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Highlights 23 

⚫ LM Pectin was obtained from creeping fig seeds by water extraction. 24 

⚫ The pectin formed ‘acid gels’ on reducing the pH to below 3.5  25 

⚫ Gelation of pectin solutions was observed on addition of monovalent salts at pH 4.5 26 

⚫ Thermal hysteresis is observed for salt induced gels 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 



ABSTRACT: 45 

Pectin from the fruit seeds of the creeping fig plant was extracted and its chemical 46 

composition and rheological properties determined. It was found to consist of ~87% 47 

galacturonic acid with a degree of methoxylation of ~20%. The polysaccharide produced a 48 

viscous solution at pH 4.5 and was shown to form strong gels when the pH was reduced by 49 

the addition of glucono-delta lactone. It was concluded that as the pH was lowered, the 50 

reduction in electrostatic repulsions between the pectin chains facilitated chain association 51 

mainly through hydrogen bonding. The rate of gelation increased considerably as the pH was 52 

reduced. Although the pectin was in the form of a solution at pH 4.5, the addition of Na+ and 53 

K+ salts resulted in gel formation. The strength of the gels was found to be dependent on both 54 

the concentration and nature of the added electrolyte in accordance with the Lyotropic series. 55 

It has been suggested that the role of the electrolyte was to reduce the electrostatic repulsions 56 

between the carboxylate groups along the pectin chains thus facilitating chain association. 57 

Association is promoted by the presence of a low concentration of Ca2+ ions (1.88% w/w) 58 

naturally present in the extracted material which facilitated the crosslinking of the pectin 59 

chains in addition to the association through hydrogen bonding. 60 
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1. Introduction 67 

Creeping fig (Ficus pumila Linn.), also known as climbing fig and creeping rubber plant, 68 

is a species of perennial plant of the mulberry family. It grows on trees or rocks in the warm 69 

and humid regions of Asia, such as southwestern China, Taiwan, Japan and India. The plant 70 

produces a fruit and the fruit seeds have a long history of use for making summer drinks 71 

(locally referred to as “Liangfen”, a transparent gel-like food) in China. The seeds produce a 72 

viscous fluid after repeated scrubbing in water and then Ca-containing substances such as 73 

plant ash are added and a gel is formed after standing for a while.  74 

To date, there have been very few reported studies on the physicochemical properties 75 

and characteristics of this viscous fluid (Chen, et al., 2014; Liang, et al., 2012). Liang, et al., 76 

(2012) extracted the material from the seeds using water at 25 oC, 80 mM ammonium oxalate 77 

and 30 mM HCl. Characterisation of the sample extracted using water showed that it 78 

contained ~87% galacturonic acid with a degree of methoxylation (DM) of 14.6%, together 79 

with small amounts of rhamnose, arabinose and mannose (0.74%, 1.77% and 0.81% 80 

respectively) indicating that it was a type of pectin. The samples extracted using ammonium 81 

oxalate and HCl were found to contain 85.8% and 77.9% galacturonic acid respectively with 82 

DM values of 14.2% and 42.6%. 83 

In the Food Industry pectin is classified into low methoxyl (LM) and high methoxyl 84 

(HM) pectins. LM pectins have a DM, below 50% and typically 20-50%, while HM pectins 85 

have a DM above 50% and typically 50-80% (Rolin, 1993; Endress, 2011). It is well known 86 

that LM pectins form gels in the presence of divalent ions, typically at pH values in the range 87 

3-5. The affinity of pectin for Mg ions is significantly less than for Ca, Sr, and Ba ions (Kohn, 88 



1975; Thom, Grant, Morris & Rees, 1982). The mechanism of gel formation for LM pectin 89 

and also for alginate, a structurally similar polysaccharide, has been described by the 90 

“egg-box model” (Grant, Morris, Rees, Smith, & Thom, 1973; Thom, Grant, Morris & Rees, 91 

1982). It was proposed that the linear chains of (1,4) linked α-D-galacturonic acid residues, in 92 

the case of pectin and the (1,4) linked α-L-guluronic acid chains in the case of alginate adopt 93 

