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Abstract: Computational efficiency is a major challenge for evolutionary algorithm (EA)-based antenna optimisation methods
due to the computationally expensive electromagnetic simulations. Surrogate model-assisted EAs considerably improve the
optimisation efficiency, but most of them are sequential methods, which cannot benefit from parallel simulation of multiple
candidate designs for further speed improvement. To address this problem, a new method, called parallel surrogate model-
assisted hybrid differential evolution for antenna optimisation (PSADEA), is proposed. The performance of PSADEA is
demonstrated by a dielectric resonator antenna, a Yagi-Uda antenna, and three mathematical benchmark problems.
Experimental results show high operational performance in a few hours using a normal desktop 4-core workstation.
Comparisons show that PSADEA possesses significant advantages in efficiency compared to a state-of-the-art surrogate
model-assisted EA for antenna optimisation, the standard parallel differential evolution algorithm, and parallel particle swarm
optimisation. In addition, PSADEA also shows stronger optimisation ability compared to the above reference methods for
challenging design cases.

1 Introduction
In recent years, evolutionary algorithms (EAs) are playing an
important role in antenna design optimisation [1–4] because of
their global optimisation capability, free of an initial design,
generality, and robustness. However, the efficiency of the
optimisation process is a major challenge due to the
computationally expensive electromagnetic (EM) simulations. An
effective efficiency improvement method is surrogate model-
assisted evolutionary algorithms (SAEAs), which are employed
and developed for antenna design optimisation [5, 6]. Using the
antenna design parameters as the input and EM-simulated
responses as the output, a computationally cheap surrogate model
(which is often based on statistical learning techniques) is
constructed and used to replace potentially numerous
computationally expensive EM simulations in optimisation, so as
to highly improve the efficiency.

Another speed improvement method is parallel computation.
Employing parallel solvers for a single antenna design simulation
has already been widely applied. The computing capability (CPU,
memory) of desktop workstations is continuously increasing, while
the complexity of numerical techniques does not. In addition, with
the development of cloud computing, more computing resources
can be utilised, and carrying out multiple simultaneous simulations
of several antenna designs (parallel solvers are applied to each of
them) is a foreseeable tendency. Even at present, the above two-
level parallel simulation is already available in some commercial
software packages such as the CST Microwave Studio using multi-
cores and shared memory [7].

To avoid confusion, the parallel computation in this paper refers
to parallel simulations of two to four antenna candidate designs
considering the capacity of a standard desktop workstation or the
financial cost of using shared computing resources in a cloud.
Availability of large-scale high-performance computing facilities is
not considered. Parallel solvers are also not the concentration of
this paper despite that they may be employed for simulating each
antenna candidate design in the optimisation process. Clearly, the
above parallelism has difficulty in providing substantial help for

standard EA-based antenna optimisation methods, because the
required population size (i.e. needed EM simulations in one
iteration) is often not small (e.g. 30–50) and the computing
overhead is still large even after parallelisation. Therefore, a
natural idea is to introduce the above parallelisation into SAEA-
based antenna optimisation methods.

Introducing parallel simulations into modern SAEAs is not
trivial. In terms of surrogate model management methods, SAEAs
can generally be classified into offline SAEAs and online SAEAs.
Offline SAEA-based efficient antenna design optimisation methods
perform a one-shot initial sampling to build the surrogate model,
which is then used as the substitute of the EM simulations. In the
optimisation process, the surrogate model is not updated or only
updated for local refinements [8]. In this kind of methods, the EM
simulations involved in the one-shot initial sampling are
independent of each other and are easy to be parallelly performed.
However, although more than ten variables can be handled when
employing both low- and high-fidelity EM models [9, 10], it is well
known that most offline SAEAs have difficulty in handling
problems with more than a few variables (e.g. 4–5) for the targeted
problem in this paper [11, 12].

To address the scalability problem, online SAEA-based efficient
antenna design optimisation methods are introduced. Siah et al. [5]
employ the efficient global optimisation method [13] for antenna
optimisation and a new online SAEA, called surrogate model-
assisted hybrid differential evolution for antenna optimisation
(SADEA), is proposed in [6] by the authors. However, the
terminology ‘online’ indicates a sequential process: the surrogate
model keeps updating, often a single EM simulation is performed
in each iteration, and the selected candidate design for that
simulation depends on the current surrogate model built by
simulation data in previous iterations [5, 6]. Therefore, parallel
simulations are difficult to be used. Although Liu et al. [6] show up
to almost an order of speed improvement compared to standard
EAs for various antennas, parallel candidate antenna design
simulation, which is straightforward for standard EAs, is not taken
into account.
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This paper aims to introduce small-scale parallel simulations
into online SAEA-based antenna optimisation. A new method,
called parallel surrogate model-assisted hybrid differential
evolution for antenna optimisation (PSADEA), is proposed. The
main innovations are the ensemble of three selected differential
evolution (DE) mutation strategies and the self-adaptive
employment of them, as well as a new surrogate modelling
method. These innovations enable parallelisation with enhanced
search capacity and surrogate model quality. The goal of PSADEA
is to reduce the several weeks’ optimisation time of a standard EA-
based antenna optimisation method to a few hours in a small-scale
parallel computing environment. An additional benefit is the
stronger performance optimisation ability compared to popular
standard EAs, which are often considered as the benchmark in
terms of solution quality.

