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Synthesis of Coupling Matrix for Diplexers Based
on a Self-adaptive Ditferential Evolution Algorithm

Bo Liu, Senior Member, IEEE, Hao Yang, Michael Lancaster, Senior Member, IEEE

Abstract—Diplexer coupling matrix synthesis often involves
both analytical methods and optimization techniques. At present,
general purpose optimization algorithms are used, but they need
strong supporting information (e.g., high-quality starting points,
very narrow search ranges) from analytical methods, which is not
available or too complex to be obtained in many cases. Aiming to
obtain the desired coupling matrix with highly reduced support-
ing information to relieve the pressure of analytical methods,
a new optimization algorithm, called self-adaptive differential
evolution for coupling matrix synthesis (SADEC), is proposed.
Considering the landscape characteristics of diplexer coupling
matrix synthesis problems, a new self-adaptive multi-population
search framework and a self-adaptive algorithm parameter con-
trol strategy are proposed and organized in a particular way. The
performance of SADEC is demonstrated by two all resonator-
based narrow-band diplexers using large search ranges only with
the requirement of matching the diplexer topology and no ad-hoc
analysis is included. Experiments and comparisons show the high
performance of SADEC and clear advantages compared to state-
of-the-art global optimization methods. SADEC is also applicable
to filter coupling matrix synthesis and is downloadable.

Index Terms—Coupling matrix, Coupling matrix synthesis,
Diplexer, Differential evolution

I. INTRODUCTION

The coupling matrix model is often employed in modern
filter and diplexer design [1]. Because of the direct connection
between the coupling matrix and the geometric parameters
of the physical design, the coupling matrix is a widely used
tool to obtain the initial geometric design parameters before
3D full-wave electromagnetic (EM) simulation-based design
optimization. References [2] and [3] show that both local
optimization and global optimization-based EM simulation-
driven design optimization methods can benefit from a good
initial design for complex filters and diplexers. Therefore,
high-quality synthesis of a coupling matrix is essential.

Coupling matrix synthesis methods can be mainly classi-
fied into three categories: analytical methods [4], [5], [6],
optimization-based methods [7], [8], [9] and hybrid analytical
and optimization methods [10], [11]. In analytical methods,
the appropriate coupling coefficient and external quality factor
values are analytically calculated based on the properties of
the microwave device. They are theoretically sound and with
guaranteed good results. Optimization-based methods, on the
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other hand, obtain the appropriate coupling matrix through a
black-box optimization process. Except for the selection of
cost functions [12], [13], [9], much less theoretical analysis is
involved, providing the advantages of ease of use and being
general.

However, as the complexity of the response and topology
increases, especially for multiport devices, both kinds of
methods face challenges: analytical methods can become in-
tricate and sometimes impossible to realize [14], optimization
methods may have a low success rate even with fine tuning
of the cost function and the search range [9], [15]. Traditional
genetic algorithms or genetic algorithm-based memetic/hybrid
algorithms and state-of-the-art global optimization algorithms
(e.g., differential evolution (DE) [16], particle swarm opti-
mization (PSO) [17]) are tested in our pilot experiments.
The success rate is low for various diplexer coupling matrix
synthesis problems.

Therefore, hybrid analytical and optimization-based meth-
ods are attracting much attention. In such methods, an opti-
mization engine is employed, but the optimization problem is
highly simplified based on analytical methods, such as a high-
quality starting point [11], a well-organized synthesis process
[10] or highly reduced search ranges [18]. Due to such strong
supporting information, the optimization algorithm does not
need to be strong. At present, the widely used methods are
general purpose optimization methods, such as Nelder-Mead
simplex method [19], sequential quadratic programming [20]
and evolutionary algorithms (EAs), which are widely used in
microwave engineering [21], [22], [23], [24].

However, the main application area of hybrid analytical and
optimization-based methods is filter synthesis. To the best of
our knowledge, for more complex topologies, such as the
all resonator-based diplexer, which is a new and promising
component in satellite communication systems, there are few
matured coupling matrix synthesis methods. When applying
the above hybrid method for diplexer synthesis, it is not easy
to obtain a good enough starting point or the search range is
not narrow enough in many cases, causing optimization not to
be successful [15]. Hence, developing a strong optimization
mechanism for complex coupling matrix synthesis, which
can considerably relieve the pressure of the prior analytical
analysis, is important to complement the state of the art for
coupling matrix synthesis for multiport devices.