2-fold screw symmetry. This gives rise to a buckled chain which facilitates coordination of 94 

the Ca2+ ions through the oxygen atoms of the pyranose ring in addition to electrostatic 95 

interaction with the uronic acid groups which facilitates crosslinking of the polysaccharide 96 

chains. Differences in the behaviour observed between alginate and pectin by circular 97 

dichroism were reported to indicate greater selectivity of ion binding for alginate. Braccini & 98 

Pérez, (2001) investigated the binding of Ca2+ ions to both linear (1,4) linked 99 

α-D-galacturonic acid and (1,4) linked α-L-guluronic acid chains through molecular 100 

modelling studies and also found that Ca2+ ions did not bind selectively to polygalacturonate 101 

but did to polyguluronate. They concluded that whereas the “egg-box model” adequately 102 

describes the gelation of alginate it was not entirely appropriate for the gelation of pectin. 103 

Siew, Williams & Young studied the binding of Mn 2+ ions with pectin and alginate by EPR 104 

spectroscopy and found that the amount of Mn 2+ ions bound to the chains corresponded to 105 

[Mn 2+] : [COO -] ratios of ~0.25 and 0.2 respectively. In addition it was noted that maximum 106 

binding was achieved when the effective linear charge parameter,  eff,  reduced to a value of 107 

~1.      108 

Liang, et al., (2012) reported that the water extracted pectin from creeping fig seeds was 109 

found to contain mainly K+ and Ca2+ ions as counterions. Some preliminary experiments 110 



were carried out to evaluate the gel forming properties of the pectin using a Brookfield 111 

CT3-100 texture analyser. Solutions were produced at concentrations of 0.2%-1% in the 112 

presence of 1 mM CaCl2 and 0.1 M NaCl and were found to form gels. The gel strength 113 

increased with pectin concentration and time. The fact that gels were formed at all is 114 

surprising since the overall concentration of Ca2+ ions present was low. For example, for the 115 

1% solution the [Ca2+]:[COO-] ratio has been calculated to be ~0.1:1 which is far lower than 116 

expected for gel formation (Siew, Williams, & Young, 2005; Han et al., 2017). It is likely, 117 

therefore, that the presence of 0.1 M NaCl has a significant role to play in the gelation 118 

process. 119 

Interestingly, other workers have reported on the gelation of pectin by addition of 120 

sodium and potassium salts. Ström, Schuster, & Goh, (2014) investigated the rheological 121 

behaviour of two LM pectin samples (DM 37%) and with degrees of blockiness (DB) of 40% 122 

and 57%. The high DB pectin produced solutions with a higher viscosity at pH 3 compared to 123 

pH 5. Small deformation oscillation measurements showed that the mechanical spectrum of a 124 

3% solution at pH 3 was characteristic of a weak gel structure with a G’ value of ~150 Pa at a 125 

frequency of 1 Hz. The value of G’ for a 1% solution was found to increase in the presence of 126 

monovalent ions (0.05 M) with the greater effect occurring in the order Li+ < Na+ < K+. More 127 

recently, Wang, et al., (2019) studied the gelation of citrus pectin in the presence of 128 

monovalent cations under alkaline conditions. Experiments were performed on a sample of 129 

citrus pectin DM ~80% and Mw 714 kg/mol. Pectin solutions were prepared at 130 

concentrations of 1-3% at varying concentrations of NaCl and KCl, (0.2-1.4 M) and NaOH or 131 

KOH (0.3-0.5 M). It was found that the addition of NaOH + KCl, KOH + NaCl and NaOH + 132 



NaCl to 1% pectin resulted in gelation within 1 min. However, addition of KOH + KCl did 133 

not lead to gelation at 1% pectin but gels were formed at 2% pectin and above. Gelation did 134 

not occur when KOH, NaOH, KCl and NaCl were added alone. The strength of the gels 135 

formed depended on the nature and concentration of the electrolytes added. It was found that 136 

Na+ ions produced stronger gels than K+ under alkaline conditions. The effect of the alkali on 137 

the DM and molar mass was not reported. 138 

It is known that pectin and alginate will form gels in the absence of Ca2+ ions at pH 139 

values below the pKa (~3.5) but there have been relatively few studies reported on this 140 

