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Abstract

With the exponential growth in the number of internet-enabled devices, large
scale security threats such as distributed denial of service (DDoS) attacks sig-
nificantly affect software defined networks (SDNs). This necessitates efficient
detection and mitigation solutions. Monitoring of SDN activities (typically
identified using metrics such as throughput, jitter and response time) to as-
certain deviations from profiles of normality (previously learned from benign
traffic) is a key approach in detecting attacks on SDNs. In this paper, local
sensitivity analysis (LSA) is implemented to identify the key network metrics
that mainly influence the prediction of whether an SDN is under attack or
secure. Using throughput, jitter and response time as the network impact
metrics and a mathematical cost function based on min-max feature scaling
to associate SDN scenarios with their respective SDN impact metrics, an
artificial neural network (ANN)-based prediction model is built. The sen-
sitivity of throughput, jitter and response time is then evaluated using the
deviations of newly predicted target values of the ANN model from the actual
target values when an additive white Gaussian noise (AWGN) is added to
the respective impact metrics. The results of this study show that through-
put, jitter and response time are all statistically sensitive to a DDoS flooding
attack of the SDN. Also, Jitter was found to be the most sensitive network
metric to a DDoS flooding attack of the SDN.
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1. Introduction

In the last decade, existing works in the literature and industrial collab-
oration on the subject of SDN implementation indicate high proliferation in
its adoption. Realistic models and methodologies for understanding network
traffic behaviour play an important role in facilitating efficient DDoS attack
detection and mitigation[1].Using simulation data to describe dynamic net-
work traffic characteristics and detect DDoS attacks is more reliable than tra-
ditional mathematical techniques[2]. Application of machine learning tech-
niques to simulate network traffic characterisation has made it more realistic
to mimic network traffic patterns and develop a robust models against secu-
rity vulnerabilities for multiple reasons. A key advantage of this approach
is the reduction of costly investment in data monitoring tools for day-to-day
traffic analysis and performance overhead introduced.

Sensitivity analysis is an ad-hoc analysis that relies on historical data.
Information gathered by network administrators and designers help in plan-
ning and responding to threat to input network parameters deemed sensitive.
The full global analysis of all the historical network parameters gathered to
monitor and detect DDoS attacks can be computationally expensive and may
introduce a delay in end-to-end communication if implemented on an enter-
prise network. Therefore, there is a need to select a subset of parameters that
are most probable to have strong effects in detecting an anomaly in network
traffic. One-at-a-time local sensitivity analysis (LSA) technique analyses the
impact of a single parameter on the cost function at a time, keeping the other
parameters fixed. LSA is fast to compute. To the best of our knowledge,
this work is a novel attempt to identify network parameters that are more
sensitive in detecting DDoS attack in SDN using local sensitivity analysis.

The remainder of this paper is organised as follows: Section 2 discusses the
related work, Section 3 provides an overview of sensitivity analysis, Section 4
discusses types of sensitivity analysis, Section 5 focuses on the application of
ANN to sensitivity analysis, Section 6 provides a description of the dataset
used, Section 7 reports on the experimental approach, results and discus-
sion are presented in Section 8, and the concluding remarks are provided in
Section 9.

2. Related Work

Application of sensitivity analysis to computer networks has become a
popular research topic in recent years, especially in relation to security [3][4].
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In [5], the authors examined using small sample computer models to make
decisions and judgement in the face of uncertainty for model associated with
risk assessment of disposal of radioactive waste. The work was further ex-
tended in [6] to determine the applicability of three widely used techniques to
computer models having large uncertainties and varying degrees of complex-
ity. Sensitivity analysis has also been applied to address computer networks
availability in [7]. The authors implement parametric sensitivity analysis to
compute effect of changes in the rate of constants of a Markov model on
system dependability. Authors in [8] presents a method for computing net-
work output sensitivity with respect to variations in the inputs for multilayer
feedforward artificial neural network with different activation functions.

In terms of security, the authors in [9] performed sensitivity analysis on
DARPA intrusion detection datasets and reported that 33 out of 41 features
of the network traffic characteristics can be removed without causing great
harm to the classification accuracy of DoS attacks and normal network traffic.
Similarly, sensitivity analysis has been applied to attack pattern discovery in
trusted routing scheme [10]. Using packet delivery ratio, normalised routing
overhead, distrust threshold and trust update interval as performance met-
rics in different network conditions, the work carried out in [10] revealed that
distrust threshold is more sensitive as compared to other metrics in optimis-
ing the detection rate of schemes employed. The authors in [4] explored the
detection of bot in a compromised machine using dendritic cell algorithm
(DCA). Their proposed algorithm and sensitivity analysis showed that in-
corporation of MAC value has significant effect on the detection of bot using
DCA algorithm.

All the works mentioned above highlights the application of sensitivity
analysis in identifying input parameters that significantly affect system re-
sponse in designing attack detection algorithms. However, our approach
differs from the ones mentioned in the following aspects. Firstly, the fea-
tures of interest are extracted from emulated SDN environment with normal
and DDoS attack traffic. Secondly, the implementation of local sensitivity
analysis using artificial neural network to identify key network metrics that
mainly influence the prediction of whether an SDN is under attack or secure.

3. Sensitivity Analysis

Anomaly detection techniques in networks rely on the assumption that
variations in network parameters may have some effect on the state of network



performance when under attack. Several network features such as time-to-
live (TTL), throughput, end-to-end delay, packet drops amongst others are
considered input variables to assess the robustness of detection and to ensure
appropriate mitigation technique is deployed. This approach is memory-
intensive and can increase the computation time coupled with the purchase
of high-performance computing device.