Aiming to fill this gap, an optimization method for coupling
matrix synthesis for diplexers, called self-adaptive differential
evolution for coupling matrix synthesis (SADEC), is proposed.
The main innovations include a new self-adaptive multi-
population search framework and a self-adaptive differential



evolution algorithm parameter control strategy. Both of them
are designed to tackle the landscape characteristics of the
targeted problem. SADEC aims to:
e Obtain highly optimal solutions for diplexer coupling
matrix synthesis with a high success rate;
o Do not rely on good initial values, highly reduced search
ranges or other specific properties of the targeted design
cases.

We believe that if these two goals are met, diplexer coupling
matrix synthesis with weak, easy to obtain or highly reduced
supporting information from analytical methods is expected
to be successful in most cases. General purpose optimization
techniques (e.g., sequential quadratic programming, PSO),
which show difficulty for the targeted problem, can therefore
be replaced.

The remainder of the paper is organized as follows. Sec-
tion II introduces the basic techniques, including a brief
introduction of the coupling matrix method and the standard
differential evolution (DE) algorithm. Section III introduces
the SADEC algorithm, including its main ideas, design of the
new algorithm framework and algorithmic components and
parameter setting. Section IV demonstrates SADEC by two
all resonator-based diplexers. Large search ranges only with
the requirement of matching the diplexer topology are used.
Comparisons with standard DE and PSO are also provided.
The concluding remarks are provided in Section V.

II. BASIC TECHNIQUES
A. The Coupling Matrix Method for Diplexer Design
The S-parameter design specifications of a diplexer can be
calculated using the scaled external quality factors g.; and the
general matrix [A] using the following equations [18]:
Su=£(1 - 2 [A]11)
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where n is the number of ports. The general matrix [A] can
be expressed as:

[A] = [q] + p[U] — j[m] 2)

where [g] is an n X n matrix with all entries zero, except for
Qii = i, 1 =1,2,...,n (¢ stands for the index of a resonator
connected to an external port), [U] is an n X n identity matrix,
p is the complex lowpass frequency variable and [m] is the
general normalized coupling matrix, which is what SADEC
targets at.

B. The Differential Evolution Algorithm

The DE algorithm [16] is the fundamentals of SADEC. DE
is a population-based global optimization algorithm, which
outperforms many EAs for continuous optimization problems
[16] and is widely used in the EM design optimization domain.
Nevertheless, DE is not the only choice, and other popular
EAs (e.g., PSO, Evolution Strategy) may also be improved
following similar ideas in this paper.

DE is an iterative method. In each iteration, the mutation
operator is firstly applied to generate a population of mutant

vectors. A crossover operator is then applied to the mutant
vectors to generate a new population. Finally, selection takes
place and the corresponding candidate solutions from the old
population and the new population compete to comprise the
population for the next iteration.

In the t'" iteration, the i*" candidate solution in the popu-
lation, P, can be represented as:

.74 3)

where d is the number of design variables.

In DE, mutation is the main approach to explore the design
space. There are a few different DE mutation strategies trading
off the convergence speed and the population diversity in
different manners. Arguably, the most widely used one is
DE/rand/1 [16], which is as follows:

G4 1) =2 (O +F - (@ (1) — 2 (1) @)

o (t) = [xf,2b, ...

where ™, ™ and 2" are three different solutions randomly
selected from the current population, P. v’ is the i*" mutant
vector in the population after mutation. F' € (0, 2] is a control
parameter, called the scaling factor.

Crossover is then applied to the population of mutant vectors
to produce the child population U, which works as follows:

1 Randomly select a variable index j qna € {1,...,d},
2 For each j = 1 to d, generate a uniformly distributed
random number rand from (0,1) and set:

i _ U; (t + 1)v if (rand < CR)‘] = Jrand
uj(t+1) { (1), otherwise
)

where CR € [0,1] is a constant called the crossover
rate.

Following that, the selection operation decides on the pop-
ulation of the next iteration, which is often based on a one-
to-one greedy selection between P and U. Considering a
minimization problem, the selection operator is:

u'(t+1), if fu'(t+1)) < f(2'(1))
x (), otherwise

T (t+1) = { (6)

III. THE SADEC ALGORITHM

A. Challenges and Motivations

Aiming to propose a general method for diplexer coupling
matrix synthesis, case-specific information is not included
in the cost function. Our cost function only involves viola-
tion of S-parameter constraints, such as maz{max(|Si1|) —
(—20dB), 0} for the constraint of max|S11| < —20dB in the
passband(s). The cost function is defined as the sum of nor-
malized S-parameter constraint violations. For normalization,
the violation of each constraint for each candidate solution
is divided by the maximum constraint violation so far for
the corresponding constraint. Examples are shown in Section
IV. Transmission and reflection zeros are not used due to
generality consideration. Transmission zeros do not always
exist. We also found that for some complex synthesis prob-
lems, there are many solutions with very close transmission
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Fig. 1. An illustrative figure of diplexer coupling matrix synthesis problem
landscape (The Ackley benchmark test function [25] is used for illustration)

and/or reflection zeros compared to the desired ones, but the
S-parameter response is far away from the specifications.