(Atkins, Mackie, Parker, & Smolko, 1971; Draget, Bræk, & Smidsrød, 1994; King, 1983; 141 

Gilsenan, Richardson & Morris, 2000). It has been postulated that gelation is brought about 142 

by association of the polysaccharide chains at low pH by hydrogen bonding. The pectin from 143 

creeping fig seeds has a very low DM and it is likely that it will be able to form gels under 144 

acid conditions. The aim of the present work, therefore, is to gain a fundamental 145 

understanding of the gelation mechanism of the pectin from creeping fig seeds and in 146 

particular to evaluate the role of pH and monovalent ions on the gelation process. The results 147 

will be relevant to the behaviour of LM pectins generally.  148 

2. Materials and Methods 149 

2.1. Materials 150 

The fruit from creeping fig plants was picked in Nantian Village, Jishui County, Ji'an 151 

City, Jiangxi Province, China in July 2019 and was cut open to collect seeds. The fresh seeds 152 

were dried at 60 oC for 5 h, packed in a vacuum bag and stored at room temperature until use. 153 

2.2. Extraction and purification of pectin 154 



Extraction and purification was carried out according to the method of Liang, et al., 155 

(2012) with some modifications. The dried creeping fig seeds were heated at 95 oC for 90 156 

min to inactivate the pectinase activity. The seeds were placed in distilled water at a ratio of 157 

1:20 (w/v) and slow stirring for 30 min at room temperature. The mixture was filtered 158 

through a fine-pore nylon cloth to obtain a clear water extract. The residue was re-dispersed 159 

in distilled water and stirred again to obtain a second extract. The two filtrates were combined 160 

and precipitated by the addition of ethanol to obtain a final concentration of 50% (v/v). The 161 

precipitate was washed successively with 70%, 80%, 90% and absolute ethanol and air-dried 162 

in a fume hood at room temperature. 163 

The sample was further purified by placing 20 g of the above pectin sample in a Buchner 164 

funnel and passing through 4 × 50 mL aliquots of the solution containing a 50:50 vol% 165 

solution of [5 mM EDTA and 0.25 M NaCl]: isopropanol. This was followed by 4 × 50 mL 166 

aliquots of 50% aqueous ethanol and then 2 × 50 mL absolute ethanol. The pectin sample was 167 

collected and placed in an oven at 40 oC overnight to dry. 168 

The DM was determined by titration (Mizote, Odagiri, Tôei, & Tanaka, 1975) and found 169 

to be 20.63 ± 0.12%. The galacturonic acid content was determined using the meta-hydroxy 170 

diphenyl method (Blumenkrantz & Asboe-Hansen, 1973) and found to be 87.03 ± 0.72%. The 171 

protein content was 1.61 ± 0.37% (N × 6.25) as determined by the Kjeldahl procedure. The 172 

ferulic acid content of 0.22 ± 0.04% was determined by measuring the absorbance at a 173 

wavelength of 310 nm (ultraviolet-visible spectroscopy, Pgeneral T6, China) (Siew & 174 

Williams, 2008). The metal ion content of the sample was determined by Nu-Instruments, 175 

Wrexham UK using an Attom ES high resolution ICP-MS using a 0.2% solution and it was 176 



found to contain 2.99% Na+, 0.09% K+, 0.78% Mg 2+, 1.88% Ca 2+, 0.03% Ba 2+ and 0.01% 177 

Sr2+ (w/w%).  178 

2.3. Preparation of pectin solution 179 

1% pectin solution was prepared by dispersing 1.00 g of pectin in 100 ml of distilled 180 

water and stirred slowly overnight at room temperature. The dispersion was centrifuged at 181 

2500 rpm for 30 min to obtain a clear pectin solution. The actual concentration of pectin was 182 

determined by gravimetric analysis by drying clear pectin solution in an oven at 40 oC 183 

overnight. The concentration of the pectin solution was found to be 8.53 ± 0.02 mg/mL. 184 