Sensitivity analysis involves the estimation of uncertainty in the output
of a model as a result of different sources of uncertainty in the input[11].
Figurel illustrates the basic representation of the relationship between input
parameters and output response.

Factor p

Factor [\

Figure 1: Relationship between input and output response in a sensitivity analysis

Sensitivity analysis offers an efficient approach to assess extent to which
detection results are affected by changes in input network variables. In this
context, sensitivity analysis is aimed at priority setting, to identify the key
variables that are major influence in predicting whether the network is under
attack or secure. As a result, sensitivity analysis provides an understanding
of cause and effect reaction between changes in input variables and the cor-
responding output.

One of the key advantages of sensitivity analysis is that it identifies crit-
ical variables that may be given less consideration when designing a robust
detection model.

4. Types of Sensitivity Analysis

When one or multiple inputs have relatively insignificant sensitivity as
compared to others, the overall dimension of the neural network for training
can be reduced by removing them and a smaller size neural network can be
successfully retrained to develop a more efficient model.
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e Local Sensitivity Analysis

Local sensitivity analysis (LSA) is the assessment of the local impact of input
factors’ variation on a model response by concentrating on the sensitivity in
the vicinity of a set of factor values[12][13]. In LSA, the values of other input
parameters are kept constant when studying how sensitive an input factor is.

LSA evaluates sensitivity for a single deterministic set of input parameters
which is often based on the partial derivatives of the response with respect
to the input parameters[14][15]. Given the model F defined as the following
System:

y =F(x,7) (1)
LSA indicates how independent variation x and parameters v = [y, ...,%,] of
F influence dependent variable y.

The main concept of LSA is based on computation, after a training pro-
cess of influence of pattern attributes z;, i = 1,..., N or model’s parameter
7 on the output value y;, j= 1,..., N, where N and J denote the number of
features and outputs respectively [16][17]. This influence is characterised by

real coefficients S};

g _ Oy 2, )

7,0 axl (2>

Equation 2 describes the sensitivity value of the jth neural network output
signal on the ith attribute of the input vector x, calculated based on the pth
training pattern, p = 1,..., P.

LSA approach can be informative if there is little uncertainty in model
input or if the inputs act linearly or additively [18]

e Global Sensitivity Analysis

Global Sensitivity Analysis (GSA)is the study of how uncertainty in the out-
put of a model either numerical or otherwise can be apportioned to different
sources of uncertainty in the model input [19].

GSA considers the impact of varying parameters simultaneously and uni-
formly over their full range of possible values [20][21]. GSA can show the
relationship between multiple input parameters and cope well with a linear
and non-linear response [22]. Unlike local sensitivity analysis, global sensi-
tivity analysis requires more computational work and the approach is often
probabilistic.



5. Artificial Neural Network Application to Sensitivity Analysis

The concept of artificial neural network (ANN) stems from an understand-
ing of how neurons in the brain function to model a simple neural network
using electrical circuits [23].

A key feature of ANN is its ability to learn. ANN employs three learning
approaches namely: unsupervised learning, reinforcement learning and super-
vised learning. Any of this learning approaches can be combined or modified
to produce a robust model that fits the generated data. ANN has found ap-
plication in solving many different problems [24][25][26]. However,for known
input to output process and rule-based systems, ANN becomes unreliable.
Moreover, it might be detrimental if ANN algorithm attempts a better so-
lution and begins to diverge from desired process. Some problems usually
solved with ANN include classification, prediction, optimisation and pattern
recognition. In intrusion detection and prevention system (IDPS), ANN can
predict benign traffic from malicious traffic. Any form of prediction can be
improved by learning from the data. These improvements and techniques
depend on four major factors [27]: What data is to be improved? What
prior information is available? What representation is used for the data?
and What feedback is available to learn from?

5.1. Neural Network Training Algorithms

There are many different batch training algorithms that can be used to
train a network. All have different characteristics and performance in terms
of speed, precision, and memory requirement. Table 1 presents the lists of
algorithm and the associated advantages and disadvantages.

Figure 2 illustrates the memory-speed comparison of neural network train-
ing algorithm. The gradient descent is the slowest training algorithm requir-
ing less memory, while Levenberg-Marquardt is the fastest (but it require a
lot of computational memory). For our experiment, we utilise the Levenberg-
Marquardt training algorithm.The Levenberg-Marquardt training algorithm
is regarded to be one of the most efficient training algorithms for ANNs [28].
It works by combining two algorithms (i.e., gradient descent method and the
Gauss—Newton method) and as a result remedies their individual shortcom-
ings [28][29]. Its major drawbacks are the increased computational cost due
to the need to carry out Hessian matrix inversion calculation each time for
weight updating and the storage of the Jacobian matrix whose size is decided



Table 1: Comparison of Neural Network training algorithm

Algorithm

Advantages

Disadvantages

Gradient descent

Newton’s method

Conjugate gradient

Quasi Newton

Levenberg Marquardt

Employs first order algorithm
to find minimum of a function

Require fewer steps than gra-
dient descent to find minimum
value of loss function.

Faster convergence than gradi-
ent descent.

It is faster than gradient de-
scent and conjugate gradient.
Hessian matrix does not need
to be computed and inverted.