Using the above cost function, by studying various diplexer
coupling matrix synthesis problems (e.g., sampling and sweep-
ing), Fig. 1 (illustrative figure) shows the characteristics of
the landscape. It can be seen that: (1) If without an ad-
hoc selection of the search range, the optimal regions locate
in several narrow valleys of the search space and the outer
region is flat. This characteristic is understandable because
most diplexers are narrow band, and resonance only happens
in very particular design parameters. (2) The optimal regions
are separated because these narrow valleys are not connected
with each other. (3) The best solution in most of the narrow
valleys is only a local optimum (point B in Fig. 1), which
is not useful (an example is shown in Section IV (A)). (4)
Even in a narrow valley, the landscape is multimodal (has
local optima).

EAs are stochastic optimization methods and there is always
a balance between the exploration ability and the probability
to find the correct search direction [26]. In a stochastic search
process, if the diversity of possible movements is limited, it is
easy to get trapped in a local optimum. When the diversity of
possible movements increases, the capacity of exploring un-
known space is promoted, but the probability to find the correct
search direction decreases considerably. The characteristics
of the targeted landscape require the optimization algorithm
having a good exploration ability because it is multimodal.
However, it also requires the algorithm having a high capacity
to find the correct search direction because the optima locate in
narrow valleys. In addition, most of the narrow valleys only
provide local optima even if they are visited. Therefore, it
is not a surprise that modern EAs, such as standard DE and
PSO have a very low success rate. Our pilot experiments show
that standard DE and PSO have difficulty in converging at the
global optimum and may converge at a local optimum (i.e.,
point B in Fig. 1).

In the computational intelligence field, various improved
DE and PSO are proposed [27] and many of them focus
on jumping out of local optima. Their general idea is to
promote the exploration ability. However, these methods do
not seem suitable for the targeted problem. These methods

target at highly multimodal problems but their optimal re-
gions are not narrow and not separated [25]. Hence, find-
ing the correct search direction is not a main consideration
for those methods, but it is an important challenge for the
coupling matrix synthesis problem. Arguably, the benchmark
test problem with the narrowest optimal region used in the
computational intelligence field is the Ackley function [25],
while our experiments show that the optimal region of the
targeted problem is much narrower than that of the Ackley
function. Therefore, promoting exploration ability makes the
optimization algorithm be trapped in the outer region when
synthesizing diplexer coupling matrix, which is verified by
our pilot experiments. For example, several popular improved
DE even cannot detect the narrow valleys.

To the best of our knowledge, there are few works focusing
on identifying the correct search direction for the targeted
landscape. Therefore, the goal of the SADEC algorithm is
to increase the probability of finding and preserving the cor-
rect search direction while maintaining its exploration ability.
SADEC is based on DE and the design of it is described in
Section III (B) and (C).

B. The Self-adaptive Parameter Control Strategy

There are four key algorithmic parameters in DE, which are
the population size (N P), the mutation strategy, the scaling
factor (F") and the crossover rate (C'R). The selection of them
has a significant influence on the performance of DE for com-
plex optimization problems [28], [29]. The mutation strategy
and the scaling factor control the exploration of the decision
space. In particular, the mutation strategy can be considered as
the choice of the search direction, while the scaling factor can
be considered as the step length. An example is the DE/rand/1
mutation (4). Selecting different kinds of mutation strategies
and scaling factor leads to different capability of exploration.
Besides, by increasing the size of the population, the explo-
ration ability is promoted. As described above, the probability
of finding the correct search direction is therefore decreased.
According to (5), the crossover operator decides how many
decision variables in expectation are changed in a population
member. Thus, it decides to what extent that the visited search
patterns (or search directions) can be changed/preserved.