The remainder of the paper is organised as follows: Section 2
provides the basic techniques. Section 3 elaborates the PSADEA
method. Section 4 presents two typical antenna examples and three
mathematical benchmark problems to show the performance of
PSADEA. The concluding remarks are presented in Section 5.

2 Basic techniques
2.1 Gaussian process surrogate modelling

The surrogate modelling method selected for PSADEA is Gaussian
process (GP) [14]. Given a set of observations x = (x1, …, xn) and
y = (y1, …, yn), GP predicts a function value y(x) at some design
point x by modelling y(x) as a Gaussian distributed stochastic
variable with mean μ and variance σ2. If the function is continuous,
the function values of two points xi and x j should be close if they
are highly correlated. In this work, we use the Gaussian correlation
function to describe the correlation between two variables:

Corr(xi, xj) = exp − ∑
l = 1

d
θl xi

l − xj
l

pl

θl > 0, 1 ≤ pl ≤ 2
(1)

where d is the dimension of x and θl the correlation parameter
which determines how fast the correlation decreases when xi moves
in the l direction. The smoothness of the function is related to pl

with respect to xl. To determine the parameters θl and pl, the
likelihood function that y = yi at x = xi(i = 1, …, n) is maximised.
The function value y(x*) at a new point x* can be predicted as

y^(x*) = μ^ + rTR−1(y − Iμ^) (2)

where

Ri, j = Corr(xi, xj), i, j = 1, 2, …, n (3)

r = [Corr(x*, x1), Corr(x*, x2), …, Corr(x*, xn)] (4)

μ^ = (ITR−1I)−1ITR−1y (5)

The mean square error value of the prediction uncertainty is:

s^2(x*) = σ̂2[I − rTR−1r + (I − rTR−1r)2(ITR−1I)−1] (6)

where

σ̂2 = (y − Iμ^)TR−1(y − Iμ^)n−1 (7)

Several prescreening methods can be used to evaluate the quality
of a candidate design with respect to the predicted value in (2) and
the prediction uncertainty in (6) [15]. In PSADEA, the lower
confidence bound (LCB) method [16] is used. Given the predictive
distribution N(y^(x), s^2(x)) for y(x), an LCB prescreening of y(x) can
be defined as:

ylcb(x) = y^(x) − ωs^(x)
ω ∈ [0, 3]

(8)

where ω is a constant, which is often set to 2 to balance the
exploration and exploitation ability [15].

The ooDACE toolbox [17] is used for implementing the GP
surrogate model.

2.2 DE algorithm

The DE algorithm [18] is adopted as the search engine in
PSADEA. DE outperforms many EAs for continuous optimisation
problems [18] and is widely used in EM simulation-driven design
optimisation.

Suppose that P is a population. Let x = (x1, …, xd) ∈ Rd be an
individual solution in P. To generate a child solution u = (u1, …, ud)
for x, a donor vector is first produced by mutation:

vi = xr1 + F ⋅ (xr2 − xr3) (9)

where xr1, xr2, and xr3 are three mutually exclusive solutions
randomly selected from P (the current population); vi is the ith
mutant vector in the population after mutation; F ∈ (0, 2] is a
control parameter, often called the scaling factor. The above
mutation strategy in (9) is called DE/rand/1, which is one of the
popular DE mutation strategies.

Then the following crossover operator is applied to produce the
child u:

i. Randomly select a variable index jrand ∈ {1, …, d}.
ii. For each j = 1 to d, generate a uniformly distributed random

number rand from (0, 1) and set:

uj =
vj, if (rand ≤ CR) j = jrand

xj, otherwise (10)

where CR ∈ [0, 1] is a constant called the crossover rate.

In PSADEA, two other DE mutation strategies are used:

i. Mutation strategy: DE/current-to-best/1

vi = xi + F ⋅ (xbest − xi) + F ⋅ (xr1 − xr2) (11)

where xi is the ith vector in the current population and xbest the
best candidate in the current population P.

ii. Mutation strategy: DE/rand/2

vi = xr1 + F ⋅ (xr2 − xr3) + F ⋅ (xr4 − xr5) (12)

where xr4 and xr5 are two different solutions randomly selected
from P and are different from xr1, xr2, and xr3.

