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Global Optimization of Microwave Filters Based on
a Surrogate Model Assisted Evolutionary Algorithm

Bo Liu, Member, IEEE, Hao Yang, Michael Lancaster, Senior Member, IEEE

Abstract—Local optimization is a routine approach for full
wave optimization of microwave filters. For filter optimization
problems with numerous local optima or where the initial design
is not near to the optimal region, the success rate of the
routine method may not be high. Traditional global optimization
techniques have a high success rate for such problems, but
are often prohibitively computationally expensive considering
the cost of full-wave electromagnetic simulations. To address
the above challenge, a new method, called surrogate model as-
sisted evolutionary algorithm for filter optimization (SMEAFO),
is proposed. In SMEAFO, considering the characteristics of
filter design landscapes, Gaussian Process surrogate modelling,
differential evolution operators and Gaussian local search are
organized in a particular way to balance the exploration ability
and the surrogate model quality, so as to obtain high-quality
results in an efficient manner. The performance of SMEAFO is
demonstrated by two real-world design cases (a waveguide filter
and a microstrip filter) which do not appear to be solvable by
popular local optimization techniques. Experiments show that
SMEAFO obtains high-quality designs comparable to global
optimization techniques but within a reasonable amount of time.
Moreover, SMEAFO is not restricted by certain types of filters
or responses. The SMEAFO-based filter design optimization tool
can be downloaded from http://fde.cadescenter.com.

Index Terms—Design optimization, Design tools, Evolutionary
computation, Gaussian process, Metamodeling, Microwave filters

I. INTRODUCTION

Microwave filter design can be formulated as an optimiza-
tion problem. Among various optimization methods, evolution-
ary algorithms (EAs) are being widely used for microwave
design optimization due to their high global optimization
ability, free of a good initial design, wide applicability and
robustness [1], [2], [3]. Moreover, they are embedded in most
commercial electromagnetic (EM) simulation tools, such as
CST Microwave Studio. However, EAs are seldom applied to
microwave filter design, because full-wave EM simulations are
often needed to obtain accurate performance evaluation, which
are computationally expensive. Considering thousands to tens
of thousands of EM simulations needed for a standard EA to
get the optimum, the filter design optimization time can be
unbearable (e.g., several months).

To obtain an optimal design in a reasonable timeframe,
local optimization from an initial design has become a routine
approach for filter design optimization during the last decade.
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Derivative-based local optimization methods (e.g., sequential
quadratic programming [4]) and derivative free local opti-
mization methods (e.g., the Nelder-Mead simplex method [5])
are widely applied. Because the quality of the initial design
is essential for the success of local optimization, a lot of
research has been done aiming to find a reasonably good
initial design efficiently. Available methods mainly include
employing equivalent circuit [6], low-fidelity EM model [7] for
a preliminary relatively low-cost optimization, and coupling
matrix fitting [8].

To further improve the efficiency of local optimization, the
space mapping technique [9] is widely used. Several important
improvements have been made to enhance the reliability and
the efficiency of traditional space mapping, such as introducing
the human design intuition [10], altering an EM model by
embedding suitable tuning elements (port tuning) [11], the
multi-level method [12], etc. The port tuning method has
shown great success in commercial applications for planar
filters. Methods based on integrating human design intuition
and port tuning have obtained optimal designs for some filters
whose initial designs are not near the optimal region. Adjoint
sensitivity is also introduced to replace traditional gradient-
based local optimization techniques, and shows great speed
improvement [13].

Although many filters have been successfully designed
using the available techniques, and some of them even only
need a few high-fidelity EM simulations, available methods
still face severe challenges when the initial design is not
near the optimal region and/or the filter design landscape has
many local optima (not smooth enough) [10]. Unfortunately,
this happens to many microwave filter design problems, and
this problem is the target of this paper. Clearly, traditional
space mapping and adjoint sensitivity techniques are difficult
to provide a generic solution to this issue, because their main
goal is to improve the efficiency of local optimization rather
than improve the optimization capacity (i.e., jumping out of
local optima). In recent years, some novel methods have been
proposed to improve the optimization capacity while keeping
the efficiency improvement, but they often concentrate on a
certain type of filter or response, e.g., [6].

Also, with the rapid improvement of computing power and
numerical analysis techniques, high-fidelity EM simulation of
many microwave filters can be completed within 20 minutes.
Although directly employing EAs is still prohibitively com-
putationally expensive, developing widely applicable methods
with largely improved optimization ability compared to local
optimization, but using a practical timeframe (e.g., within
several days) for the targeted problem is of great importance
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to complement the state of the arts.
An alternative is surrogate model assisted EAs (SAEAs),

which introduce surrogate modelling to EAs. In the context
of filter optimization, a surrogate model is a computationally
cheap mathematical model approximating the output of EM
simulations, which is often constructed by statistical learning
techniques and is widely used in space mapping. By coupling
surrogate models with an EA, some of the EM simulations can
be replaced by the surrogate model predictions, the computa-
tional cost can, therefore, be reduced significantly. SAEA is
attracting increasing attention in the computational intelligence
field and various new SAEAs have been proposed.

However, most of the available SAEAs are not suitable for
filter optimization. Besides the efficiency issue, microwave
filter optimization has two difficulties: (1) A filter is a narrow
band device, and the optimal region is often very narrow. (2)
There often exist numerous local optima in the landscape,
especially for high-order filters. Because of different trade-
offs between the exploration ability and the surrogate model
quality, most available SAEAs can get either the optimal
solution but need more than necessary EM simulations causing
very long optimization time or spend reasonable time but miss
the optimal solution (The reasons will be described in Section
III (A)).

To address this challenge, a new method is proposed, called
surrogate model assisted evolutionary algorithm for filter opti-
mization (SMEAFO). The main innovation of SMEAFO is the
new SAEA framework balancing the exploration ability and
the surrogate model quality considering the characteristics of
filter design landscape. SMEAFO targets at filter optimization
problems with numerous local optima and/or where the initial
design is far from the optimal region, aiming to:

• Achieve comparable results with standard EAs (often
have very high success rate and are considered as the
best in terms of solution quality);

• Obtain significant speed improvement compared to stan-
dard EAs and complete the optimization in a reasonable
timeframe (several hours to several days) for problems
with less than 20 minutes per EM simulation;

• General enough for most kinds of filters without consid-
ering specific properties of the targeted filter.