Works without computing ex-
act Hessian matrix

Performs well with loss func-
tions which take the sum of
squared errors.

Error function is minimised,
while the step size is kept
small.

Require many iterations for
functions which have long nar-
row valley structures.

slow convergence.

Prone to get stuck in local min-
ima.

Requires more information for
evaluation, storage and inver-
sion of Hessian Matrix.

Line minimisation can be com-
putationally expensive.

It needs to store and update a
matrix of size M x M.

Requires a lot of memory when
computing Jacobian matrix for
big datasets.

by the number of patterns, number of outputs, and the number of weights
29].

For large-sized networks and training patterns, even though the Leven-
berg-Marquardt algorithm is very efficient, the computational cost may be
too expensive or prohibitive to handle the Jacobian matrix storage and the
Hessian matrix inversion calculation [29]. For our experiment, there are a
few thousands of instances (i.e., 3600 in total), three input parameters and
one output. This can be easily classified as small or medium sized problem.
Hence, the Levenberg-Marquardt training algorithm is adopted in our exper-
iment due to its speed, stable convergence and less memory consumption (in



Memory Levenberg
Marquardt

Quasi
Newton
Newton
method

descent

Conjugate
gradient
Gradient

o
>

Speed
Figure 2: Memory speed comparison of neural network algorithm

this case due to a few parameters).

5.2. System Architecture and Setup

A custom network topology has been designed using Mininet emulator
[30] to address the problems highlighted earlier. Tree topology is considered
because it can be easily adopted for a wide area network and it offers easy
expansion of node.

The custom topology shown in Figure 3 is implemented on 32G RAM Intel
Xeon E3-1220 processor with Kali Linux as the base operating system. The
floodlight controller [31] is deployed in the VirtualBox VM running Ubuntu
18.10 LTS while Mininet software is deployed on VirtualBox VM running
Ubuntu 16.10 LTS.

The modelled network comprises 10 OpenFlow switches and 16 hosts
which are connected using 100 Mbps link. The essential software tool in-
cludes iperf which is used to create a client-server relationship and low orbit
ion cannon (LOIC) [32] to generate DDoS flooding attack. Using ”iperf”
and "ping” commands to generate legitimate traffic between the host and
server, system properties such as response time, throughput and jitter values
generated were recorded per second for a duration of 15 minutes.

In the attack scenario, an assumption was made that the attack is from
an internal source. Hence, compromised hosts within the network were used
to launch HTTP, TCP and UDP flood attacks on the server for 15 minutes
respectively and results recorded from the server.
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Controller

Figure 3: Modelled SDN tree architecture

6. Description of Dataset

Over time, emphasis has been on the development of algorithm to solve
problems. With the growing generation of big data due to migration to 5G
and beyond, internet of things (IoT) and cyber-physical processes, it becomes
pertinent to develop a means for the accurate representation of data before
developing an algorithm that fits the data [33][34].

The dataset for this experiment is generated via the modelled tree topol-
ogy described in Figure 3. Four scenarios namely:1.Without attack (data
collected when there was no attack), 2. With TCP flooding attack (data col-
lected when TCP attack launched), 3. With UDP flooding attack (data col-
lected when UDP attack launched) and 4. With HTTP flooding attack (data
collected when HTTP attack launched) scenarios were considered. Each ex-
periment was performed for 15 minutes and corresponding network traffic
was recorded per second. Hence, there are 900 samples for each scenario to
have a total of 3600 data samples. Throughput, Jitter and Response time



features were extracted using KNIME to create our dataset. Tables 2 - 5
provide the descriptive statistics for the generated data.

Table 2: Descriptive statistics of actual simulation data (over 900 data samples) for normal
scenario

Metric ~ Min Max  Average Median Standard Deviation

T,  95.1000 95.9000 95.6332 95.6000 0.1402
Ry 0.0320  2.1200 0.2114  0.1980 0.1286
Ji 0.0040 0.4930 0.2271  0.1940 0.0943

Table 3: Descriptive statistics of T, R; and Jy(over 900 data samples) for TCP attack
scenario

Metric ~ Min Max  Average Median Standard Deviation

T, 0 95.9000 0.5441  0.0238 7.0999
Ry 0.2650 678 302.2676 299 110.6598
Ji 0.0040 0.4930  0.2271  0.1940 0.0943

Table 4: Descriptive statistics of T}, R; and J; (over 900 data samples) for UDP attack
scenario

Metric Min Max  Average Median Standard Deviation

T,  95.1000 95.9000 95.6332 95.6000 0.1402
Ry 0.1980  82.1000 26.3097 24.8000 7.3245
Jt 9.1610 18.4280 10.5100 10.1725 1.0496

Table 5: Descriptive statistics of T,, R; and J;(over 900 data samples) for HTTP attack
scenario

Metric  Min Max  Average Median Standard Deviation

T, 0 95.9000  0.7429 0 8.3955
R, 0.0200 1673  49.1262 23.7000 90.9398
Jt 0.0040 0.4930  0.2271  0.1940 0.0943
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It can be seen from Tables 2 - 5 that the average throughput during
attack drops significantly as compared to without attack scenario for TCP
and HTTP flooding attack. Similarly, the jitter is affected adversely for the
UDP attack and without attack scenario. In all cases of attack, there is an
increase in response time. Thus, it can be deduced that each of these features
are sensitive. However, the goal is to establish which is the most sensitive.