2.4. Preparation of pectin gel 185 

2.4.1. Effect of pH on the gelation properties of pectin 186 

The initial pH of the pectin solution was 4.50 and was adjusted by the addition of 187 

various concentrations of glucono-delta-lactone (GDL) which slowly hydrolysed to form 188 

gluconic acid, thus reducing the pH. The GDL (0.5 - 7% w/v) was added at room temperature 189 

and stirred rapidly for 1 min giving final pH values of 3.70 -2.57. 190 

2.4.2. Effect of monovalent ions on the gelation properties of pectin 191 

The effect of monovalent ions on the gelation properties of pectin was studied by the 192 

addition of various amounts of 2 M salt (NaCl, NaI, NaNO3, KCl, KI, EDTA) stock solutions. 193 

The final concentration for salt used was 35 mM, 70 mM and 105 mM. The appropriate 194 

amount of salt stock solution was added to the pectin solution and stirred rapidly for 1 min at 195 

room temperature. 196 

2.4.3. Effect of NaCl at various pH on the gelation properties of pectin 197 

The effect of the NaCl at various pH on the gelation properties of pectin was studied by 198 



adjusting the pH of the pectin solution to 5.0, 5.5 and 6.0 using 1 M NaOH. The appropriate 199 

amount of NaCl stock solution was then added with rapid stirring for 1 min to make a final 200 

NaCl concentration of 70 mM. 201 

2.4. Rheological measurements 202 

The rheological properties were measured using an advanced rheometer AR 2000ex (TA 203 

instruments, New Castle, DE, USA) equipped with two different geometry systems (vane 204 

rotor and cross-hatched parallel plate). The vane rotor was used for time sweep and frequency 205 

sweep measurements and the cross-hatched parallel plate was used for temperature sweep 206 

measurements. The vane rotor geometry consists of four thin blades arranged at equal angles 207 

around a small cylindrical shaft: the radius of the blades was 14 mm and the height of the 208 

blades 42 mm. It was immersed in the sample contained in a cylindrical cup with a 15 mm 209 

radius. The cross-hatched parallel plate geometry was composed of a lower stationary steel 210 

plate and an upper cross-hatched plate with a 40 mm diameter and 0.5 mm separation. 211 

The time sweep test was performed at 20 oC to investigate the time dependence of the 212 

storage and loss moduli (G’ and G”) of the pectin gels. Approximately 30 ml of the sample 213 

prepared as described in section 2.4 was loaded into a pre-equilibrated (20 oC) cylindrical cup. 214 

The blade was lowered and the gap set to 2000 µm. Samples were subjected to a time sweep 215 

over 180 min after equilibration for 5 min. An oscillation frequency of 1 Hz and a strain 216 

amplitude of 1% was used in order to be within the limit of the linear viscoelastic regime. 217 

The frequency dependence of the moduli of the pectin gels were determined using a 218 

frequency sweep from 0.01 to 10 Hz at a constant 1% strain. 219 

The temperature sweep was used to determine the effect of temperature on the storage 220 



and loss moduli, G’ and G”. Approximately 2 ml of 1% pectin solution containing varying 221 

amounts of NaCl prepared as described in section 2.4 was heated to 80 oC then placed onto 222 

the plate (preheat to 80 oC) and the gap was set at 1000 µm. After equilibrium for 5 min, 223 

temperature sweeps were carried out from 80 to 20 oC and 20 to 80 oC, with cooling/heating 224 

rates of 0.5 oC/min at a constant frequency of 1 Hz and a strain of 1%. 225 

2.5. Statistical analysis 226 

All of the experiments were carried out in triplicate. Statistical analysis was carried out 227 

using IBM SPSS Statistics for Windows, version 25 (IBM Corp., Armonk, NY). The results 228 

were expressed as mean ± standard deviations. 229 

3. Results and Discussion 230 

3.1. Influence of pH on the gelation properties of pectin 231 

Various amounts of GDL solid were added to the pectin solutions in order to adjust the 232 

pH and the values of G’ and G” at a frequency of 1 Hz were determined as a function of time. 233 

The results are presented in Figure 1. 234 



Figure 1. G’ and G” for 1% pectin solutions at varying pH as a function of time, the 235 

letters a-h represent pH 4.50, 3.70, 3.41, 3.18, 2.95, 2.83, 2.71 and 2.57 respectively. (pH 236 

adjustment was made by addition of various concentrations of solid GDL). 237 
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The initial solution without GDL addition had a pH of 4.50 and was a liquid with G” 239 

greater than G’ over the frequency range studied. G” had a value of ~0.4 Pa and G’ a value of 240 