The remainder of the paper is organized as follows: Section
II introduces the basic techniques. Section III introduces the
SMEAFO algorithm, including its main ideas, design of each
algorithmic component, its general framework and parameter
settings. Section IV presents a waveguide filter and a mi-
crostrip filter which do not appear to be solvable by available
popular local optimization techniques to show the performance
of SMEAFO. Comparisons with the standard differential evo-
lution algorithm are also provided. The concluding remarks
are presented in Section V.

II. BASIC TECHNIQUES

A. Gaussian Process (GP) Surrogate Modelling

Among various surrogate modelling methods, GP machine
learning [14] is selected for SMEAFO. The main reason is
that the prediction uncertainty of GP has a sound mathematical

background, which is able to take advantage of prescreening
methods [15] for surrogate model-based optimization. A brief
introduction is as follows. More details are in [14].

Given a set of observations x = (x1, . . . , xn) and y =
(y1, . . . , yn), GP predicts a function value y(x) at some design
point x by modeling y(x) as a Gaussian distributed stochastic
variable with mean µ and variance σ2. If the function is
continuous, the function values of two points xi and xj should
be close if they are highly correlated. In this work, we use
the Gaussian correlation function to describe the correlation
between two variables:

corr(xi, xj) = exp(−
d∑

l=1

θl|xil − x
j
l |
2) (1)

where d is the dimension of x and θl is the correlation
parameter, which determines how fast the correlation decreases
when xi moves in the l direction. The values of µ, σ and θ are
determined by maximizing the likelihood function that y = yi

at x = xi(i = 1, . . . , n). The optimal values of µ and σ can
be found by setting the derivatives of the likelihood function
to 0 and solve the equations, which are as follows:

µ̂ = (ITR−1y)−1ITR−1y (2)

σ̂2 = (y − Iµ̂)TR−1(y − Iµ̂)n−1 (3)

where I is a n× 1 vector with all elements having the value
of one, R is the correlation matrix:

Ri,j = corr(xi, xj), i, j = 1, 2, . . . , n. (4)

Using the GP model, the function value y(x∗) at a new point
x∗ can be predicted as (x∗ should be included in the correlation
matrix):

ŷ(x∗) = µ̂+ rTR−1(y − Iµ̂) (5)

where

r = [corr(x∗, x1), corr(x∗, x2), . . . , corr(x∗, xn)]T (6)

The measurement of the uncertainty of the prediction (mean
square error), which is used to access the model accuracy, can
be described as:

ŝ2(x∗) = σ̂2[I−rTR−1r+(I−rTR−1r)2(ITR−1I)−1] (7)

To make use of the prediction uncertainty to assist SAEA,
the lower confidence bound prescreening [15], [16] is selected.
We consider the minimization of y(x) in this paper. Given
the predictive distribution N(ŷ(x), s2(x)) for y(x), a lower
confidence bound prescreening of y(x) can be defined as [16]:

ylcb(x) = ŷ(x)− ωs(x)
ω ∈ [0, 3]

(8)

where ω is a constant, which is often set to 2 to balance the
exploration and exploitation ability [15].

In this work, we use the ooDACE toolbox [17] to implement
the GP surrogate model.
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B. Differential Evolution (DE)

In SMEAFO, the DE algorithm [18] is selected as the global
search engine. DE outperforms many EAs for continuous
optimization problems [18] and also shows advantages for EM
design optimization problems among various EAs [19]. DE is
an iterative method. In each iteration, the mutation operator
is firstly applied to generate a population of mutant vectors.
A crossover operator is then applied to the mutant vectors to
generate a new population. Finally, selection takes place and
the corresponding candidate solutions from the old population
and the new population compete to comprise the population
for the next iteration.

In DE, mutation is the main approach to explore the design
space. There are a few different DE mutation strategies trading
off the convergence speed and the population diversity (im-
plying higher global exploration ability) in different manners.
Arguably, the three DE mutation strategies ((9) to (11)) that
are widely used in engineering design optimization are:

(1) mutation strategy: DE/best/1

vi = xbest + F · (xr1 − xr2) (9)

where xbest is the best individual in P (the current population)
and xr1 and xr2 are two different solutions randomly selected
from P and are also different from xbest. vi is the ith mutant
vector in the population after mutation. F ∈ (0, 2] is a control
parameter, often called the scaling factor [18].

(2) mutation strategy: DE/rand/1

vi = xr3 + F · (xr1 − xr2) (10)

Compared to DE/best/1, xbest is replaced by a randomly
selected solution xr3 that is also different from xr1 and xr2 .

(3) mutation strategy: DE/current-to-best/1 1

vi = xi + F · (xbest − xi) + F · (xr1 − xr2) (11)

where xi is the ith vector in the current population.
Crossover is then applied to the population of mutant vectors

to produce the child population U , which works as follows:
1 Randomly select a variable index jrand ∈ {1, . . . , d},
2 For each j = 1 to d, generate a uniformly distributed

random number rand from (0, 1) and set:

uij =

{
vij , if (rand ≤ CR)|j = jrand
xij , otherwise (12)

where CR ∈ [0, 1] is a constant called the crossover
rate.

Following that, the selection operation decides on the pop-
ulation of the next iteration, which is often based on a one-
to-one greedy selection between P and U .

C. Gaussian Local Search

Gaussian local search is a verified effective method for
elaborate search in a local area [20]. Gaussian local search
is often used for enhancing local search ability of EAs. In
SMEAFO, the following implementation is used:

1This mutation strategy is also referred to as DE/target-to-best/1.

xgij =

 xij + N(0, σgls
j ), if rand ≤ 1

d

xij , otherwise
j = 1, 2, . . . , d

(13)

where N(0, σgls
j ) is a Gaussian distributed random number

with a standard deviation of σgls
j and rand is a uniformly

distributed random number from (0, 1).