3 PSADEA method
3.1 SADEA method

PSADEA aims to introduce small-scale parallel simulation
(simultaneous simulations of two to four candidate antenna
designs) into the authors’ SADEA method [6]. Hence, SADEA is
firstly introduced as the foundation. SADEA shows up to an order
of speed improvement compared to standard EAs for antenna
optimisation (not considering parallel simulation of different
candidate designs) and is scalable to around 30 design variables [6,
11]. SADEA works as follows:

Step 1: Sample α (often a small number) candidate designs from
the design space [a, b]d (a and b are the lower and upper bounds of
design variables, respectively; d is the number of design variables)
using Latin hypercube sampling [19]. Evaluate the objective
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function values of all these solutions using EM simulations and let
them form the initial database.
Step 2: If a preset stopping criterion is met (e.g. a maximum
number of allowed EM simulations is exceeded), output the best
solution from the database; otherwise go to step 3.
Step 3: Select the λ best solutions from the database to form a
population P.
Step 4: Apply the DE/best/1 mutation (13) and crossover
operations [18] to P to generate λ new child solutions.
Step 5: Select τ nearest candidate designs from the database (based
on Euclidean distance in the design space) around the centroid of
the λ child solutions. Construct a GP surrogate model [14] using
the selected candidate designs (i.e. training data points in surrogate
modelling).
Step 6: Estimate the λ child solutions generated in step 4 using the
GP model and the LCB method [15].
Step 7: Evaluate the EM simulation model at the estimated best
child design candidate from step 6. Add this candidate design and
its objective function value to the database. Go back to step 2.

The DE/best/1 mutation strategy used in SADEA is:

vi = xbest + F ⋅ (xr2 − xr3) (13)

3.2 Exploration ability enhancement and local surrogate
modelling

To include parallel simulations in SADEA, a straightforward idea
is to select the top n rather than the top 1 candidate designs (all
based on prediction) in step 7 of each iteration and simulate them
in parallel. Here, n depends on the computing resource and is often
from 2 to 4 as mentioned in Section 1. If this framework is
effective, the computational time should be reduced by
approximately n times, like simulating n candidate designs
simultaneously in standard EAs. However, experiments show far
less than three times speed improvement when n = 3 using various
mathematical benchmark problems [20].

Two observations are: (i) in many iterations, the predicted best
candidate is the true best candidate and there are often very few
other candidates with similar optimality. (ii) The best candidate
may not change for every 10–20 iterations. This explains why
simply selecting n top-ranked candidates for parallel simulation is
not effective: most top-ranked candidates do not have the required
quality. Simulating them does not help much to obtain good quality
solutions and improve the surrogate model quality of the optimal
region. Hence, improving the exploration ability to obtain more
good quality candidates in each iteration becomes the central issue.

In SADEA, the exploration is realised by the DE/best/1
mutation strategy (13) [18] (step 4). The main consideration of
using this strategy is its fast convergence property, while the cost is
the reduced population diversity. Although experiments show that
it can still jump out of local optima, various good quality
candidates from different regions of the design space are difficult
to be generated, and the parallel simulation of ‘ useful’ candidates,
therefore, cannot be realised. Our idea to address this challenge is
to ensemble the DE/current-to-best/1 (11), DE/rand/1 (9), and DE/
rand/2 (12) strategies. Each DE mutation strategy [(9)–(12)] trades
off the exploration ability (population diversity) and convergence
speed to a certain extent. DE/current-to-best/1 (11) has the least
population diversity consideration (but still higher than DE/best/1),
but the convergence speed is the fastest, DE/rand/2 (12)
emphasises the promotion of population diversity but with the
slowest convergence speed. DE/rand/1 (9) is in the middle in both
respects.

When employing the new DE mutation strategies, it is observed
that various good quality candidate designs from different regions
of the design space can be generated, but many of them are not
correctly predicted by the GP model in step 5. SADEA constructs a
single surrogate model in each iteration. When the diversity of the
generated candidates becomes high thanks to the new DE mutation
strategies, this single surrogate model does not have good
performance. Therefore, in PSADEA, a local GP surrogate model

is built for each child solution using τ nearest samples (based on
Euclidean distance). This means that λ separate local GP models
are built in each iteration. Pilot experiments show substantially
improved prediction ability.

3.3 Self-adaptive DE mutation strategy selection and the
PSADEA framework

Given the three selected DE mutation strategies and the surrogate
modelling method, the key problem becomes how to optimally use
the selected mutation strategies. Experiments show that when
evenly employing the three selected DE mutation strategies,
although high-quality design solutions can be generated with
improved speed, the speed improvement is not as high as n times
when n candidate designs are simulated in parallel. Note that DE/
rand/1 and DE/rand/2 strategies have low convergence speed.