7. Experimental Approach

The local sensitivity analysis is carried out to determine the sensitivity
of throughput, jitter, and response time to DDoS flooding attack. The goal
is to determine if truly these metrics are sensitive to attack and which one is
the most sensitive. Figure 4 shows the methodology flow chart of the 5-stage
approach employed in performing local sensitivity analysis.

Extract data
(u R Tp)

Build and Train ANN
Model using Normalised
data and Scenario-

specific CF

Rescale normalised
data to Obtain
Scenario-specific
Cost Function value

Obtain MSE values
between predicted
CF and actual CF

Normalise data

(using min-max me(hod)

Stage 2 Add AWGN

Normalise noisy

to T, . . n
Tpusing min-max Predict Cost
mainod Function Obtain MSE values
° Normalised J; e Using ANN between predicted
model from CF and actual CF

Stage 1

Normalised Ry

Normalised T,

A\

Predict Cost
Function
Using ANN
model from
Stage 1

Obtain MSE values
between predicted
CF and actual CF

Normalise noisy J;
using min-max
method

[&gﬂ] Normalised T,
; Function Obtain MSE values
e pomalisedi: 0 Using ANN between predicted

CF and actual CF

model from
Stage 1

Normalise noisy
R; using min-max
method

v

using Wilcoxon signed rank sum test

‘[

Perform non-parametric hypothesis test } ’

Figure 4: LSA methodology flow diagram
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e Stage 1: At stage 1, throughput, jitter and response time features
are extracted and the data is normalised using min-max method. The
normalised data is used to obtain cost function values which are then
fed as input training data into the ANN where MSE values are obtained.

e Stage 2 - 4: In these stages, additive white Gaussian noise(AWGN) is
added based on one-at-a-time basis. AWGN is added to throughput(7},)to
have noisy T, while other factors (Jitter (.J;) and response time (R;))
were kept constant in stage 2. This process is repeated for noisy J;
(Stage 3) and noisy R; (Stage 4) while other parameters are kept con-
stant and new cost function values are predicted, respectively in each
stage(i.e., Stages 2-4).

e Stage 5: Hypothesis test is carried out at this stage to statistically
validate any of the inferences made from the deviations.

7.1. Data Normalisation

The data were normalised such that each system parameter contributes
similar relative numerical weight in order to minimise data redundancy and
ensure all target input values have an agreeable metric scale. The data
normalisation process employs min-max normalisation method. Min-Max
normalisation is a strategy which linearly transforms variable ‘X’ so that the
entire range of values of X from minimum to maximum varies between 0 and
1. It can be expressed mathematically as:
Xnormalised = M

X

maxr ~ szn

(3)

where X,,;, and X,,,, are the minimum and maximum values in X respec-
tively. Tables 6 - 9 show the descriptive statistics of the normalised values
for tables presented in section 6

Table 6: Descriptive statistics of normalised T,, R, and J;(over 900 data samples) for
without attack scenario

Metric Min Max Average Median  Standard Deviation
T, 0.9917 1 0.9972 0.9969 0.0015
R,  7.1728e-06 0.0013 1.1440e-04 1.0640e-04 7.6849e-05
Jy 0 0.0265 0.0121 0.0103 0.0051
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Table 7: Descriptive statistics of normalised T,, R; and J; (over 900 data samples) for
TCP_attack scenario

Metric Min Max  Average  Median  Standard Deviation
T, 0 1 0.0057  2.4818e-04 0.0740
R,  1.4645e-04 0.4053 0.1807 0.1787 0.0661
J 0 0.0265  0.0121 0.0103 0.0051

Table 8: Descriptive statistics of normalised T,,, R; and J; (over 900 data samples) for
UDP attack scenario

Metric Min Max  Average Median Standard Deviation
T, 0.9917 1 0.9972  0.9969 0.0015
R,  1.0640e-04 0.0491 0.0157  0.0148 0.0044
Jy 0.4970 1 0.5702  0.5519 0.0570

Table 9: Descriptive statistics of normalised T,, R; and J; (over 900 data samples) for
HTTP attack scenario

Metric Min Max  Average Median Standard Deviation

1, 0 1 0.0077 0 0.0875
Ry 0 1 0.0294  0.0142 0.0544
J 0 0.0265 0.0121  0.0103 0.0051

7.2. Cost function value evaluation

We use the normalised data in section 7.1 to build Input-Output corre-
spondence and the normalised values are scaled to the following four scenar-
i0s:

e Scenario 1: a scale of 1 is assigned to represent without attack

e Scenario 2: a scale of 2 is assigned to represent with TCP attack
e Scenario 3: a scale of 3 is assigned to represent with UDP attack
e Scenario 4: a scale of 4 is assigned to represent with HTTP attack

in order to reflect scenario-specific targets from their corresponding values,a
mathematical cost function in terms of throughput, jitter and response time
is introduced. The proposed cost function tends toward unity for the worst
case scenario (SDN under severe attack) and approaches zero for the best
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case scenario (SDN without attack). The cost function can be represented
mathematically by:

Crp = (abs(T, — Ji) * Ry) * Ly, (4)

where Cp represents cost function, 7, = Throughput, J; = Jitter , R, =
Response time and L,, = Weight or Scale.

For the best case scenario (i.e.,normal SDN state), the throughput is
maximum, response time is minimum and jitter is minimum. Therefore, 7T},
approaches 1, J;, and R; approach zero after normalisation. So, we have the
following condition for the best case scenario.