III. THE SMEAFO ALGORITHM

A. Challenges and Main Ideas of SMEAFO

The SMEAFO algorithm is an SAEA. Integrating a surro-
gate model into global optimization is much more difficult
than integrating it into space mapping because there is no
information of the optimal region. Recall the two major
difficulties for filter optimization described in Section I (an
illustrative figure is Fig. 1): (1) the optimal region is located
in a (very) narrow valley of the design space, (2) there are
often numerous local optima. The SAEA, therefore, should
have sufficient exploration ability to jump out of local optima
in the outer region so as to find the narrow valley and to jump
out of local optima within it. Although this is often achievable
for a modern standard EA, SAEAs may not have the same
exploration ability due to the surrogate model prediction
uncertainty, i.e., some optimal designs may be predicted wrong
and then the SAEA search is guided to wrong directions. High
exploration ability indicates getting access to diverse candidate
designs. To make a good prediction of them, more training
data points through EM simulations are necessary to maintain
the surrogate model quality, which decreases the efficiency.
Finding an appropriate balance between the exploration ability
and the efficiency for filter design landscape is the main
challenge of SMEAFO.

The required exploration ability in the filter optimization
process is different from time to time. Instead of using a
fixed SAEA with a certain exploration ability, it is natural
to divide it into the exploration phase aiming to find a
near optimal region and the exploitation phase aiming to
obtain the final optimal design from near-optimal designs.
The latter phase requires less exploration ability (indicating
more space for efficiency) without sacrificing the solution

 

Figure 1. An illustrative figure of filter design landscape: the Ackley function
[21] is used.
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quality. Various methods can be used for the exploitation phase
and space mapping is compatible. Because space mapping is
sometimes sensitive to the surrogate model type and settings
[7], a surrogate model assisted Gaussian local search method
is used in SMEAFO for the sake of generality. Now the major
challenge is the exploration phase providing both sufficient
exploration ability and efficiency.

To balance the exploration ability and the efficiency, avail-
able SAEAs can be mainly classified into “conservative”
SAEAs and “active” SAEAs. Conservative SAEAs [22], [23]
emphasise the exploration ability. These methods begin with
a standard EA for certain iterations aiming to collect training
data points that are able to build a reasonably good global
surrogate model and then iteratively improve the solution
quality and the surrogate model quality in the consecutive
search. Thus, the exploration ability can benefit a lot at the
cost of a considerable computing overhead for standard EA-
based iterations. When applied to filter optimization, much of
this computing overhead is wasted because they are collecting
training data points for modelling the outer region instead of
the narrow valley where the optimal design is located.

Active SAEAs, in contrast, emphasise the efficiency [15].
These methods perform exact expensive evaluations to the
“optimal” solutions predicted by the existing surrogate model,
despite that its quality may not be good enough. The number of
expensive exact evaluations is therefore highly reduced but the
exploration ability becomes a weakness. Prescreening methods
[16], [24] are used to assist jumping out of local optima but
they cannot fully solve the problem. In [15], tests on the
Ackley benchmark problem (with a narrow valley and many
local optima) [21] (Fig. 1) show that such SAEAs are not able
to jump out of local optima. Hence, the exploration ability is
insufficient for filter optimization.

The exploration phase of SMEAFO follows the idea of ac-
tive SAEAs to avoid consuming considerable EM simulations
to non-optimal regions. To largely improve the exploration
ability compared to existing active SAEAs, two questions are
focused: (1) What is the search method to obtain sufficient
exploration ability? (2) How to build surrogate models of
sufficient quality using as few samples as possible (for the
sake of efficiency) in order to support the exploration ability?
This is achieved by the combination of a novel surrogate model
assisted search method with specific DE mutation and training
sample selection methods, which will be detailed in Section
III (B).

B. Design of the Exploration Phase
The general framework of the exploration phase is shown

in Fig. 2, which consists of the following steps:
Step 1: Sample λ (often small) candidate designs, perform

EM simulations of all of them and let them form the
initial database.

Step 2: Select the λ best designs from the database based
on the objective function values to form a population
P .

Step 3: Apply the DE/current-to-best/1 mutation (11) and
the crossover operator (12) on P to generate λ child
solutions.

Initialize the 
database

Switch phase?
Exploitation 

Phase

Select the λ best 
designs

DE/current-to-best/1 
mutation

Select training data

Local GP modelling 
& presceening

Select the estimated 
best candidate 

design

EM simulation, 
update database

DE crossover
No

Yes

 

Figure 2. The flow diagram of the exploration phase.

Step 4: For each child solution, select training data points
and construct a local GP surrogate model.

Step 5: Prescreen the λ child solutions generated in Step 3
using the lower confidence bound method. Estimate
the best child solution based on the lower confidence
bound values.

Step 6: Perform EM simulation to the estimated best child
solution from Step 5. Add this design and its per-
formance (EM simulation result) to the database. Go
back to Step 2 until switching to the exploitation
phase.

A main difference compared to available active SAEAs is
that a standard EA process is not adopted; instead, only the
predicted best candidate design is simulated and the current
best λ candidate designs are used as the new population in each
iteration. This new SAEA framework improves the locations
of training data points. It is well known that the number of
training data points affects the quality of the surrogate model,
while their locations are often overlooked. With the same
number of training data points, it is intuitive that using training
data points located near the points waiting to be predicted
(child population in Step 3) can obtain surrogate model(s) with
better quality. This is implemented in Steps 2–6.

From Step 2 to Step 6, in each iteration, the λ current
best candidate solutions construct the parent population (it is
reasonable to assume that the search focuses on the promising
region) and the best candidate design based on prescreening
in the child population is selected to replace the worst one
in the parent population. Hence, only at most one candidate
is changed in the parent population in each iteration, so the
best candidate in the child solutions in several consecutive
iterations may not be far from each other (they will then be
simulated and are used as training data points). Therefore, the
training data points describing the current promising region
can be much denser compared to those generated by a standard
EA population updating mechanism, which may spread in
different regions of the design space while there may not be
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sufficient training data points around the candidate solutions
to be prescreened.