As said in Section 3.2, each mutation strategy has a different
trade-off between the exploration ability (population diversity) and
convergence speed. On the one hand, sufficient population
diversity is needed. On the other hand, the convergence speed
should be as fast as possible. However, the most appropriate trade-
off depends on the particular antenna optimisation problem and is
difficult to be analysed mathematically. To address this challenge, a
self-adaptive method is proposed, which works as follows:

For each child population i = 1, 2, …, n:

Step 1: If the algorithm is within the learning period (the current
number of iterations is smaller than a threshold L), the rate of using
DE/rand/1 (9), DE/current-to-best/1 (11), and DE/rand/2 (12) is
1/3. Otherwise, use the rates in step 5.
Step 2: Perform a roulette wheel selection [21] based on the rates
to determine a DE mutation method and generate a child
population Ci (λ child solutions).
Step 3: For each child solution, select τ nearest samples (based on
Euclidean distance) as the training data points and construct a local
GP surrogate model.
Step 4: Compare the predicted value of each solution in Ci and the
current best solution (simulated value). Add the number of
solutions that are better than the current best solution to Ns [the
number of successes of (9), (11), or (12)] and add λ to Nu [the
number of uses of (9), (11) or (12)].

Until all the n groups of child solutions are generated.

Step 5: Update the rates of using DE/rand/1 (9), DE/current-to-
best/1 (11), and DE/rand/2 (12) by Ns/Nu. Update the number of
iterations.

It can be seen that the DE mutation strategies are employed
self-adaptively and the most frequently fitted will be used with a
greater chance. Experiments show higher than n times time
reduction compared to SADEA.

As shown by the flow diagram in Fig. 1, the PSADEA method
can be constructed as follows: (i) steps 1–3 are the same as the
SADEA method (Section 3.1). (ii) The above self-adaptive
mutation method (new steps 1–5) is used to replace the original
steps 4–6 of SADEA. (iii) Step 7 of SADEA is revised to select top
n candidate designs from all of (n × λ) the generated child solutions
and simulate them in parallel. 

Compared to SADEA, there is only one additional algorithm
parameter, L, in PSADEA. Empirically, L is suggested to be within
[30, 50]. It is clear that L is not sensitive. It is shown that the
SADEA method is not sensitive to parameter setting [6] through
detailed experimental study. All the parameter setting rules are still
useful in PSADEA.

4 Experimental results and comparisons
PSADEA is tested by four real-world antennas, including a hybrid
dielectric resonator antenna (DRA), a planar Yagi-Uda antenna
(YUA), a broadband microstrip antenna, and an ultrawideband
MIMO antenna array. The reference methods include SADEA, DE
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(DE/current-to-best/1 mutation), and particle swarm optimisation
(PSO) (the CST Microwave Studio PSO optimiser is used). As
SADEA outperforms several popular SAEAs [6], it is used as the
reference method in this paper. For all of the test cases, PSADEA
successfully obtains highly optimal designs. The comparison
results among different methods in terms of solution quality and
efficiency are similar except that DE and PSO fail to obtain a
satisfactory design for the YUA. The tests are run on a workstation
with Intel 4-core i7 CPU and 24 GB RAM. Ten independent runs
are carried out for PSADEA and SADEA. Standard DE and PSO
are carried out for three runs because multiple runs are not
affordable (a single run costs ∼10 days for some test cases).

SADEA does not support parallel simulations of different
candidate designs [6]; for the parallel simulations, three candidate
antenna designs are simulated in parallel for PSADEA, PSO, and
DE (parallel solvers are used to each of them). This is decided by
the optimal computing budget allocation algorithm of CST
Microwave Studio according to the CPU and shared memory of the
workstation. Note that the initial surrogate model in all test cases is
constructed by 50 samples/simulations, so the starting time of
PSADEA and SADEA is not 0. Based on the suggested values in
[6], the following algorithm parameters are used for PSADEA and
SADEA: F = 0.8, CR = 0.8, α = 50, λ = 50, τ = 8 × d (d is the
number of design variables). L is set to 30. For DE, the same F,
CR, and λ are used. For PSO, the same λ is used and default values
set by the CST Microwave Studio optimiser are used for other
parameters. In the following, the DRA and YUA are used to
demonstrate PSADEA. The time consumption is wall clock time.

4.1 Example 1

The first example is a hybrid DRA and the layout is shown in
Fig. 2a [22]. The DRA is modelled in CST Microwave Studio
using a mesh density of 12 cells per wavelength and ∼22,000 mesh
cells. It is implemented on a RO4003C substrate with a relative
permittivity of 3.38, loss tangent of 0.0027, and thickness of 0.5 
mm. The excitation mode is TEδ11

x  and each simulation costs from
20 s to 1 min. As shown in Table 1 and (14), the design exploration
goal is to adjust the dimensions of the DR brick and slot, length of
the microstrip slab, and position of the DR relative to the slot, so
that the bandwidth of the DRA is to be centred at 5.5 GHz from
5.28 to 5.72 GHz. (ac ≤ 0.5 × ay) is the geometric constraint used
to ensure the slot remains under the DRA in all possible cases. To
make all the methods converge, the computing budget is as
follows: 360 parallel EM simulations for PSADEA, 1080
sequential EM simulations for SADEA (the same number of total
EM simulations with PSADEA), and 2000 parallel EM simulations
each for PSO and DE.

minimise max S11 5.28 GHz − 5.72 GHz (14)

The results are shown in Table 2. A typical response of
PSADEA is shown in Fig. 2b with the obtained optimal design of
ax = 9.47 mm, ay = 12.61 mm, az = 9.92 mm, ac = 4.54 mm,
us = 3.45 mm, ws = 8.38 mm, and ys = 2.00 mm. The following
observations can be made: (i) in all the ten runs, PSADEA provides
very satisfactory results even for the worst one, using only 2.8 h on
average. (ii) PSADEA shows good robustness. (iii) PSADEA
shows a clear advantage over SADEA, parallel DE, and parallel
PSO in terms of solution quality. 