A central question then becomes how to control these
parameters so as to promote the probability of finding and
preserving the correct search directions while maintaining the
exploration ability. As described in Section III (A), there
are almost no guidelines for the landscapes of the targeted
problem. Hence, empirical tests using various coupling matrix
synthesis problems with different complexity are carried out
and the following observations are obtained: (1) The inventor
of DE suggests that the population size N P should be around
5 x D to 10 x D [16]. Our experiments show that when
using the DE/rand/1 mutation with a reasonable scaling factor,
NP =5 x D always provides enough exploration ability. (2)
When using DE mutation strategies with higher exploration
ability than DE/rand/1 (e.g., DE/rand/2 [16]), the probability
of visiting the narrow valleys decreases. Given the settings of
NP =5 x D and the DE/rand/1 mutation, the control of F'
and C'R is discussed in the following.



Considering the characteristics of the targeted landscape,
large F' is needed to explore the decision space so as to
get access to the narrow valleys. Small F' is also needed to
perform local exploitation in the narrow valley. [16] suggests
that F' should not be smaller than 0.4, while a widely used
parameter study [30] argues that the lower bound of F' is
problem dependent. Both studies suggest that if F' is larger
than 1.0, the convergence speed will decrease. [16] and [30]
recommend to use F' = 0.5 and F' = 0.6 as a default value,
respectively. Considering above, SADEC uses the following
method to decide the scaling factor:

Fiemp = norm(0.5,0.25)

, 1, if Fremp >1 7
F'(t)=< 0.1, if Fremp <0.1
Fiemp, otherwise

where norm(0.5,0.25) is a Gaussian distributed random num-
ber with a mean of 0.5 and a standard deviation of 0.25.

It can be seen that: (1) Because of the Gaussian distribution,
there is about 68% probability, the generated F' is between
0.25 to 0.75 (near the recommended default values). For about
27% probability, F' is between 0.1 to 0.25 or between 0.75 to 1
(emphasizes exploration or exploitation in particular). (2) For
each candidate solution in each iteration, there is a separate
F. In this way, different kinds of candidate designs have the
opportunity to use various kinds of F' (i.e., step size) in an
appropriate range to either perform exploration or exploitation.

In terms of C'R control strategy, various DE parameter
studies show different recommendations [16], [30], [31]. Un-
fortunately, none of them works in our pilot tests using
diplexer coupling matrix synthesis problems. In our empirical
study, using various candidate solutions (x) and their mutant
vectors (v) in the optimization process, a number of child
candidates (u) are generated for a certain C'R value. The
number of successful crossovers, for which, u is better than
x, can be observed. Two main observations include: (1) For
different candidate solutions, there is not a universal workable
CR value and the fitted C'R values can be very different. (2)
In many cases, the workable C'R value for a candidate solution
spans in a narrow range (e.g., 0.4-0.5). This explains why a
fixed setting rule of C'R cannot work for the targeted problem.
Therefore, a possible way is to explore random C'R values and
inherit the workable ones, which is shown as follows:

CRiemp = 0.1+ rand; x 0.8

iron | CRicmp, if rand,; < 0.1 )
CR'() = { CR!(t—1), otherwise

where rand is a uniformly distributed random number be-
tween 0 and 1. CR(1) = 0.9, which is based on the suggested
default value in [16].

It can be seen that for 10% probability, CR can be any
value between 0.1 and 0.9 (the possible range suggested by
[16]); Otherwise, C'R is inherited from the last iteration.
Note that each candidate solution in the optimization process
has its own C'R value. Pilot experiments show that there is
a considerable probability that a feasible C'R for a certain
candidate solution is sampled and inherited in the optimization
process. Comparisons with several widely used self-adaptive

setting rules (e.g., [32]) show that this control method has the
highest success rate.

C. The Self-adaptive Multi-population Search Framework

Despite employing the above self-adaptive parameter con-
trol mechanism, obtaining the appropriate F' and C'R values
cannot be guaranteed. Sometimes, the optimization converges
to narrow valleys that only contain local optima (such as
point B in Fig. 1). In almost all of the local optima that
we have encountered, some resonance happens in undesired
frequency ranges, while the others are correct. Hence, a new
operator, called self-adaptive return operator, is activated when
the optimization is judged to be trapped in local optima, which
can often be observed in earlier iterations if it happens. The
judgment of being trapped in local optima is based on two
conditions: (1) The maximum standard deviation of decision
variables in the current population is smaller than a predefined
threshold ¢; (2) The number of reflection zeros in any passband
is incorrect. Using the return operator, the optimization returns
to the original initial population, and the /" and C'R will be re-
sampled based on (7) and (8) and the optimization process will
restart. The effectiveness of this operator is shown by various
test cases, and an example is shown in Section IV (B).