Using the database with improved sample locations for
surrogate modelling, a consecutive critical problem is selecting
samples from it which will be used as the training data points.
Most SAEAs build a single surrogate model for predicting the
child population. For example, a certain number of evaluated
promising solutions (ranked by fitness function values) [15]
or latest solutions are used to build a model for the child
population. But such methods are not suitable for the targeted
problem because of the two design landscape characteristics
of microwave filters (Section III (A)). In particular, due to the
narrow valley where the optimal design is located, a promising
point which is located near it may be predicted to be not
promising when many training data points are in the outer non-
optimal region. The reason is that the hyper-parameters in (1)
are highly likely to be poorly estimated in likelihood function
optimization when the number of training data points near it
is insufficient. Therefore, in SMEAFO, a local GP surrogate
model is built for each child solution using τ nearest samples
(based on Euclidean distance). This means that λ separate local
GP models are built in each iteration.

With improved surrogate model quality, appropriate search
operators should be selected to provide neither insufficient nor
excessive population diversity, which directly determine the
exploration ability. Intuitively, DE/best/1 (9) may not have
sufficient population diversity, because the added diversity
into the current best design is not large. Note that although
there exist SAEAs with DE/best/1 showing success [25], the
optima of the test problems are not located in a narrow
valley. In contrast, DE/rand/1 (10) may introduce too much
population diversity. DE/current-to-best/1 (11) is in the middle.
Pilot experiments on the Ackley benchmark problem [21] are
carried out. Results show that DE/current-to-best/1 just gets
an appropriate balance of the population diversity and the
surrogate model quality (almost 100% getting very near to
the global optimum) with the new GP model-assisted search
framework, while DE/rand/1 performs the worst because ex-
cessive diversity suffers the surrogate model quality.

It has to be noticed that the above particular surrogate model
assisted search method, the training data selection method for
GP modelling (building a separate GP model for each child
solution) and the above DE mutation operator (DE/current-
to-best/1) must be used together. Pilot experiments on real-
world filters show that when any of the factors is altered,
the algorithm often fails to find the narrow valley or the
performance becomes unstable.

Note that the lower confidence bound method also con-
tributes to the algorithm performance. In Step 5, instead of the
predicted value of the GP model, the lower confidence bound
value (8), is used for ranking. The use of lower confidence
bound can balance the search between present promising
regions (i.e., with low ŷ(x) values in (8)) and less explored
regions (i.e., with high s(x) values), so as to improve the
ability of an SAEA to jump out of local optima. [15] provides
more details.

For initial population generation (Step 1), each candidate
solution is calculated by (14) if an initial design is available;
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Figure 3. The flow diagram of the exploitation phase.

otherwise, it is generated randomly within the design space:

xj = xinitj + N(0, σinit), j = 1, 2, . . . , d (14)

where xinit is the initial design, and σinit is the standard
deviation of the added Gaussian distributed random number.
The value of σinit is roughly estimated according to the
response of the initial design. Pilot experiments show that the
initial population is far from optimal no matter if using (14)
or random generation due to the landscape characteristics of
microwave filters and the quality of the initial designs. Note
that SMEAFO performs global optimization and a poor initial
population is not a problem and is even assumed.

C. Design of the Exploitation Phase

The general framework of the exploitation phase is shown
in Fig. 3, which consists of the following steps:

Step 1: Perform Gaussian local search from the current
best design in the database to generate d (number
of design variables) solutions.

Step 2: For each solution from Step 1, select training
data points using the method in Section III (B) and
construct a local GP surrogate model.

Step 3: Prescreen the d solutions generated in Step 1
using the lower confidence bound method. For each
of them, if the lower confidence bound value is
better than the current best design, perform an EM
simulation to it. Add this design and its performance
(the EM simulation result) to the database.

Step 4: If a preset stopping criterion (e.g., computing
budget) is met, output the best solution from the
database; otherwise go back to Step 1.

The goal of the exploitation phase is to obtain the final op-
timal design from a near optimal design based on a surrogate-
based local search method with largely reduced exploration
ability. Although heuristic local search methods themselves are
not complex, a common challenge is the adaptation of critical
parameters, including the starting condition and the scale of
exploitation [26].
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Note that there is no clear threshold to divide exploration
and exploitation in a search process because “near optimal”
is an empirical definition [26]. However, an appropriate def-
inition of the starting condition of the exploitation phase is
important for SMEAFO. Early starting of this phase may make
the algorithm trapped in a local optimum, while late starting
decreases the efficiency. In SMEAFO, we use the average
standard deviation of the current population P , σP , to reflect
the population diversity or progress of SMEAFO. Often, the
value of σP first increases (exploring the design space) and
then decreases (converge to the optimal area) in an SMEAFO
run. We set 10% of the maximum σP in the exploration phase
as the threshold to start the exploitation phase.

For the sake of generality, a verified effective method for
elaborate search, Gaussian local search (Section II (C)), is used
in this phase. σgls is a critical parameter of Gaussian local
search and is problem dependent. However, with the help of
the exploration phase, it is set self-adaptively as:

σgls
j = 0.5× std(PBj), j = 1, 2, . . . , d (15)

where PB is the best d candidate designs in the database and
std is the standard deviation. This indicates that 95.4% (2σ
value) of the candidate designs generated by Gaussian local
search are within the standard deviation of the best d available
candidate designs, which are already in a small region. This
is in line with the basic idea of this phase (performing local
exploitation around the current best design). With the update
of PB, the σgls is self-adapted. Experiments on mathematical
benchmark problems and 8 real-world filter design problems
verified empirical settings of σP and the self-adaptive setting
of σgls.

Considering the surrogate model quality, because this phase
performs local search, the database provided by the explo-
ration phase is a good starting pool of training data points.
The training data pool is also updated adaptively by Step 3
supporting the consecutive local search. The lower confidence
bound value is used in Step 3 to avoid missing potentially
optimal solutions, which also provides more samples around
the optimal region.