The convergence trends of all methods are shown in Fig. 3.
From Fig. 3a, it can be seen that to obtain the average best
objective function value of the SADEA algorithm (−23.84 dB at
8.5 h), PSADEA needs 2 h. Hence, PSADEA shows 4.3 times
speed improvement compared to SADEA when three candidate
designs are simulated in parallel. To obtain the average best
objective function values of parallel DE (−24.31 dB at 16.1 h) and
parallel PSO (−21.34 dB at 13.2 h), PSADEA needs 2.1 h and 1.6 
h, respectively. Hence, PSADEA offers 7.7 times speed
improvement over parallel DE and 8.3 times speed improvement
over parallel PSO, while obtaining better results. This speed
improvement comes from both parallel simulations of three
candidate designs and the self-adaptive SAEA framework. Fig. 3b
shows the convergence trends for PSADEA and SADEA when not
considering parallel simulations. (The parallel simulations of
PSADEA are considered as sequential.) It can be seen that to
obtain the average best objective function value of SADEA
(−23.84 dB at 1059 sequential EM simulations), PSADEA needs
708 sequential EM simulations. This speed improvement is only
contributed by the self-adaptive SAEA framework. 

4.2 Example 2

As shown in Fig. 4a, the second example is a planar YUA [23]
modelled in CST Microwave Studio using a mesh density of 15

Fig. 1  Flow diagram of the PSADEA method
 

Fig. 2  Layout of the DRA and a typical optimised performance by
PSADEA
(a) The DRA, (b)S11 response

 
Table 1 Ranges of the design variables (all sizes in mm)
(example 1)
Variables ax ay az ac us ws ys

lower bound 6 12 6 6 0.5 4 2
upper bound 10 16 10 8 4 12 12
 

Table 2 Optimised max S11 (dB) in the operational
bandwidth using different methods for example 1
Method Best Worst Mean Std
PSADEA −27.32 −24.76 −26.14 0.89
SADEA −25.70 −22.05 −23.84 1.10
parallel DE −25.03 −23.15 −24.31 1.01
parallel PSO −22.58 −19.05 −21.34 1.99
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cells per wavelength and over 86,000 mesh cells. The YUA is
implemented on an RT6010 substrate with the relative permittivity
of 10.2, loss tangent of 0.0033, and thickness of 0.635 mm. The
driven element of the YUA is fed by a 50 Ω microstrip-to-slot
balun via a power divider and each simulation costs ∼2 min. As
shown in Table 3 and (15), the design exploration goal is to adjust
the dimensions of the YUA for an operational bandwidth of 10–11 
GHz at an average gain not <6 (7.78 dB) over the bandwidth. To
make all the methods converge, the computing budget is as
follows: 220 parallel EM simulations for PSADEA, 660 sequential
EM simulations for SADEA (the same number of total EM
simulations with PSADEA), and 1500 parallel EM simulations
each for PSO and DE.

minimise max S11 10 GHz − 11 GHz
s . t . mean(G) ≥ 6 (15)

The results are shown in Table 4. Typical responses of
PSADEA are shown in Figs. 4b and c with the obtained optimal
design of s1 = 5.06 mm, s2 = 5.95 mm, v1 = 7.51 mm,
v2 = 2.95 mm, u1 = 4.22 mm, u2 = 1.50 mm, u3 = 3.80 mm, and
u4 = 2.78 mm. For this example, the following observations can be
made: (i) PSADEA and SADEA obtain successful results, while
parallel PSO and parallel DE fail to satisfy the constraints on gain
and provide poor S11 responses. (ii) In all the ten runs, PSADEA
provides very satisfactory results even for the worst one, using only
6.3 h on average. (iii) PSADEA shows good robustness and reveals
an added advantage over SADEA in terms of solution quality. 

The convergence trends of all methods are shown in Fig. 5.
From Fig. 5a, it can be seen that to obtain the average objective
function value of the SADEA algorithm (−23.63 dB at 18.6 h),
PSADEA needs 5.5 h. Hence, PSADEA shows over 3.4 times
speed improvement than SADEA when three candidate designs are
simulated in parallel. Again, when the parallel simulations of
PSADEA are considered as sequential (Fig. 5b), to obtain the
average best objective function value of SADEA (−23.63 dB at 645
sequential EM simulations), PSADEA needs 546 sequential EM
simulations. This speed improvement is only contributed by the
self-adaptive SAEA framework. 