Reference [7] shows that the choice of initial population
has an effect on the final result for coupling matrix synthesis
problems. Our pilot experiments show a similar observation
that some initial populations have a higher probability to
obtain the desired global optimum than others using the
same process in Section III (B). Hence, a multi-population
framework is proposed to increase the success rate.

Two populations are used. For one of them (P), the ini-
tialization is based on random sampling. The initialization of
the other one (P) is the opposite population of P, which is
composed by:

(1) =a+b—a'(1) ©)

where z%(1) is the i'" candidate solution in initial P, 7%(1)
is the corresponding candidate solution in initial P, [a,b]? is
the search range. Experiments show that in many cases, if
the optimization is not successful when using P as the initial
population, using P as the initial population has much larger
success rate than using another randomly sampled population.
This is understandable because P is often the best complement
of P, covering search patterns that do not exist in P as much
as possible.

D. The General Framework of the SADEC Algorithm

The flow diagram of the SADEC algorithm is shown in Fig.
2, which consists the following steps.

Step 1: Initialize P and P using the method in Section III
(C). Initialize NP to be 5 x D. Initialize CR to be
0.9 for the crossover of the first iteration.

Step 2: Check if the stopping criteria (e.g., a certain number
of iterations) are met. If yes, output the result;
otherwise, go to Step 3.
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Fig. 2. The flow diagram of SADEC
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Step 3: Apply the DE/rand/l mutation (4) on P and P
to generate mutant vectors V}, and Vj. Use (7) to
generate F' values for the composing of each mutant
vector.

Step 4: Apply the crossover operator (5) on V,, and Vj to
generate U, and Up. If it is in the first iteration,
CR = 0.9; otherwise, use (8) to generate CR for
each crossover.

Step 5: Apply the selection operator (6) to generate PP and
P for the next iteration.

Step 6: Check if the return criteria for P or P are met. If
yes, return to the corresponding initial population(s)
and go to Step 2; otherwise, go to Step 3.

The only user defined algorithmic parameter in SADEC
is 0 when judging whether the population is trapped in a
local optimum or not, which is the threshold of the maximum
standard deviation of the decision variables in the current
population. This threshold should be small enough making
sure that the difference between the members of the current
population is small, indicating that convergence happens.
Clearly, this parameter is not sensitive if it is small enough,
and the worst case is wasting function evaluations when
the search stucks in a narrow valley that only contains a
local optimum. Considering the search range of (normalized)
coupling matrix optimization problems, which is often around
[—1,1], a recommended setting is § = 0.01.

IV. NUMERICAL RESULTS AND COMPARISONS

SADEC has been tested by coupling matrix synthesis prob-
lems of 7 real-world all resonator-based diplexers. SADEC
obtains high-quality results with very high success rate to all
of them. In this section, two examples are used to demonstrate
different operators in SADEC. To the best of our knowledge,
there are no general global optimization-based methods to
solve them. The two diplexers have Chebyshev response,
but SADEC is applicable to any response (e.g., Butterworth
response) that can be generated by a coupling matrix. In both

examples, the sum of normalized constraint violations is set
as the cost function to be minimized. Because we are working
with normalized values, practical diplexers can in principle be
made at any frequency with any type of resonator [1]. Hence,
we only concentrate on the normalized coupling matrix in the
following.

For both examples, 20 runs are carried out for SADEC,
standard DE and PSO and the results are compared statis-
tically. DE and PSO are state-of-the-art global optimization
methods, which have both strong global exploration and local
exploitation ability. The stopping criterion for SADEC is that
the maximum number of activating the return operator is 3
and the maximum number of iterations after each activation
(if there is) is 1000. If the return operator is not activated, the
maximum number of iterations is 1000. The stopping criterion
for DE and PSO is also 1000 iterations. In all the runs for the
three methods, the convergence happens before 1000, either
stucks in a local optimum, or obtains a successful result.

For the parameter setting of standard DE, the population
size is the same as SADEC, the same DE/rand/1 mutation is
used. As suggested by [16], [33], F' = 0.5, CR = 0.9 are used.
PSO is implemented using the MATLAB Global Optimization
Toolbox. The star topology is used. As suggested by [34], the
cognitive coefficient and the social coefficient are both set to
2. According to [35], when the swarm size is larger than 50,
PSO is not sensitive to the size of the population. Similar to
DE, to improve the probability of finding the correct search
direction, larger swarm size should not be used. Hence, the
swarm size is set to 50. There are various methods to set the
inertia weight. Our experiments show that using a constant
inertia weight of 0.4 shows the best performance, which is
used for comparison.