D. Parameter Settings

Besides the self-adaptive parameters and the threshold value
to start the exploitation phase (they are no longer parameters),
remaining parameters are the DE parameters (λ, F , CR), the
number of training data points (τ ) for each solution waiting
to be prescreened (Step 4 in the exploration phase and Step 2
in the exploitation phase) and σinit (Step 1 in the exploration
phase).

The DE parameters have clear setting rules. Following [18],
we suggest F = 0.8, CR = 0.8, λ = 50. We suggest
τ = 8 × d. This is based on the empirical rule in [24], [25]
for on-line surrogate modelling and pilot experiments show
a success. Note that in all the test problems, the same set
of above parameters are used. σinit is a rough estimation of
the scale to be added to the initial design if it exists. If the
response of the initial design is far from anticipated, a larger
σinit can be used; otherwise, a smaller one may be used.

Clearly, this parameter is not sensitive because no optimal
solution is expected in the initial population. The use of (14)
is because of the assumption that using information from the
initial design (although may have low quality) is better than
random initialization.

IV. EXPERIMENTAL RESULTS AND COMPARISONS

SMEAFO has been tested by 8 real-world filter design
problems (5 waveguide filters, 1 hairpin filter, 1 microstrip
filter and 1 diplexer). The initial designs are obtained by
equivalent circuits or coupling matrix fitting [27]. The number
of design variables varies from 5 to 22. The number of orders
varies from 3 to 16. SMEAFO obtains high-quality results
to all of them taking from 10 hours to 4 days. We have
not successfully solved 6 out of 8 problems by popular local
optimization-based methods.

In this section, two examples are used to demonstrate
SMEAFO for different kinds of filter optimization problems
with different challenges. The first one is a waveguide filter
and the initial design is obtained by coupling matrix fitting.
Unfortunately, the initial response is far from the design
specifications. The second one is a microstrip filter. The initial
design is obtained by an equivalent circuit optimization and the
initial response is reasonably good. However, this seemingly
easy problem is, in fact, difficult because the design landscape
is very rugged, making local search methods fail to jump out
of local optima in the narrow valley.

For the first example, 10 runs of SMEAFO with independent
random numbers (including initialization) are carried out to
test the robustness of SMEAFO and the results are analyzed
statistically. A comparison with standard DE is also carried
out. Because the advantages of the DE algorithm compared
to some other popular EAs (e.g., Genetic Algorithm, Particle
Swarm Optimization) in microwave engineering have been
demonstrated in [28], such comparisons will not be repeated
here. For the second example, only a single run of SMEAFO
is carried out because standard DE is not affordable in terms
of the computing overhead. The ability to handle larger search
space is especially interesting for filter optimization because
this is a major challenge of filter landscapes (Section I). This
example has 12 design variables, which is relatively large for
filter optimization, and we further intentionally expand the
search ranges of each design variable to make the optimal val-
ley even narrower, so as to verify the capability of SMEAFO
on an extreme case.

Both examples are constrained optimization problems. The
penalty function method [29] is used to handle the constraints
and the penalty coefficient is set to 50. The examples are
run on a PC with Intel 3.5 GHz Core (TM) i7 CPU and 8
GB RAM under Windows operating system. CST is used as
the EM simulator. No parallel computation is applied in these
experiments. All the time consumptions in the experiments are
clock time.

A. Example 1

The first example is a WR-3 band (220 GHz – 325 GHz)
waveguide filter, which is composed of four coupled resonators
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Figure 4. Waveguide filter: T1, input test port, T2: output test port, R1-R4:
resonators.

Table I
RANGES OF THE 6 DESIGN VARIABLES (ALL SIZES IN MM) FOR EXAMPLE 1

V ariables D12 D23 Dt H12 L1 L2
Lower bound 0.2 0.1 0.05 0.05 0.5 0.5
Upper bound 0.6 0.3 0.3 0.43 0.9 0.9

operating in the TE101 mode. The filter has a Chebyshev
response [30] (Fig. 4). Because of the fabrication methods in
this frequency range, the filters can be complex in construction
and difficult to design. The ranges of design variables are in
Table I. The design specifications are that the passband is from
296 GHz to 304 GHz (8 GHz passband centered at 300 GHz)
and the max(|S11|) within the passband should be at least less
than –20 dB and is as smaller as possible. The stopbands are
from 280 GHz to 292 GHz and from 308 GHz to 320 GHz,
where the max(|S11|) should be better than –1 dB. Therefore,
the optimization problem is formulated as:

minimize max(|S11|), 296 GHz–304 GHz
s.t. min(|S11|) ≥ –1 dB, 280 GHz–292 GHz
min(|S11|) ≥ –1 dB, 308 GHz–320 GHz

(16)

The initial design is obtained by coupling matrix fitting and
is shown in Table II with a performance in Fig. 5(a). It can
be seen that this response is far from the specifications. The
Nelder-Mead simplex method [5] and the sequential quadratic
programming method [4] are firstly used. These two methods
are well known local optimization methods and many space
mapping techniques are based on these two search engines.
The implementation is based on MATLAB optimization tool-
box functions fminsearch and fminimax. Each EM simulation
costs about 2 minutes. The results are shown in Table III. It
can be seen that both of them fail to find the narrow valley
where the optimal design is located. It is not a surprise because
the poor response of the initial design indicates that it is not

Table II
INITIAL SOLUTION AND AN OPTIMIZED SOLUTION (ALL SIZES IN MM) FOR

EXAMPLE 1

Variables D12 D23 Dt H12 L L2
Initial design 0.42 0.19 0.15 0.369 0.725 0.66

SMEAFO optimized design 0.442 0.257 0.168 0.296 0.735 0.658
 

 

 

 

Figure 5. Response of the waveguide filter.

near the optimal region, which is a major challenge for local
optimization methods when facing filter design landscapes.