4.3 Benchmark problem tests

To complement the antenna examples, the performance of
PSADEA is demonstrated by three mathematical benchmark
problems [20, 24]. Mathematical benchmark problems are
computationally cheap analytical functions. Using them, the
algorithm performance can be directly evaluated because the global
optimum is known, and more reliable statistical comparisons can
be performed because carrying out a number of runs is
computationally cheap. To compare the methods in different
circumstances, a problem with a simple landscape (F1: the

Fig. 3  Convergence trends for example 1
(a) Convergence trends for PSADEA and SADEA (average of ten runs), parallel DE,
and parallel PSO (average of three runs), (b) Comparison of PSADEA (in sequential
mode) and SADEA

 

Fig. 4  Layout of the YUA and typical optimised performances by PSADEA
(a) The YUA, (b)S11 response, (c) Gain response

 

Table 3 Ranges of the design variables (all sizes in mm)
(example 2)
Variables s1 s2 v1 v2 u1 u2 u3 u4

lower bound 3 1 5 2 2 2 1 1
upper bound 7 6 12 12 6 6 5 5
 

Table 4 Optimised max S11 (dB) in the operational
bandwidth using different methods for example 2
Method Best Worst Mean Std
PSADEA −25.87 −22.82 −23.98 0.90
SADEA −24.53 −22.52 −23.63 0.70
parallel DE −6.27 −5.19 −5.57 0.61
parallel PSO −15.65 −7.53 −12.26 4.23

 

Fig. 5  Convergence trends for example 2
(a) Convergence trends for PSADEA and SADEA (average of ten runs), parallel DE,
and parallel PSO (average of three runs), (b) Comparison of PSADEA (in sequential
mode) and SADEA
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Ellipsoid function, which is a unimodal function), a problem with a
complex landscape (F2: the Ackley function, which has numerous
local optima), and a problem with tight constraints (F3: two out of
four non-linear constraints are active at the global optimum) are
used. More details on the problems can be found in the Appendix.
We expect that the landscape complexity of most antenna
optimisation problems is between F1 and F2. F3 is used to imitate
antenna optimisation problems with stringent performance
specifications, such as example 2 (Section 4.2). The computing
budget is 1000 exact function evaluations for PSADEA and
SADEA, and 6000 exact function evaluations for DE and PSO, on
all problems. Parallel evaluation is not considered for all the
methods. The statistics (over 30 independent runs) are shown in
Tables 5–7. 

In terms of solution quality, it can be seen that PSADEA shows
excellent results for F1 and F3 compared to their known global
optima of 0 and 680.63, respectively. (All methods satisfy the

constraints for F3 at convergence.) PSADEA shows a good result
for F2 compared to the known global optimum of 0. For F2, the
average value of PSADEA is 0.1477, but 90% of the obtained
objective function values are <0.025. This can also be seen from
the median value, 0.0018.

A Wilcoxon test [25] is carried out using the optimal function
values obtained by all methods (over 30 independent runs) as data
samples. The null hypothesis is that the data samples of PSADEA
have an equal median with the data samples of the reference
methods. The confidence level is 95%. The p-values obtained from
the Wilcoxon test between PSADEA and other methods on F1, F2,
and F3 are shown in Tables 5–7, respectively. It can be seen that
for F1 and F3, the null hypothesis is rejected for all the reference
methods, showing PSADEA obtains statistically better
performance compared to SADEA, DE, and PSO. For F2, the null
hypothesis is rejected for SADEA and DE and it is accepted for
PSO. Hence, the PSADEA result is statistically better than that of
SADEA and DE, and comparable to PSO for F2.

In terms of efficiency, the average convergence trends of all
methods when not considering parallel evaluations are shown in
Figs. 6a–c. It can be seen that for F1, PSADEA shows 1.8, 10.7,
and 7.4 times speed improvement over SADEA, DE, and PSO,
respectively (considering the number of functions evaluations used
by PSADEA to obtain the results of the reference methods). For
F2, PSADEA shows 1.2 times speed improvement over SADEA,
and 5.7 and 4.2 times speed improvement over DE and PSO,
respectively. For F3, PSADEA shows 1.2, 12.1, and 11.0 times
speed improvement over SADEA, DE, and PSO, respectively. The
comparisons using mathematical benchmark problems show the
same conclusions in Sections 4.1 and 4.2. Although the goal of
PSADEA is to enable SADEA to benefit from parallel antenna
simulations, it can be seen that the self-adaptive SAEA framework
(DE mutation strategies, self-adaptive mechanism, and the new
surrogate modelling method) also contributes to the efficiency
excluding parallel computation as well as clearly improves the
optimisation ability. 

5 Conclusions
In this paper, the PSADEA method has been proposed for efficient
global optimisation of microwave antennas taking advantage of
parallel simulations of a few candidate antenna designs, which is a
tendency in the foreseeable future. To the best of our knowledge,
introducing parallel simulations into online SAEA-based antenna
optimisation methods have not yet existed in the literature.