The examples are run on a PC with Intel 3.5 GHz Core
(TM) i7 CPU and 8 GB RAM under Windows operating
system. Since each function evaluation costs around 1 second,
computational time is not a problem. Each SADEC run often
costs about 40 minutes to 1 hour, while each DE and PSO run
often costs about 20 minutes. In the SADEC optimization, the
number of cost function calls for example 1 is around 1660
and that for example 2 is around 2870. In each cost function
evaluation, 4000 frequencies are swept.

A. Example 1

The first example is a 10 resonator diplexer with a symmet-
rical Chebyshev response [36] (Fig. 3), which is a moderate
test case among all the problems. This is a novel all-resonator-
based diplexer topology that eliminates the need of additional
common junction such as T-junction or power splitter. It is
especially suitable for applications that need reduced size and
volume of the circuit. A full description is in [36]. Due to
the symmetry of the response and topology, the total number
of variables in the coupling matrix is reduced to 9 [36]. The
external quality factors can be straightforwardly calculated,
which are ge; = 1.943, ges = ges = 3.886. The ranges
of the design variables are in Table I. The design variables
are the coupling matrix elements m;; defined in (2). It can
be seen that the search range is decided without any careful



Table I: Ranges of the 9 decision variables for example 1

Variables M2 | M2z | M3a | My5 | Mse
Lower bound 0 0 0 0 0
Upper bound 1 1 1 1 1

Variables M3z | Maq | M55 | Mes
Lower bound 0 0 0 0
Upper bound 1 1 1 1

(o)
(D Hmo

Fig. 3. The Topology of Example 1

00

selection and no additional information is provided to SADEC.
The design specifications over the normalized frequency are:
two passbands (PB; and PBs) are with same bandwidth of
0.5 centered at —0.75 and 0.75 and the max(]S11|) within the
passband should be at least less than —20 dB. The normalized
stopbands for channel 1 (PB;y, and PB;pr) are from -2 to
0.25 and from 1.25 to 2, where the max(|S2;1|) should be
less than —20 dB. The normalized stopbands for channel 2
(PBsy, and PBsyR) are from -2 to —1.25 and from —0.25 to 2,
where the max(]S31|) should be less than —20 dB. The design
specifications are:

PBy <20 dB
PBy; <20 dB
PBy;, <20 dB (10)
PBir <-20 dB
PBy;, <-20 dB
PByr <-20 dB
where
PB; = max(]S11]),0.5t01
PBs; = mam(|511|), —1to — 0.5
PBlema$(|521|),—2t00.25 (11)
PBlR = ’I"I’LCL17(|521D7 1.25t02
PByr, = maz(|S31]), —2to — 0.75
PByg = max(|531\)7 —0.25t0 2
where the numbers in (11) are normalized frequencies.
The cost function is defined as:
fl _ maz(P]B\/[lp;(172O),O) + maz(P]\B;ﬁP;ifQO),O)
+maa:(P1€11;B1( 20),0) + maa:(PﬁlpRBU(% 20),0) (12)
+mam(PBgL—€—20),0) + maxz(PBar—(—20),0)
Mppyy, MpB,yp

where Mpp, is the maz{maz(PB; —(—20),0)} so far (i.e.,
the maximum violation of the PB; < —20dB constraint,
found so far), so do the others.

A typical response of SADEC is shown in Fig. 4 and the
corresponding optimal design variables are shown in Table
II. Other normalized coupling coefficients are: mo7y = maos,
Mg = M34, M9 = Mys, M9 10 = M6, M77 = —1M33, Mgy =
—M44, Mog = —Ms5, M10,10 = —Mee. Plugging in the optimal

0 -
r —S
! i 1 1 S”
20 ! \ 1 v~ gy
\
o) ! \ 1 \ |=--8,,
Z ! L4 | —
@ .40 ! o iy o 32
[]
T il 5 \
£ ! 7N \
@ ’ i ~
S 50 / s A\
[ g ! 1
o 4 -~ s -
2 rd ; AT R ST NA, N
. S b
-80 | £
Ve N\,
Y 5N
-100 —# >
2 -1 0 1 2
Frequency

Fig. 4. Example 1: Response of a typical optimized solution by SADEC

Table II: A typical optimal result for example 1

Variables mi2 mas msq mMys Mse
Values 0.8204 | 0.2856 | 0.1625 | 0.1598 | 0.2170
Variables ms3 MYy mss mee
Values 0.7004 | 0.7442 | 0.7478 | 0.7487

values to (2) and then to (1), the response can be obtained.
The average optimized responses of SADEC, standard DE and
PSO are shown in Table III. It can be seen that SADEC obtains
successful results and is much better than DE and PSO in terms
of optimization quality for this example.