10 runs with independent random numbers (including 10
different initial populations) are carried out for SMEAFO to
demonstrate the performance and the robustness. Because the
initial response is far from the specifications and considering
the ranges of the design variables, we set σinit to 0.2. When
the generated values by (14) are not within the ranges of
the design variables, they are set to the nearest bound. As
was said in Section III (D), the value of σinit is a rough
estimation and is not sensitive. The computing budget is 1000
EM simulations, but in most runs, convergence happens before
800 EM simulations. In all the 10 runs using SMEAFO, the
constraints are satisfied and the average objective function
value is –24.14 dB. The best value is –26.90 dB, the worst
value is –17.72 dB and the standard deviation is 3.37. 8 out
of 10 runs obtain max(|S11|) (296 GHz – 304 GHz) smaller
than –24 dB. A medium one is provided in Table II (optimized

Table III
OPTIMIZED RESULTS USING DIFFERENT METHODS FOR EXAMPLE 1

Methods max(|S11|) :
296–304GHz

min(|S11|) :
280–292GHz

min(|S11|) :
308–320GHz

time

Nelder-
Mead
simplex

–3.26 dB –0.20 dB –0.05 dB 9.2 hours

sequential
quadratic
program-
ming

–4.22e-5 dB –1.7e-3 dB –0.84 dB 1.9 hours

DE –22.86 dB –0.08 dB –0.17 dB 691.2 hours
SMEAFO –24.85 dB –0.12 dB –0.25 dB 20.6 hours
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Figure 6. SMEAFO convergence trend for example 1 (average of 10 runs).

 

 

 

 

 

 

 

Figure 7. DE convergence trend for example 1.

design variables) and Table III, Fig.5(b) (performance). The
convergence trend is shown in Fig. 6. It can be seen that
the design quality is satisfactory using less than 600 EM
simulations on average.

DE is also carried out using the initial population of the
SMEAFO run provided in Table II and Table III with the same
related algorithm parameters of SMEAFO. The computing
budget is set to 25,000 EM simulations. The obtained result
is –22.86 dB. Hence, SMEAFO obtains more than 33 times
speed improvement compared to standard DE for this example,
making the unbearable time to be very practical (1 month to 1
day) and obtaining an even better result. The convergence trend
of DE is shown in Fig. 7. Comparing the two convergence
trends, some observations can be made.

On average, the exploitation phase of SMEAFO starts from
about 540 EM simulations with the starting performance of
about –17 dB (according to the rule defined in Section III
(C)). The observations are: (1) DE completes the exploration
using about 8500 EM simulations (obtaining –17 dB), while
SMEAFO uses about 540 EM simulations, obtaining about 16
times speed improvement, (2) DE then costs 16,500 EM sim-
ulations to improve the result from near-optimal designs to the
final optimized design because of the rugged landscape in the
valley, while the exploitation phase of SMEAFO costs about
250 EM simulations to get a better solution, achieving about
66 times speed improvement. This verifies the effectiveness of
main ideas of SMEAFO in both phases.

 

 

 

 

 

Figure 8. Microstrip filter: front view.

Table IV
RANGES OF THE 12 DESIGN VARIABLES (ALL SIZES IN MM) FOR EXAMPLE

2

V ariables W1 W2 W3 W4 L01 L02
Lower bound 0.5 0.5 0.5 0.5 2 2
Upper bound 3.5 3.5 3.5 3.5 8 8
V ariables L03 L04 L1 L2 L3 L4

Lower bound 2 2 7 7 7 7
Upper bound 8 8 18 18 18 18

B. Example 2

The second example is an 8th-order microstrip filter work-
ing from 3.3 GHz to 7.3 GHz, which is shown in Fig. 8.
The ranges of design variables are in Table IV. As above
mentioned, they are intentionally expanded to test SMEAFO
in an extreme condition. The design specifications are that
the passband is from 4 GHz to 7 GHz and the stopbands are
from 3.3 GHz to 3.92 GHz and from 7.08 GHz to 7.3 GHz.
Therefore the optimization problem is defined as follows:

minimize max(|S11|), 4 GHz–7 GHz
s.t. min(|S11|) ≥ –3 dB, 3.3 GHz–3.92 GHz
min(|S11|) ≥ –3 dB, 7.08 GHz–7.3 GHz

(17)

An equivalent circuit model is available, which is used
for a first optimization to get the initial design, in which,
the simulation is performed by ADS circuit simulator (not
Momentum). Because each ADS circuit simulation only costs
a few seconds, standard DE is used. The optimized design
variables (initial design for full-wave optimization) are shown
in Table V with a performance in Fig. 9(a). It can be seen
that the response of the optimized design using the equivalent
circuit model is excellent in terms of circuit simulation and
when simulating it with the full-wave EM model, the response
seems to be good as a starting point and only a slight move
from the initial design is needed. However, this “correct slight
move” is difficult.

The Nelder-Mead simplex method and the sequential
quadratic programming method are firstly applied. Note that
these local optimization methods are not affected by the ex-
panded search ranges, as a good starting point is available. For
this example, each EM simulation costs about 3–6 minutes.
The results are shown in Table VI. It can be seen that Nelder-
Mead simplex fails to jump out of local optima, although
the initial design is near the narrow valley, while sequential
quadratic programming goes out of the narrow valley and is
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Table V
INITIAL SOLUTION AND AN OPTIMIZED SOLUTION (ALL SIZES IN MM) FOR

EXAMPLE 2.

V ariables W1 W2 W3 W4 L01 L02
Initial design 0.591 0.746 1.476 1.324 4.440 5.408
V ariables L03 L04 L1 L2 L3 L4

Initial design 2.742 2.595 16.531 15.42 16.748 17.708
V ariables W1 W2 W3 W4 L01 L02

SMEAFO optimized design 0.549 0.953 1.727 1.887 3.885 5.245
V ariables L03 L04 L1 L2 L3 L4

SMEAFO optimized design 2.771 2.219 16.111 15.321 16.273 17.206

 

 

 

 

Figure 9. Response of the microstrip filter.

trapped in a local optimum in the outer region. Simulation
data indicates that in all the 8 test problems, this problem has
the most rugged landscape.