T, —1
Bestcase = ¢ J;, — 0 (5)
R, — 0

Similarly, for the worst case scenario (i.e., SDN under severe attack), the
throughput is minimum, response time is maximum and jitter is maximum.
Therefore, T}, approaches 0, J; and R; approach 1 after normalisation. Hence,
we have the following condition for the worst case scenario.

T, =0
Worstcase = J; — 1 (6)
R, —1

Substituting the values in equations 5 and 6 into equation 4 , Cr ap-
proaches null (zero) for normal network state and approaches unity (one)
when the SDN is under attack. A descriptive statistics of the cost function
value over 3600 samples for normal, UDP,TCP, and HTTP flooding attack
scenarios is presented in TablelO.

As shown in Figure 5, the cost function value(Cr) associated with normal
(without attack) network traffic hovers around zero. This value satisfies the
condition for our best case scenario. The other attack scenario has cost
function value well above zero with peak values of 0.78 and 0.63 recorded for
HTTP and UDP flood traffic respectively.

The cost function value(Cr) simply indicates that the system parameters
experience changes due to attacks. To ascertain the most sensitive of these
parameters due to attacks, local sensitivity analysis is carried out.
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Table 10: Descriptive Statistics of the Cost function value (over 3600 data samples) for
normal, TCP, UDP and HTTP attack scenarios

Metric Min Max  Average Median Standard Deviation
Normal 7.0837e-05 0.0124 0.0011  0.0010 7.5756e-04
TCP 0 0.1528  0.0435  0.0382 0.0251
UDP 0.0014 0.6656  0.2018  0.1968 0.0654
HTTP 0 0.7728  0.0147  0.0065 0.0336
D.B I T T

Normal Operating Condition
TCP Flood Attack

UDP Flood Attack

s HTTP' Flood Attack

=
o

Cost Function Value
o =
N B

o L

0 1000 2000 3000 4000
Number of Simulated Scenarios

Figure 5: Variation in cost function value versus attack

7.3. AWGN and MSFE

additive white Gaussian noise (AWGN) is a statistical noise with a Proba-
bility Density Function equal to that of standard normal distribution. AWGN
is characterised with bell-shaped curve as shown in Figure 6 with a mean
value of zero, standard deviation value of 1 and total area under the curve
is 1. For the local sensitivity analysis, AWGN is added to throughput, jitter
and response time,respectively, as shown in stages 2 - 4 of the LSA method-
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Figure 6: AWGN distribution

ology flow chart(see figure 4). Mean Squared Error(MSE) values over 50 runs
is obtained afterward. MSE measures the average squared difference between
the predicted values and the actual value. MSE is expressed mathematically

as:
n

MSE = % Z(y — 7:)° (7)

7.4. ANN training

A prediction model is built using ANN with the normalised value dis-
cussed in Section 7.1 as input and the cost function values described in
Tablel0 as the target values. The ANN model is trained with the three
inputs metrics (i.e., T,, R; and J;), 10 hidden layers and a single output
(i.e.,Cr)under 9 iterations as shown in Figure 7. The best validation per-
formance is at epoch 3 (see Figure 8). The number of processing elements
per layer, as well as the number of layers greatly influence the training pro-
cess. Too few processing elements can slow down the learning process and
too many can lead to overfitting of the training dataset [35][36].For our ex-
periment, 2520 data samples (70% of the total data samples) have been used
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as the training data set, 540 data samples (15% of the total data samples)
have been used as the validation data set and 540 data samples (15% of the
total data samples) have been used as the test data set according to the data
portioning approach recommended in several works [37][38]. Figure 8 shows
that the ANN model is correct and acceptably accurate.

<\ Neural Network Training (nntraintool) - x

Neural Network

Hidden Qutput
Input Output
3 1
10 1

Algorithms

Data Division: Index (divideind)

Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mse)
Calculations:  MATLAB

Progress
Epoch: L] H 9 iterations 1000
Time: 0:00:00
Performance: 17 T ooossR 0.00
Gradient: 232 [ AS2e0s T | 100607
Mu: 0.00100 1.00e-05 1.00e+10
Validation Checks: 0 | [ 6
Plots

Performance (plotperform)

Training State (plottrainstate)

Error Histogram (ploterrhist)

Regression (plotregression)

Plot Interval: ' 1 epochs

v Opening Performance Plot

Figure 7: ANN training model
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Mean Squared Error (mse)

Best Validation Performance is 0.0084446 at epoch 3

Train
Validation
Test
.......... Bast

9 Epochs

Figure 8: A typical plot of MSE vs number of Epochs

8. Results and Discussion

The sensitivity of throughput, jitter and response time is evaluated using
the deviation of newly predicted target value from actual target values ob-
tained and the MSE value of the prediction model. Tables 11 - 13 show the
impact of adding AWGN to the impact metrics. For the 50 independent sta-
tistical runs to validate the statistical significance of this experiment, it can
be seen that jitter’s standard deviation value is considerably more than what
is obtainable in the 7}, noisy and R, noisy respectively (See the appendices
for the complete tables).

