNC machined block with its four resonators.  

The fabricated layers of the SU-8 filter are shown in 

Fig. 6(a). The process details for the SU-8 filter can be found in 

references [13] and [24-25]. In summary, a single side polished, 

 
Fig. 7. Comparison of the simulated and measured results of the filter 

produced by CNC milling. (a) Response over whole WR-3 band. (b) 
Expanded view of S21 showing the passband. The simulations are performed 

assuming a material conductivity corresponding to that of bulk gold.  

 

 
Fig. 8. Simulated response of the CNC milled extracted pole filter with 

measured dimensions shown in Table I. 
 

 
Fig. 9. Comparison of the simulated results and measured results of the filter 

based on SU-8 photoresist technology. (a) Response over whole WR-3 band. 
(b) Expanded view of S21 over passband. The simulations are performed in 

CST assuming a material conductivity equal to that of silver. 

 

 
Fig. 10. Simulated response of the SU-8 filter with measured dimensions in 

Table II. 
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100 mm diameter, 1 mm thick, silicon wafer was used as a base 

for forming the SU-8. OmniCoat from MicroChem was used as 

a 1.5 µm thick sacrificial layer between SU-8 and silicon. This 

thickness of OmniCoat was built up from five 300 nm thick 

layers. Each was formed from precursor spun at 350 rpm for 10 

seconds and then at 700 rpm for 20 seconds. The coating was 

soft baked by placing the wafer on a hot plate at 200
o 
C for 120 

seconds. It was then cooled on a flat copper plate at room 

temperature for 300 seconds.  

SU-8 50 negative photoresist from MicroChem was then 

spin coated onto the OmniCoat. The thickness of the SU-8 layer 

is calculated by measuring the mass of the coating [13]. A mass 

of 5.20 g on a 100 mm diameter wafer corresponds to a 

thickness of 432 µm. The coated wafer is left on a leveled 

copper plate at room temperature for 1 hour for 

self-planarization. Then it was soft baked at 65 and 85
o
 C for 40 

and 240 minutes respectively. In order to reduce the thermal 

stresses during soft bake, the temperature was increased at 

5
0 
C/min from room temperature during heating. During 

cooling, the hotplate and wafer cooled naturally to room 

temperature after switching off the power. UV 

photolithography was carried out in Cannon PLA-510 mask 

aligner. The resist was exposed for 4 cycles of 40 s, with a 2 

minutes interval between each cycle to allow the resist to 

stabilize. A PL 360 filter was placed over the chrome mask 

during UV exposure, which effectively blocked UV radiation 

with a wavelength below the 365 nm i-line [26]. The exposed 

wafers were baked at 70
o
 C for 30 minutes, which helps the acid 

assisted cross-linking of the exposed structures. After this bake, 

the SU-8/Si wafer was developed for 15 minutes in MicroChem 

EC at room temperature with constant magnetic stirring. The 

patterned SU-8 layers were released by dissolving the 

sacrificial layer in tetramethylammonium hydroxide based 

MFCD26 solution from MicroChem at room temperature for 5 

hours. The released SU-8 pieces were cleaned with propan-2-ol 

and dried by nitrogen gas. Layers of 30 nm of chromium, and 

subsequently 1500 nm of silver, were deposited by sputtering 

and thermal evaporation respectively. This was done on both 

sides of the patterned SU-8 layers without breaking the 

vacuum. A purpose built sample tilted rotating rig allowed the 

metal to reach the inner walls of the waveguides and cavities. 

V. MEASUREMENT AND DISCUSSION 

The S-parameter measurements for the CNC milled extracted 

pole filter were carried out using a Keysight PNA network 

analyzer with a pair of VDI (Virginia Diodes Inc.) WR-3.4 

extension heads. For the measurement, the CNC machined 

block was fixed between the waveguide flanges of two 

frequency extension heads. The insertion loss for the 20 mm 

length of WR-3 waveguide in the same block was also 

measured. The results are shown in Fig. 7. The filter has an 

average passband insertion loss of around 0.65 dB and greater 

than 30 dB rejection in the upper stopband. As shown in 

Fig. 7(b), the insertion loss for 20 mm of waveguide is 

measured to be 0.3 dB, giving the waveguide a loss of 

0.015 dB/mm. Allowing for a total of 16 mm of waveguide 

connecting the filter to the flanges, the loss of the 4 mm long 

filter structure is thus 0.41 dB. 

The measurements are in very good agreement with 

simulations except that center frequency of the filter is shifted 

downwards by around 5 GHz. This frequency shift is mainly 

due to larger-than-designed dimensions of resonators, which 

have been measured with results shown in Table I. Generally 

dimensions are within a few microns of designed values, except 

for the width of the waveguide which is about 15 µm larger than 

assumed in the simulations. When the filter is re-simulated with 

CST using the measured dimensions excellent agreement with 

measurements is obtained as shown in Fig. 8. 