Then, SMEAFO is carried out. Because of the intentionally
set large ranges of the design variables, σinit is set to 0.25.
As was said in Section III (D), the value of σinit is a rough
estimation and is not sensitive. The computing budget is 1250
EM simulations. The results is shown in Table V (optimized
design variables) and Table VI, Fig.9(b) (performance). The
convergence trend is shown in Fig. 10. It can be seen that
SMEAFO obtains a satisfactory result for this very challenging
problem in terms of the ruggedness of the landscape and the
narrowness of the optimal valley. This example shows that for
problems that space mapping seems to be the suitable method,

Table VI
OPTIMIZED RESULTS USING DIFFERENT METHODS FOR EXAMPLE 2

Methods max(|S11|) :
4–7GHz

min(|S11|) :
3.3–3.92GHz

min(|S11|) :
7.08–7.3GHz

time

Nelder-
Mead
simplex

–6.29 dB –2.81 dB –3.00 dB 47.2 hours

sequential
quadratic
program-
ming

–2.42 dB –22.40 dB –0.20 dB 77 hours

SMEAFO –19.48 dB –2.93 dB –2.96 dB 96.9 hours

 

 

 

Figure 10. SMEAFO convergence trend for example 2.

there are exceptions and SMEAFO can be a supplement for
these exceptions.

Experiments on our real-world filter design test cases show
that: Most hard filter optimization can be finished within
700 EM simulations using SMEAFO obtaining satisfactory
results. For most test cases, the optimization time is 1 to 2
days. Note that SMEAFO is designed for filter optimization
problems that may be difficult to solve by existing local
optimization methods (space mapping-based methods without
problem specific tuning often at most obtain the same solution
quality compared to direct local search), comparing speed with
such methods is therefore not relevant. Rather, an excellent
result in a reasonable timeframe for hard problems is the goal
of SMEAFO.

V. CONCLUSIONS

In this paper, the SMEAFO algorithm has been proposed.
SMEAFO is aimed to serve as a widely applicable method
(i.e., not restricted by filter types/responses) targeted at mi-
crowave filter optimization problems which are difficult to
be solved by popular local optimization methods, while at
the same time are not affordable to be solved by standard
global optimization methods, so as to complement the state
of the arts. Experiments show that SMEAFO can provide
optimal filter designs that are comparable to the DE algorithm,
which is expected to provide very high-quality design, but
uses a reasonable timeframe and is several orders faster than
DE. These results are achieved by our novel surrogate model
assisted evolutionary algorithm designed for filter landscapes,
including the two-phase structure, the novel surrogate model
assisted search methods as well as the training data se-
lection method in each phase. In addition, SMEAFO with
a lower-fidelity EM model can be used to support space
mapping, providing a good initial design and a database
with lower-fidelity model evaluation results. The SMEAFO-
based filter design optimization tool can be downloaded from
http://fde.cadescenter.com. Future works include developing
parallelized SMEAFO.

ACKNOWLEDGEMENT

The work was partially funded by the UK Engineer-
ing and Physical Science Research Council under project



10

EP/M016269/1. The authors would like to thank Prof. Sla-
womir Koziel, Reykjavik University, Iceland, for valuable
discussions.

REFERENCES

[1] M. Fakhfakh, E. Tlelo-Cuautle, and P. Siarry, Computational intelligence
in analog and mixed-signal (AMS) and radio-frequency (RF) circuit
design. Springer, 2015.

[2] A. Deb, J. Roy, and B. Gupta, “Performance comparison of differen-
tial evolution, particle swarm optimization and genetic algorithm in
the design of circularly polarized microstrip antennas,” Antennas and
Propagation, IEEE Transactions on, vol. 62, no. 8, pp. 3920–3928, 2014.

[3] N. He, D. Xu, and L. Huang, “The application of particle swarm
optimization to passive and hybrid active power filter design,” Industrial
Electronics, IEEE Transactions on, vol. 56, no. 8, pp. 2841–2851, 2009.

[4] P. T. Boggs and J. W. Tolle, “Sequential quadratic programming,” Acta
numerica, vol. 4, pp. 1–51, 1995.

[5] J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Conver-
gence properties of the nelder–mead simplex method in low dimensions,”
SIAM Journal on optimization, vol. 9, no. 1, pp. 112–147, 1998.

[6] M. Sans, J. Selga, A. Rodriguez, J. Bonache, V. E. Boria, and F. Martin,
“Design of planar wideband bandpass filters from specifications using
a two-step aggressive space mapping (asm) optimization algorithm,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 62,
no. 12, pp. 3341–3350, 2014.

[7] S. Koziel, S. Ogurtsov, J. W. Bandler, and Q. S. Cheng, “Reliable space-
mapping optimization integrated with em-based adjoint sensitivities,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 61,
no. 10, pp. 3493–3502, 2013.

[8] X. Shang, Y. Wang, G. Nicholson, and M. J. Lancaster, “Design
of multiple-passband filters using coupling matrix optimisation,” Mi-
crowaves, Antennas & Propagation, IET, vol. 6, no. 1, pp. 24–30, 2012.

[9] J. W. Bandler, R. M. Biernacki, S. H. Chen, P. A. Grobelny, and R. H.
Hemmers, “Space mapping technique for electromagnetic optimization,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 42,
no. 12, pp. 2536–2544, 1994.

[10] C. Zhang, F. Feng, V.-M.-R. Gongal-Reddy, Q. J. Zhang, and J. W. Ban-
dler, “Cognition-driven formulation of space mapping for equal-ripple
optimization of microwave filters,” Microwave Theory and Techniques,
IEEE Transactions on, vol. 63, no. 7, pp. 2154–2165, 2015.

[11] Q. S. Cheng, J. W. Bandler, and S. Koziel, “Space mapping design
framework exploiting tuning elements,” Microwave Theory and Tech-
niques, IEEE Transactions on, vol. 58, no. 1, pp. 136–144, 2010.

[12] R. Ben Ayed, J. Gong, S. Brisset, F. Gillon, and P. Brochet, “Three-level
output space mapping strategy for electromagnetic design optimization,”
Magnetics, IEEE Transactions on, vol. 48, no. 2, pp. 671–674, 2012.

[13] M. E. Sabbagh, M. H. Bakr, and J. W. Bandler, “Adjoint higher
order sensitivities for fast full-wave optimization of microwave filters,”
Microwave Theory and Techniques, IEEE Transactions on, vol. 54, no. 8,
pp. 3339–3351, 2006.