Table 11: Local sensitivity analysis for noisy 75,

data samples) for 50 statistical runs

normalised R;, normalised J; (over 3600

No of runs ~ Min Max  Average Median Standard Deviation
1 -0.2907 0.6820 -0.0230 -0.0632 0.0905
2 -0.1138 0.6911 0.0090 -0.0281 0.0908
3 -0.0876 0.7104 0.0102 -0.0265 0.0915
48 -0.1589 0.7035 0.0113  -0.0242 0.0917
49 -0.2439  0.6930 -0.0182 -0.0603 0.0894
50 -0.0753 0.7132  0.0036  -0.0390 0.0893
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Table 12: Local sensitivity analysis for noisy R;, normalised J;, normalised T, (over 3600
data samples) for 50 statistical runs

No of runs ~ Min Max  Average Median Standard Deviation
1 -0.1461 0.6995 -0.0017 -0.0445 0.0898
-0.0896 0.6993 -0.0107 -0.0528 0.0895
3 -0.0943 0.7007 -0.0090 -0.0513 0.0893
48 -0.2157  0.6997 -0.0091 -0.0500 0.0895
49 -0.2500 0.7009 -0.0100 -0.0521 0.0895
50 -0.0836 0.6922 -0.0093 -0.0511 0.0894

Table 13: Local sensitivity analysis for noisy J;, normalised R, normalised T, (over 3600
data samples) for 50 statistical runs

No of runs  Min Max  Average Median Standard Deviation
1 -0.2783 0.6505 -0.0323 -0.0518 0.1307
2 -0.4036 0.7082 -0.0770 -0.0655 0.1249
3 -0.3362 0.6227 -0.0239 -0.0536 0.0962
48 -0.4165 0.7079  0.0191  -0.0179 0.0912
49 -0.1906 0.7496  0.0007  -0.0350 0.0922
50 -0.0896 0.7296  0.0247  -0.0012 0.0998

8.1. Hypothesis test

Wilcoxon test [39] is carried out over 50 runs when J;, T, and R, are
noisy and when they are not noisy. Since the sample size is sufficiently
large (that is, 50 in this case), a z-statistic can be used to approximate the
probability value (p-value) of the test [40]. This is why Wilcoxon test[39]
is an appropriate test for statistical significance in this case. The Wilcoxon
test is a non-parametric test that obeys the central limit theorem. It tests
the null hypothesis that the normalised data and its noisy version are from
continuous distributions with equal medians. A common significance level
of 0.05 (i.e., 5%) is selected. If the resultant p-value is equal to or less than
0.05, then, there is strong evidence against the null hypothesis. The p-value
obtained from the Wilcoxon test is shown in table 14. From table 14, it can
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be seen that the null hypothesis is rejected for all cases. This indicates that
noisy J;, T,,, and R; are all statistically sensitive.

Table 14: Descriptive Statistics of the MSE Values Over 50 Statistical Runs

Metric Min Max  Average Median Standard Deviation  p-value
S1  0.00797 0.00826  0.0080  0.00803 0.000047 N/A
S2  0.00797 0.01145 0.0084  0.00824 0.000634 2.4225e-09
S3 0.00797 0.00843 0.0081  0.00807 0.000066 1.7330e-17
S4  0.00799 0.02951 0.0115  0.02951 0.004858 1.7330e-17

e S1: normalised 7}, normalised R;, normalised .J;
e 52: noisy T, normalised R;, normalised J;
e S3: noisy R, normalised J;, normalised 7},

e S4: noisy J;, normalised R;, normalised T},

A plot of MSE values against the number of runs is shown in Figure 9.
Using rank sum, the result shows that jitter is the most sensitive to flooding
attack followed by throughput and then response time. The work presented
in [41] also shows that jitter may severely degrade systems performance. It is
worthy of note that all parameters evaluated are sensitive to DDoS attacks.
Hence, adequate prevention and mitigation schemes can be deployed in SDN
controller if these features are embedded in the attack detection scheme.
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Figure 9: Sensitivity analysis of throughput (7},), jitter (J;) and response time(R;)

9. Conclusion

In this paper, LSA is implemented on real SDN traffic to identify the key
metrics that mainly influence the prediction of whether an SDN is under at-
tack or secure. The SDN traffic dataset considered are throughput, response
time and jitter, and they are generated from a modelled tree topology in
Mininet. The SDN is subjected to a DDoS flooding attack launched using
LOIC. An ANN prediction model is built using a min-max feature scaling to
derive actual target values from the normalised input parameters. The sen-
sitivity of throughput, jitter and response time is then evaluated using the
deviations of newly predicted target values from actual target values when
an AWGN is added to the respective SDN traffic dataset. Results obtained
show that throughput, jitter and response time are all statistically sensitive
to a DDoS flooding attack on the SDN, and jitter is the most sensitive of
all the impact metrics considered. In the future, global sensitivity analysis
paradigms will be developed to analyse the impact of varying network met-
rics simultaneously and uniformly over their full range of possible values at
a reduced computational overhead.
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Appendix A: Local sensitivity analysis for T}, noisy, normalised R,
normalised J; (over 3600 data samples) for 50 statistical runs