~0.1 Pa (not shown). As noted in the Materials section the sample does contain a small 241 

amount of Ca2+ and Mg2+ions. The amonut of Ca2+ ions present in our sample is equivalent to 242 

a stoichiometric ratio of ~0.09:1 [Ca2+]:[COO-] and is insufficient to induce gelation at pH 243 

4.5. Ratios greater than 0.3:1 are required for network formation to occur (Siew, Williams & 244 

Young, 2005; Han et al., 2017). Also as noted above, it has previously been reported that 245 

Mg2+ ions are not effective at inducing pectin gelation (Kohn, 1975; Thom, Grant, Morris & 246 

Rees, 1982). 247 

On the addition of GDL, it is seen that the values of G’ and G” increased over time and 248 

that G’ became greater than G” indicating that gelation had occurred. The G’ and G” values at 249 

a frequency of 1 Hz for the pectin samples after 180 min are shown as a function of pH in 250 

Figure 2a. It is clearly seen that the values increased significantly below the pKa value of 251 

3.50 (Han et al., 2017) as the carboxylate groups became less ionised. The values of G’ and 252 

G” are shown as a function of frequency in Figure 2b at the various pH values. G’ is greater 253 

than G” for all samples (apart from the sample at pH 4.50) and both are only slightly 254 

dependent on frequency. This is clear evidence for the formation of strong gels (Williams & 255 

Phillips 2009). 256 
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Figure 2. G’ (solid symbols) and G” (open symbols) for 1% pectin solutions (a) at a 257 

frequency of 1Hz after 180 min as a function of pH (b) as a function of frequency, pH 258 

4.50 (square), pH 3.70 (circle), pH 3.18 (up-triangle), pH 2.95 (down-triangle), pH 2.57 259 

(diamond). 260 

 261 

The time to reach the G’ and G” crossover point (Figure 1) is seen to decrease gradually 262 

with increasing GDL concentration and consequently to a decrease in pH. For the system at 263 

pH 3.76, for example, the crossover point occurs after 129 min and the G’ and G” values 264 

were 5.6 Pa and 2.2 Pa respectively while for the sample at pH 2.71 the crossover occurs after 265 

5.16 min and G’ and G” have values of 812.8 Pa and 119.5 Pa respectively. A similar 266 

behaviour was initially observed for the system at pH 2.57 with G’ and G” increasing but 267 

over time both G’ and G” values were found to decrease. This may be a consequence of the 268 

high concentration of GDL is this system which is equivalent to ~0.4 M gluconic acid. It is 269 

interesting to note that Draget, et al., (1994) carried out similar experiments on the gelation of 270 

alginate on the addition of GDL and observed similar findings. They found that G’ increased 271 

significantly with time up to ~180 min and then less slowly. They also reported that the value 272 

for Young’s modulus decreased at higher additions of GDL (0.8 M). The kinetic plot showing 273 

the time for the G’ and G” crossover as a function of pH is given in Figure 3a. A theoretical 274 

plot showing the percentage dissociation of the carboxyl groups calculated from the pKa is 275 

given as a function of pH is given in Figure 3b. 276 

 277 

 278 

 279 

 280 

 281 



Figure 3. (a) Time for the crossover of G’ and G” and (b) the dissociation of the 282 

galacturonic acid groups as a function of pH. 283 

 284 

The strongest gels were formed at pH values below 2.5 corresponding to degrees of 285 

dissociation of less than ~10%. It is evident that gelation occurs as a consequence of the 286 

association of the pectin chains brought about through hydrogen bonding. The results are in 287 

accordance with those of Gilsenan, Richardson & Morris, (2000) who determined the 288 

mechanical spectra of LM pectin with DM 31% as a function of pH. They reported that G’ 289 

and G” values increased as the pH was lowered from 4 to 1.6 by addition of HCl. At pH 290 

values of 4 and 3 the mechanical spectra were typical of a dilute solution with low G’ and G” 291 