[14] T. J. Santner, B. J. Williams, and W. I. Notz, The design and analysis
of computer experiments. Springer Science & Business Media, 2013.

[15] M. Emmerich, K. Giannakoglou, and B. Naujoks, “Single-and multi-
objective evolutionary optimization assisted by Gaussian random field
metamodels,” Evolutionary Computation, IEEE Transactions on, vol. 10,
no. 4, pp. 421–439, 2006.

[16] J. Dennis and V. Torczon, “Managing approximation models in opti-
mization,” Multidisciplinary design optimization: State-of-the-art, pp.
330–347, 1997.

[17] I. Couckuyt, A. Forrester, D. Gorissen, F. De Turck, and T. Dhaene,
“Blind kriging: Implementation and performance analysis,” Advances in
Engineering Software, vol. 49, pp. 1–13, 2012.

[18] K. Price, R. Storn, and J. Lampinen, Differential evolution: a practical
approach to global optimization. Springer-Verlag New York Inc, 2005.

[19] A. Hoorfar, “Evolutionary programming in electromagnetic optimiza-
tion: a review,” Antennas and Propagation, IEEE Transactions on,
vol. 55, no. 3, pp. 523–537, 2007.

[20] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
Evolutionary Computation, IEEE Transactions on, vol. 3, no. 2, pp. 82–
102, 1999.

[21] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions for
global optimisation problems,” International Journal of Mathematical
Modelling and Numerical Optimisation, vol. 4, no. 2, pp. 150–194, 2013.

[22] D. Lim, Y. Jin, Y. Ong, and B. Sendhoff, “Generalizing surrogate-
assisted evolutionary computation,” Evolutionary Computation, IEEE
Transactions on, vol. 14, no. 3, pp. 329–355, 2010.

[23] Z. Zhou, Y. Ong, P. Nair, A. Keane, and K. Lum, “Combining global
and local surrogate models to accelerate evolutionary optimization,”
Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, vol. 37, no. 1, pp. 66–76, 2007.

[24] D. Jones, M. Schonlau, and W. Welch, “Efficient global optimization of
expensive black-box functions,” Journal of Global optimization, vol. 13,
no. 4, pp. 455–492, 1998.

[25] B. Liu, D. Zhao, P. Reynaert, and G. G. Gielen, “Synthesis of integrated
passive components for high-frequency rf ics based on evolutionary
computation and machine learning techniques,” Computer-Aided Design
of Integrated Circuits and Systems, IEEE Transactions on, vol. 30,
no. 10, pp. 1458–1468, 2011.

[26] C. C. Coello, G. B. Lamont, and D. A. Van Veldhuizen, Evolutionary
algorithms for solving multi-objective problems. Springer Science &
Business Media, 2007.

[27] J.-S. G. Hong and M. J. Lancaster, Microstrip filters for RF/microwave
applications. John Wiley & Sons, 2004, vol. 167.

[28] P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to
electromagnetics,” Antennas and Propagation Magazine, IEEE, vol. 53,
no. 1, pp. 38–49, 2011.

[29] D. M. Himmelblau, Applied nonlinear programming. McGraw-Hill
Companies, 1972.

[30] X. Shang, M. Ke, Y. Wang, and M. J. Lancaster, “Wr-3 band waveguides
and filters fabricated using su8 photoresist micromachining technology,”
Terahertz Science and Technology, IEEE Transactions on, vol. 2, no. 6,
pp. 629–637, 2012.

Bo Liu (M’2015) received the B.S. degree from
Tsinghua University, P. R. China, in 2008. He re-
ceived his Ph.D. degree at the MICAS laboratories
of the University of Leuven (KU Leuven), Belgium,
in 2012. From 2012 to 2013, he was a Humboldt
research fellow and was working with Technical
University of Dortmund, Germany. In 2013, he was
appointed lecturer at Wrexham Glyndwr University,
UK, where he was promoted to Reader in Computer-
aided Design in 2016. He is an honorary fellow at
The University of Birmingham. His research inter-

ests lie in design automation methodologies of analog/RF integrated circuits,
microwave devices, MEMS, evolutionary computation and machine learning.
He has authored or coauthored 1 book and more than 40 papers in international
journals, edited books and conference proceedings.

Hao Yang was born in Wuhan, China, in 1991. He
received the B.Eng. degree in electronic and electri-
cal engineering from the University of Birmingham,
Birmingham, U.K., in 2014, the B.Eng. degree in
electronics and information engineering from the
Huazhong University of Science and Technology,
Wuhan, China, in 2014. He is currently working
toward the Ph.D. degree in electronic and electrical
engineering at the University of Birmingham, Birm-
ingham, U.K. His current research concerns THz
frequency filters and mutiplexers.



11

Michael J. Lancaster (SM’2004) was born in Eng-
land in 1958. He was educated at Bath University,
UK, where he graduated with a degree in Physics in
1980. His career continued at Bath, where he was
awarded a PhD in 1984 for research into non-linear
underwater acoustics.

After leaving Bath University he joined the sur-
face acoustic wave (SAW) group at the Department
of Engineering Science at Oxford University as a
Research Fellow. The research was in the design of
new, novel SAW devices, including RF filters and

filter banks. In 1987 he became a Lecturer at The University of Birmingham
in the Department of Electronic and Electrical Engineering, lecturing in
electromagnetic theory and microwave engineering. Shortly after he joined
the department he began the study of the science and applications of high
temperature superconductors, working mainly at microwave frequencies. He
was promoted to head of the Department of Electronic, Electrical and
Systems Engineering in 2003. His present personal research interests include
microwave filters and antennas, as well as the high frequency properties
and applications of a number of novel and diverse materials. This includes
micromachining as applied to terahertz communications devices and systems.

Professor Lancaster is Fellow of the IET and UK Institute of Physics. He
is a Chartered Engineer and Chartered Physicist. He has served on MTT IMS
technical committees. Professor Lancaster has published two books and over
190 papers in refereed journals.