No of runs  Min Max  Average Median Standard Deviation
1 -0.2907 0.6820 -0.0230 -0.0632 0.0905
2 -0.1138  0.6911  0.0090  -0.0281 0.0908
3 -0.0876 0.7104 0.0102  -0.0265 0.0915
4 -0.5090 0.6848 -0.0166 -0.0583 0.0900
5 -0.1144 0.6929 -0.0195 -0.0619 0.0895
6 -0.1281 0.7314 -0.0024 -0.0315 0.0942
7 -0.1177  0.6969 -0.0114 -0.0529 0.0895
8 -0.1248 0.6730 -0.0141 -0.0516 0.0910
9 -0.1677 0.7188 -0.0065 -0.0457 0.0909
10 -0.2079  0.6964 -0.0054 -0.0469 0.0893
11 -0.1413  0.7068 -0.0036 -0.0449 0.0895
12 -0.1582  0.6808 -0.0221 -0.0578 0.0908
13 -0.0767 0.7080  0.0012  -0.0400 0.0897
14 -0.0764 0.7064 -0.0014 -0.0427 0.0893
15 -0.1062 0.7064 0.0001  -0.0420 0.0901
16 -0.2337  0.6871 -0.0126 -0.0543 0.0896
17 -0.1832  0.6967 -0.0237 -0.0620 0.0923
18 -0.1964 0.6935 -0.0072 -0.0483 0.0894
19 -0.2736  0.7796  0.0292  -0.0042 0.0950
20 -0.1658 0.6703  0.0019  -0.0355 0.0913
21 -0.1491 0.7115 -0.0012 -0.0438 0.0896
22 -0.1402 0.6364 -0.0170 -0.0478 0.0935
23 -0.1023 0.7022 0.0012  -0.0391 0.0901
24 -0.1567 0.7126  -0.0123  -0.0535 0.0894
25 -0.1739  0.6962 -0.0088 -0.0496 0.0893
26 -0.1628 0.6986 -0.0062 -0.0478 0.0892
27 -0.0838 0.7068  0.0095 -0.0278 0.0907
28 -0.0949 0.7559  0.0092  -0.0290 0.0903
29 -0.1309 0.7172 -0.0091 -0.0451 0.0916
30 -0.1619 0.7354  -0.0079  -0.0392 0.0942
31 -0.3041 0.7020 0.0162  -0.0231 0.1006
32 -0.0808 0.6946 -0.0086 -0.0499 0.0895
33 -0.0943 0.7100  0.0005 -0.0411 0.0898
34 -0.5080 0.6945 -0.0121 -0.0549 0.0903
35 -0.2063 0.6948 -0.0107 -0.0527 0.0895
36 -0.1662 0.7003 -0.0161 -0.0581 0.0900
37 -0.9084 0.7033 -0.0169 -0.0585 0.0912
38 -0.1037 0.7497  0.0053  -0.0349 0.0903
39 -0.2242  0.7425 -0.0207 -0.0351 0.1050
40 -0.1298 0.7061 -0.0028 -0.0450 0.0896
41 -0.1020 0.7055 -0.0071 -0.0482 0.0902
42 -0.1680 0.6896  0.0004 -0.0371 0.0903
43 -0.1595 0.6956 -0.0042 -0.0474 0.0894
44 -0.1175 0.6898 -0.0100 -0.0505 0.0908
45 -0.1828 0.7074  0.0107  -0.0279 0.0902
46 -0.1252  0.7173  -0.0016 -0.0435 0.0897
47 -0.1248 0.7038 -0.0100 -0.0521 0.0897
48 -0.1589 0.7035 0.0113  -0.0242 0.0917
49 -0.2439  0.6930 -0.0182 -0.0603 0.0894
50 -0.0753 0.7132  0.0036  -0.0390 0.0893
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Appendix B: Local sensitivity analysis for R; noisy, normalised .J;,
normalised T}, (over 3600 data samples) for 50 statistical runs

No of runs ~ Min Max  Average Median Standard Deviation
1 -0.1461 0.6995 -0.0017 -0.0445 0.0898
2 -0.0896 0.6993 -0.0107 -0.0528 0.0895
3 -0.0943 0.7007 -0.0090 -0.0513 0.0893
4 -0.5218 0.6938 -0.0113 -0.0531 0.0899
5 -0.1139  0.6994 -0.0083 -0.0499 0.0893
6 -0.0945 0.6979 -0.0071 -0.0487 0.0892
7 -0.0981 0.6940 -0.0096 -0.0507 0.0892
8 -0.1146  0.6971 -0.0098 -0.0506 0.0892
9 -0.1631  0.6996 -0.0095 -0.0512 0.0893
10 -0.1984 0.7058 -0.0057 -0.0466 0.0894
11 -0.1032  0.6975 -0.0080 -0.0494 0.0894
12 -0.1517 0.7066 -0.0099 -0.0519 0.0895
13 -0.0881 0.6998 -0.0084 -0.0498 0.0893
14 -0.0793  0.6946 -0.0093 -0.0503 0.0893
15 -0.1021  0.6980 -0.0090 -0.0505 0.0894
16 -0.2043  0.7023 -0.0098 -0.0506 0.0893
17 -0.1486 0.7044 -0.0007 -0.0415 0.0898
18 -0.1946 0.6948 -0.0096 -0.0503 0.0893
19 -0.1317  0.6960 -0.0104 -0.0519 0.0895
20 -0.1294  0.6967 -0.0050 -0.0461 0.0893
21 -0.1607  0.7009 -0.0087  -0.0499 0.0893
22 -0.0946 0.6924 -0.0101 -0.0515 0.0892
23 -0.1305 0.7038 -0.0056 -0.0483 0.0897
24 -0.1373  0.7020 -0.0080 -0.0496 0.0894
25 -0.1825 0.6964 -0.0092 -0.0506 0.0896
26 -0.1729  0.6990 -0.0078 -0.0491 0.0893
27 -0.0916 0.7021 -0.0081 -0.0496 0.0893
28 -0.1033  0.7043 -0.0096 -0.0514 0.0895
29 -0.1202  0.7047 -0.0118 -0.0539 0.0897
30 -0.1071  0.7102 -0.0088 -0.0505 0.0895
31 -0.2968 0.6928 -0.0096 -0.0504 0.0895
32 -0.0793  0.6947 -0.0088 -0.0496 0.0893
33 -0.0814 0.6985 -0.0099 -0.0512 0.0892
34 -0.5114  0.6970 -0.0102 -0.0509 0.0896
35 -0.1939  0.6960 -0.0112 -0.0525 0.0894
36 -0.1635 0.7019 -0.0101  -0.0509 0.0896
37 -0.7064 0.6965 -0.0091 -0.0505 0.0900
38 -0.1086 0.7015 -0.0082 -0.0487 0.0897
39 -0.1278 0.7052 -0.0159 -0.0573 0.0905
40 -0.1604 0.6974 -0.0096 -0.0506 0.0893
41 -0.1781 0.7041 -0.0084 -0.0500 0.0895
42 -0.0909 0.6905 -0.0082 -0.0499 0.0892
43 -0.1863 0.6982 -0.0038 -0.0456 0.0898
44 -0.0860 0.7011 -0.0084 -0.0501 0.0897
45 -0.1440 0.6934 -0.0107 -0.0521 0.0893
46 -0.1094  0.6955 -0.0108 -0.0519 0.0893
47 -0.0889 0.6941 -0.0102 -0.0514 0.0892
48 -0.2157  0.6997 -0.0091 -0.0500 0.0895
49 -0.2500 0.7009 -0.0100 -0.0521 0.0895
50 -0.0836 0.6922 -0.0093 -0.0511 0.0894
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Appendix C: Local sensitivity analysis for J; noisy, normalised R;,
normalised T}, (over 3600 data samples) for 50 statistical runs