Table 5 Statistics of the best objective function values obtained by all methods for F1 (over 30 runs)
Problem Best Worst Mean Median Std. p-value
PSADEA 3.65 × 10−10 2.91 × 10−6 5.91 × 10−7 1.87 × 10−7 8.06 × 10−7 N/A

SADEA 4.81 × 10−7 9.69 × 10−5 1.68 × 10−5 6.51 × 10−6 2.20 × 10−5 1.92 × 10−6

DE 0.0054 0.0844 0.0221 0.0182 0.0154 1.73 × 10−6

PSO 3.86 × 10−7 8.94 × 10−4 5.74 × 10−5 1.32 × 10−5 1.64 × 10−4 1.92 × 10−6

 

Table 6 Statistics of the best objective function values obtained by all methods for F2 (over 30 runs)
Problem Best Worst Mean Median Std. p-value
PSADEA 3.48 × 10−4 2.0134 0.1477 0.0018 0.4575 N/A

SADEA 2.44 × 10−4 12.8622 1.8521 0.5915 3.5976 0.0073

DE 0.0440 0.1579 0.1026 0.1005 0.0322 0.0028
PSO 2.25 × 10−4 1.6463 0.0947 8.32 × 10−4 0.3608 0.0687
 

Table 7 Statistics of the best objective function values obtained by all methods for F3 (over 30 runs)
Problem Best Worst Mean Median Std. p-value
PSADEA 680.6328 680.6517 680.6406 680.6389 0.0057 N/A
SADEA 680.6350 680.6768 680.6492 680.6467 0.0104 0.0049
DE 680.6829 680.8392 680.7477 680.7442 0.0432 3.02 × 10−11

PSO 680.6680 684.0611 681.0029 680.8468 0.6155 3.02 × 10−11

 

Fig. 6  Convergence trends of all methods
(a) Problem F1, (b) Problem F2, (c) Problem F3
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Experiments show that PSADEA is several times faster than
SADEA and much more efficient than standard parallel DE and
PSO. Thanks to the ensemble of the three selected DE mutation
strategies and the self-adaptive employment of them, as well as the
new surrogate modelling method, the antennas are highly
optimised in a very reasonable time using a standard desktop 4-
core workstation. In addition, the solution quality (i.e. optimisation
ability) is clearly improved compared to the reference methods,
showing PSADEA's potential for challenging design cases. Future
work will include developing PSADEA-based antenna design
exploration tools (will be available from www.ai-dac.com) and
investigating the performance of PSADEA for other microwave
devices.

6 Acknowledgments
This work was partially funded by the UK Engineering and
Physical Science Research Council under project EP/M016269/1.
The authors would like to thank Prof. Slawomir Koziel, Reykjavik
University, Iceland, for test examples.

7 References
[1] Deb, A., Roy, J.S., Gupta, B.: ‘Performance comparison of differential

evolution, particle swarm optimisation and genetic algorithm in the design of
circularly polarized microstrip antennas’, IEEE Trans. Antennas Propag.,
2014, 62, (8), pp. 3920–3928

[2] Sato, Y., Campelo, F., Igarashi, H.: ‘Meander line antenna design using an
adaptive genetic algorithm’, IEEE Trans. Magn., 2013, 49, (5), pp. 1889–
1892

[3] Gregory, M.D., Bayraktar, Z., Werner, D.H.: ‘Fast optimisation of
electromagnetic design problems using the covariance matrix adaptation
evolutionary strategy’, IEEE Trans. Antennas Propag., 2011, 59, (4), pp.
1275–1285

[4] Di Barba, P., Dughiero, F., Forzan, M., et al.: ‘Migration-corrected NSGA-II
for improving multi-objective design optimisation in electromagnetics’, Int. J.
Appl. Electromagn. Mech., 2016, 51, (2), pp. 161–172

[5] Siah, E.S., Sasena, M., Volakis, J.L.: ‘Fast parameter optimisation of large-
scale electromagnetic objects using DIRECT with Kriging metamodelling’,
IEEE Trans. Microw. Theory Tech., 2004, 52, (1), pp. 276–285

[6] Liu, B., Aliakbarian, H., Ma, Z., et al.: ‘An efficient method for antenna
design optimisation based on evolutionary computation and machine learning
techniques’, IEEE Trans. Antennas Propag., 2014, 62, (1), pp. 7–18

[7] ‘CST microwave studio: technical specification’. Available at www.cst.com,
accessed October 2017

[8] Liu, B., Gielen, G.G.E., Fernandez, F.V.: ‘Automated design of analog and
high-frequency circuits’ (Springer-Verlag, Berlin, Heidelberg, 2014, 1st edn.)