For the SU-8 filter, the measurement is performed on an 

Agilent E8361A network analyzer using a short-open-load-thru 

calibration. The SU-8 filter is placed between two waveguide 

flanges of the network analyzer and the layers aligned by the 

high precision dowels on the waveguide flanges.  

The measured results for the SU-8 filter are shown in Fig. 9. 

It can be observed from Fig. 9(b) that there are significant 

ripples in the measured S21 response. A different network 

analyzer was used in these measurements to those of the CNC 

filter and the ripple is attributed to a poor match in the receiver 

head which has a transmit-only module at Port 2. This problem 

is discussed in detail in [27]. The measured insertion loss is 

around 0.45 dB in the passband and a larger than 30 dB 

rejection within the upper stopband. However the center 

frequency of this filter is shifted upward by around 7 GHz from 

the simulation. Because the layer thickness determines the 

resonator height b, simulations show that the center frequency 

of the filter does not strongly depend on the layer thickness. So 

the difference in center frequency of the filter between 

TABLE I 

COMPARISON BETWEEN DESIGNED AND MEASURED RESONATOR DIMENSIONS 

FOR THE CNC MILLED EXTRACTED POLE FILTER  

 Designed (µm) Measured (µm) 

Cavity #      a × b × l     a × b × l 

Resonator 1 864×432×510 874×438×521 
Resonator 2 864×432×567 874×438×574 

Resonator 3 864×432×510 874×438×519 

 

   TABLE II 
COMPARISON BETWEEN DESIGNED AND MEASURED RESONATOR DIMENSIONS 

FOR THE SU-8 FILTER  

 
Designed (µm)           Measured (µm) 

    Side 1               Side 2 

Cavity #    a × l     a × l                   a × l           

Resonator 1 876×647     863×623            869×638 
Resonator 2 876×589     861×576            874×584 

Resonator 3 876×647     855×630            873×641 

 

 TABLE III 

COMPARISON OF MEASUREMENTS BETWEEN CNC MILLED EXTRACTED POLE 

FILTER AND SU-8 MICROMACHINED FILTER 

 
CNC extracted pole 

filter 
SU-8 filter 

Passband Insertion loss 0.41 dB 0.45 dB 

 

Passband Frequency 
Shift 

 

-5 GHz 

 

7 GHz 

 

Stopband Attenuation 

 

>32 dB 

 

>33 dB 

 

Size of Filter Device 

 
20 mm × 20 mm × 

4 mm 

 

19 mm × 19 mm × 

0.432 mm 
(3 layers) 
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measurement and simulation may be due to inaccurate 

dimensions in the layer plane. The dimensions of the SU-8 filter 

cavities were measured using a scanning electron microscope. 

The image in Fig. 6(b) shows the cavity within the second layer 

and Table II shows the measured resonator dimensions. 

Measured dimensions in the plane are around 1% smaller than 

designed values on one side of the SU-8 layer and 3% smaller 

on the other side, which means the frequency shift may be 

caused by both changed dimensions and non-vertical sidewalls. 

After inserting the measured dimensions in CST simulations, a 

much improved agreement with measurements is obtained, as 

shown in Fig. 10. 

Table III is a comparison of measurements on the CNC 

extracted pole filer and the SU-8 micromachined filter. Both 

filters comfortably achieve the requirements of a lower than 0.6 

dB passband insertion loss, with measured values of 0.41 dB 

and 0.45 dB for the metal and SU-8 devices respectively. The 

requirements for over 30 dB stopband attenuation are also 

achieved. The CNC milled extracted pole filter offers a better 

low frequency rejection, whereas the SU-8 device provides a 

steeper roll-off on this high frequency side of the passband and 

a smaller overall volume.  

Table IV shows the comparison between waveguide filters 

reported in open literature and two filters described here. These 

filters operate in the frequency range from WR-3 band to 

WR-1.5 band. A comparison of some WR-10 band waveguide 

filters can be found in [14]. All of the filters summarized in 

Table IV are based on coupled rectangular resonant cavities but 

fabricated using different micromachining techniques. Care 

must be taken with the comparisons as the filters have different 

specifications. 

VI. CONCLUSION 

A CNC milled extracted pole waveguide filter and a SU-8 

micromachined filter working in WR-3 band have been 

designed to best exploit the characteristics of the fabrication 

processes. It is the first demonstration that a CNC milled filter 

with a steep rejection characteristic beyond 300 GHz and a 

SU-8 micromachined filter with novel cross-coupling topology 

working at WR-3 band. The measured performance of the 

filters is in very good agreement with the numerical predictions 

once the latter have been corrected for the small errors in 

manufacturing. The two filters show no significant difference 

in performance despite the two alternative fabrication processes 

and designs. Both filters achieve an insertion loss of below 0.5 

dB in a ~ 10 GHz wide passband and a rejection of more than 

30 dB in the stopband. Either of these two micromachined 

waveguide filters can therefore be potential replacements of 

FSS filters used in spaceborne radiometers for unwanted 

sideband rejection. 
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