The most important criterion for comparison is the success
rate. In a diplexer design flow, the coupling matrix synthesis
provides an initial design for 3D EM simulation-driven design
optimization, rather than the final design. Hence, we define
a successful result based on the following rules: (1) The
reflection zeros are located in proper frequency ranges and
the number is correct. A poor example is shown in Fig. 5.
We consider that it is a local optimum, because performing
various kinds of local optimization (e.g., sequential quadratic
programming) from this starting point cannot find a better
solution. When it comes to 3D EM simulation-driven local
optimization, experiments show that using such a starting
point often cannot obtain a successful final design. (2) The
S-parameter design specifications are (almost) satisfied.

Using the above rules, the success rate of SADEC is 20/20,
while those for DE and PSO are 4/20 and 1/20, respectively.
Most DE and PSO runs obtain solutions like Fig. 5 (like
point B in Fig. 1). For SADEC, in 17/20 runs, the return
operator is not activated to either P or P, which means that
successful results are obtained directly using the self-adaptive
parameter control strategy starting from both P and P. In the
other 3 runs, the return operator is only activated for once and

Table III: Optimized results using different methods for example 1 (average
of 20 runs, in dB)

Methods PB1 PBQ PBlL PBlR PBQL PBQR
SADEC | -19.92 | -19.92 | -27.64 | -23.15 | -23.36 | -27.40
DE -14.97 | -14.97 | -27.23 | -20.22 | -23.36 | -27.40
PSO =529 | -5.25 | -20.00 | -19.97 | -19.98 | —-20.00
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Fig. 5. A local optimum (example 1)

successful results are obtained. This verifies the considerable
improvement of the capacity of finding and preserving correct
search directions compared to standard DE, thanks to the
algorithm parameter control strategy in Section III (B).

B. Example 2

The second example is a 12 resonator diplexer with a
cross-coupling topology shown in [18] (Fig. 6). This topology
allows the design of diplexers with sharp rejection in the
guard band and is especially suitable for applications that
require a reduced guard bandwidth. A full description is
in [18]. A cross coupling between resonators 2 and 5 is
introduced in a quadruplet to provide a pair of transmission
zeros for both channels. By using the symmetry characteristics
of the diplexer, the total number of variables is reduced to 12
[18]. The ranges of design variables are in Table IV. Again,
the search range is decided without any careful selection
and no additional information is provided to SADEC. The
design specifications over the normalized frequency are: two
passbands (PB; and PB;) are with same bandwidth of 0.5
centered at —0.75 and 0.75 and the max(]S11|) within the
passband should be at least less than —20 dB. The constraints
for the middle guard bands (PB1js and PBajys) (0.3 to 0.3)
of channel 1 and 2 are that max(|S21|) and maz(|Ss1|) should
be less than —40 dB due to the introduction of transmission
zeros. The max(|Sz1|) for the right stopband of channel 1
(PBig) (1.2 to 2) and max(|Ss1|) for the left stopband of
channel 2 (PBsy) (-2 to —1.2) should be less than —20 dB.
Therefore, the optimization problem is formulated as:

PB, <20 dB
PBy; <20 dB
PBiy <40 dB (13)
PBoyr <-40 dB
PBir <20 dB
PBy; <20 dB

where

PB; = max(|S11]),0.5t01

PBy = max(|S11]),—1to — 0.5

PBiy = maw(|5'21\)7 —0.3t00.3 (14)

PBsy = maz(|Ss1]), —0.3t00.3
PBlR = max(|S21|), 1.2t02
PByp, = max(|Ss1]), —2to — 1.2

Table IV: Ranges of the 12 decision variables for example 2

Variables mio mas msq mMys mse Mme7
Lower bound 0 0 0 0 0 0
Upper bound 1 1 1 1 1 1

Variables

Mg | Tgg | M7 | TMgg | Mgg | M2s
Lower bound 0 0 0 0 0 0
Upper bound 1 1 1 1 1 1
R3 H R4