No of runs  Min Max  Average Median Standard Deviation
1 -0.2783 0.6505 -0.0323 -0.0518 0.1307
2 -0.4036 0.7082 -0.0770 -0.0655 0.1249
3 -0.3362  0.6227 -0.0239  -0.0536 0.0962
4 -0.5330  0.7538  0.0612  0.0708 0.1207
5 -0.1335 0.7024 -0.0008  -0.0401 0.0900
6 -0.3098 0.6035 -0.0655 -0.0718 0.1099
7 -0.1327 0.6900 -0.0092 -0.0515 0.0896
8 -0.1724  0.6709 -0.0271 -0.0663 0.0911
9 -0.5250 0.6866 -0.1055 -0.0780 0.1356
10 -0.2824 0.6954 -0.0008 -0.0413 0.0900
11 -0.1689 0.6948 -0.0204 -0.0610 0.0905
12 -0.3031 0.7189 -0.0511 -0.0571 0.1076
13 -0.1432  0.6935 -0.0101 -0.0510 0.0907
14 -0.1075 0.6804 -0.0133 -0.0568 0.0895
15 -0.1131 0.7846  0.0043  -0.0342 0.1009
16 -0.2020 0.6969  0.0063  -0.0280 0.0923
17 -0.2129 0.6884 -0.0096 -0.0487 0.0912
18 -0.1135 0.7454  0.0056  -0.0320 0.0914
19 -0.3325  0.6425 -0.0747 -0.0896 0.1086
20 -0.1571  0.7642  0.0068  -0.0265 0.0958
21 -0.2269 0.6976 -0.0288  -0.0698 0.0922
22 -0.1246  0.7236  -0.0044 -0.0384 0.0926
23 -0.2143  0.6970  0.0207  -0.0112 0.0941
24 -0.1207 0.7043 -0.0066 -0.0431 0.0911
25 -0.1758 0.6967 -0.0123 -0.0432 0.0921
26 -0.1305 0.6945 0.0141  -0.0185 0.0917
27 -0.0850 0.7126  0.0452  0.0298 0.1082
28 -0.1426  0.6511 -0.0113 -0.0409 0.0927
29 -0.1435 0.6817 -0.0368 -0.0753 0.0904
30 -0.2022  0.7572  0.0150  -0.0066 0.1103
31 -0.1580 0.6980 -0.0162 -0.0568 0.0909
32 -0.2035 0.6875 -0.0215 -0.0599 0.0932
33 -0.0918 0.6951 -0.0092 -0.0505 0.0900
34 -0.6251 0.6365 -0.0271 -0.0646 0.0927
35 -0.1935 0.6802 -0.0224 -0.0655 0.0898
36 -0.3200 0.6875 -0.0080 -0.0365 0.0929
37 -0.8707 0.6955 -0.0220 -0.0444 0.1005
38 -0.1098 0.8213  0.0793  0.0825 0.1302
39 -0.2530 0.7218  0.0422  0.0240 0.1416
40 -0.4004 0.6906 -0.0036 -0.0431 0.0915
41 -0.1805 0.7446  0.0564  0.0499 0.1138
42 -0.2959 0.7020 -0.0802 -0.0986 0.1025
43 -0.1863 0.6472 -0.0226 -0.0638 0.0918
44 -0.0888 0.6865 0.0600  0.0537 0.1093
45 -0.2275  0.6672  -0.0260 -0.0657 0.0912
46 -0.2108 0.7184 -0.0326 -0.0568 0.0963
47 -0.2364  0.6950 -0.0108 -0.0379 0.0957
48 -0.4165 0.7079  0.0191  -0.0179 0.0912
49 -0.1906  0.7496  0.0007  -0.0350 0.0922
50 -0.0896 0.7296  0.0247  -0.0012 0.0998
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