[9] Koziel, S., Bekasiewicz, A., Zieniutycz, W.: ‘Expedited EM-driven multi-
objective antenna design in highly-dimensional parameter spaces’, IEEE
Antennas Wirel. Propag. Lett., 2014, 13, pp. 631–634

[10] Koziel, S., Bekasiewicz, A.: ‘Multi-objective optimisation of expensive
electromagnetic simulation models’, Appl. Soft Comput., 2016, 47, pp. 332–
342

[11] Liu, B., Zhang, Q., Gielen, G.G.E., et al.: ‘A Gaussian process surrogate
model assisted evolutionary algorithm for medium scale expensive
optimisation problems’, IEEE Trans. Evol. Comput., 2014, 18, (2), pp. 180–
192

[12] Liu, B., Koziel, S., Zhang, Q.: ‘A multi-fidelity surrogate-model-assisted
evolutionary algorithm for computationally expensive optimisation
problems’, J. Comput. Sci., 2016, 12, pp. 28–37

[13] Jones, D.R., Schonlau, M., Welch, W.J.: ‘Efficient global optimisation of
expensive black-box functions’, J. Glob. Optimisation, 1998, 13, (4), pp. 455–
492

[14] Santner, T.J., Williams, B.J., Notz, W.I.: ‘The design and analysis of computer
experiments’ (Springer-Verlag, New York, 2003, 1st edn)

[15] Emmerich, M.T.M., Giannakoglou, K.C., Naujoks, B.: ‘Single-and
multiobjective evolutionary optimisation assisted by Gaussian random field
metamodels’, IEEE Trans. Evol. Comput., 2006, 10, (4), pp. 421–439

[16] Dennis, J.E., Torczon, V.: ‘Managing approximation models in optimisation’,
in Alexandrov, N.M., Hussaini, M.Y. (Eds.): ‘Multidisciplinary design
optimisation: state-of-the-art’ (SIAM, Philadelphia, PA, USA, 1997), pp.
330–347

[17] Couckuyt, I., Forrester, A., Gorissen, D., et al.: ‘Blind Kriging:
implementation and performance analysis’, Adv. Eng. Softw., 2012, 49, pp. 1–
13

[18] Price, K., Storn, R.M., Lampinen, J.A.: ‘Differential evolution: a practical
approach to global optimisation’ (Springer-Verlag, Berlin, Heidelberg, 2005,
1st edn.)

[19] Stein, M.: ‘Large sample properties of simulations using Latin hypercube
sampling’, Technometrics, 1987, 29, (2), pp. 143–151

[20] Jamil, M., Yang, X.: ‘A literature survey of benchmark functions for global
optimisation problems’, Int. J. Math. Model. Numer. Optimisation, 2013, 4,
(2), pp. 150–194

[21] Goldberg, D.E., Deb, K.: ‘A comparative analysis of selection scheme used in
genetic algorithms’, Found. Genet. Algorithm, 1991, 1, pp. 69–93

[22] Koziel, S., Ogurtsov, S.: ‘Multi-point response correction for cost-efficient
antenna and microwave design optimisation’. Loughborough Antennas
Propagation Conf., Loughborough, UK, November 2013, pp. 548–552

[23] Koziel, S., Ogurtsov, S.: ‘Multi-objective design of antennas using variable-
fidelity simulations and surrogate models’, IEEE Trans. Antennas Propag.,
2013, 61, (12), pp. 5931–5939

[24] Michalewicz, Z., Schoenauer, M.: ‘Evolutionary algorithms for constrained
parameter optimization problems’, Evol. Comput., 1996, 4, (1), pp. 1–32

[25] Wilcoxon, F.: ‘Individual comparisons by ranking methods’, Biom. Bull.,
1945, 1, (6), pp. 80–83

8 Appendix
 
8.1 F1: 10-d Ellipsoid problem

F(x) = ∑
i = 1

d
ixi

2

x ∈ [ − 20, 20], i = 1, …, 10
(16)

8.2 F2: 10-d Ackley problem

F(x) = − 20e−0.2 (1/d)∑i = 1
d xi

2 − e(1/d)∑i = 1
d cos(2πxi) + 20 + e

x ∈ [ − 32, 32], i = 1, …, 10
(17)

8.3 F3: 7-d polynomial problem with non-linear constraints

F(x) = (x1 − 10)2 + 5(x2 − 12)2 + x3
4 + 3(x4 − 11)2

⋯ + 10x5
6 + 7x6

2 + x7
4 − 4x6x7 − 10x6 − 8x7

x ∈ [ − 10, 10], i = 1, …, 7
s . t .

127 − 2x1
2 − 3x2

4 − x3 − 4x4
2 − 5x5 ≥ 0

282 − 7x1 − 3x2 − 10x3
2 − x4 + x5 ≥ 0

196 − 23x1 − x2
2 − 6x6

2 + 8x7 ≥ 0
−4x1

2 − x2
2 + 3x1x2 − 2x3

2 − 5x6 + 11x7 ≥ 0

(18)

The first and the last constraints are active (i.e. equals to zero)
at the global optimum.
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