R7 R8 R9 P2

P1 R1 R2 R5 R6

R10 H R11 H R12 P3

Fig. 6. The Topology of Example 2

where the numbers in (14) are normalized frequencies.
The cost function is defined as:
fo = maz(PB1—(~20),0) | max(PBg})—JB(—QO),O)
maz(PBan —(—40),0)
maz(Pgiiiz{z‘iQO),O)
Mppy,

PB;
+ mam(P]\B;[lM—(—ZIO),O) +
PB

+maa;(Pfs’nciij{izo),o) n
MPBlR

15)

where Mpp, is the maxz{maxz(PB; — (—20),0)} so far (i.e.,
the maximum violation of the PB; < —20dB constraint,
found so far), so do the others.

A typical response of SADEC is shown in Fig. 7 and the
corresponding optimal design variables are shown in Table
V. Other normalized coupling coefficients are: mg 10 = me7,
mio,11 = Mg, Mi1,12 = Mgy, Mip,10 = —Mr7, Mi1,11 =
—Mmgs, M12,12 = —Mgg. The average optimized responses of
SADEC, standard DE and PSO are shown in Table VI. It can
be seen that SADEC obtains successful results and is much
better than DE and PSO in terms of optimization quality for
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Fig. 7. Example 2: Response of a typical optimized solution by SADEC

Table V: A typical optimal result for example 2

Variables

mi2 m23 m3q Mys mse me7
Values 0.8278 | 0.3519 | 0.5786 | 0.2450 | 0.7609 | 0.2087
Variables mrs meg mry mes Mog mos
Values 0.1558 | 0.2142 | 0.7395 | 0.7495 | 0.7501 | 0.1955




Table VI: Optimized results using different methods for example 2 (average
of 20 runs, in dB)

Methods PBl PBQ PBlM PBQ]\/[ PBlR PBQL
SADEC | -19.82 | —19.83 | -32.88 | —46.92 | —47.14 | -32.61
DE -9.05 | -9.05 | -26.41 | -38.41 | -38.39 | —26.23
PSO -3.19 | -3.17 | -19.94 | -39.69 | -39.71 | -19.92

this example.

In this example, the success rate of SADEC is 20/20, while
those for DE and PSO are 0/20 and 0/20, respectively. In 11/20
runs, the return operator is not activated to either P or P in
SADEC. Among these 11 runs, successful results are obtained
from either P or P in 10 of them (only starting from P or
P obtains successful results); for the other 1 run, successful
results are obtained from both P and P. This verifies that
using two opposite populations, P and P, in initialization
establishes an effective complementation. Among the other
9 runs, the return operator is only activated for once in 7
of them; among 2/9 runs, the return operator is activated for
twice and successful results are obtained. These 9 runs verify
the effectiveness of the return operator to avoid converging
into a narrow valley that only contains local optima.

It is intuitive that with the increase of the number of
decision variables, the valley that contains the global optimum
is narrower and narrower with respect to the decision space.
This causes any optimization algorithm, including SADEC, to
have difficulty in detecting the narrow valley. We found that
for coupling matrix synthesis problems with more than 25
design variables, the success rate of SADEC is low if using
large search ranges only with the requirement of matching
the topology (e.g., [—1,1]?%). In such cases, the support from
analytical methods which reasonably narrow down the search
ranges is needed. Note that SADEC does not aim to replace
the analytical methods; instead, it aims to provide a much
stronger optimizer than existing general purpose optimizers
applied in hybrid analytical and optimization-based coupling
matrix synthesis methods.

V. CONCLUSION

In this paper, the SADEC algorithm for diplexer coupling
matrix synthesis has been proposed. SADEC aims at fill-
ing the gap that strong supporting information (e.g., high-
quality starting points, narrow enough search ranges) from
analytical methods is essential for the success of diplexer
coupling matrix synthesis when employing available general
purpose optimizers. SADEC focuses on proposing a stronger
optimization mechanism specially for the targeted problem,
which only requires weak, easy to obtain or highly reduced
supporting information in most cases. Experiments show that
SADEC is able to obtain highly optimized coupling matrix
solutions with very high success rate even without ad-hoc
supporting information for various diplexers. Much better
solution quality and success rate are shown compared to state-
of-the-art global optimization methods, DE and PSO. These
results are achieved by our self-adaptive parameter control
strategy and self-adaptive multi-population search framework.

Future works include developing software tools using SADEC
and coupling matrix synthesis for multiplexers.
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