values and both frequency dependent. When the pH was lowered further to 2 and 1.6, the 292 

mechanical spectra were typical of strong gels with G’ values greater than G” over the 293 

frequency range studied. Since X-ray fibre diffraction analysis had indicated that pectic acid 294 

had three-fold symmetry it was suggested that gelation resulted from the association of 295 

three-fold helical chains through hydrogen bonding. We argue that the association is 296 

facilitated by the reduction in the electrostatic charge repulsions between the pectin chains as 297 

the degree of dissociation of the carboxylate groups is reduced enabling them to approach 298 

each and for interaction to occur. The reduction in electrostatic repulsions also influences the 299 
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rate of gelation. The lower the proportion of anionic charges the faster is the rate of gelation. 300 

It is also worth noting that a small percentage of the galacturonic acid residues are 301 

methoxylated and it is possible, therefore, that some hydrophobic interaction could also occur 302 

through the methoxyl groups following the association of the pectin chains particularly if the 303 

methoxyl groups occur in blocks. The pectin also contains a small percentage of ferulic acid 304 

which could also give rise to hydrophobic interaction. Since the carboxyl groups along the 305 

pectin chain are virtually all in the non-ionised form any Ca 2+ ions present cannot be 306 

involved in the gelation process. 307 

3.2. Influence of monovalent cations on the gelation properties of pectin 308 

The effect of the addition of various concentrations of NaCl on the values of G’ and G” 309 

at 1 Hz for pectin solutions at pH 4.50 are given as a function of time in Figure 4a. It is noted 310 

that both G’ and G” increase rapidly initially with time and tend towards a plateau value over 311 

the course of the experiment. The values increase with increasing NaCl concentration. G’ and 312 

G” are plotted as a function of frequency in Figure 4b and it is noted that G’ is significantly 313 

greater than G” for all of the samples and that they are both independent of frequency which 314 

is typical of a strong gel. The G’ values obtained at a NaCl concentration of 105 mM are 315 

similar to the values obtained for the sample at pH 2.71 in the absence of NaCl. 316 
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Figure 4. G’ (solid symbols) and G” (open symbols) for 1% pectin solutions at pH 317 

4.5 in the presence of varying concentrations of NaCl (a) as a function of time and (b) as 318 

a function of frequency. The concentrations of NaCl 35 mM (square), 70 mM (circle), 319 

105 mM (up-triangle). 320 

 321 

At pH 4.50 the galacturonic acid residues will be largely dissociated (Figure 3b) and 322 

there will be strong repulsions between the pectin chains. On the addition of NaCl the 323 

repulsions between the chains will be screened which will enable the chains to associate and 324 

form a three-dimensional gel network. Further experiments were carried out on 1% pectin 325 

solutions at pH 4.50 in the presence of a number of different salts and the plots of G’ and G” 326 

as a function of frequency are presented in Figure 5 and the values of G’ at a frequency of 327 

1Hz are given as a function of ionic strength are shown in Figure 6. 328 

Figures 5. G’ (solid symbols) and G” (open symbols) for 1% pectin solutions at pH 329 

4.50 in the presence of different electrolytes concentrations of 70 mM as a function of 330 

frequency. NaI (square), KCl (circle), KI (up-triangle), NaNO3 (down-triangle). 331 
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Figure 6. G’ at a frequency of 1 Hz for 1% pectin solutions at pH 4.50 in the 332 

presence of various electrolytes as a function of ionic strength. NaCl (square), NaI 333 

(circle), KCl (up-triangle), KI (down-triangle), NaNO3 (diamond). 334 

 335 

It is seen that the values of G’ are influenced by the nature of the ions present. G’ 336 

increases in the order I- < NO3
- < Cl- and the values are higher for K+ salts than Na+ salts at 337 

the different ionic strengths in accordance with the Lyotropic series. The effect of K+ and Na+ 338 

ions on the gelation process follows the trend reported by Ström, Schuster, & Goh, (2014) but 339 

is contrary to the findings of Wang, et al., (2019) as reported in the Introduction. The 340 

Lyotropic series ranks anions and cations according to their ability to influence water 341 

structure at the polymer-water interface and is a consequence of their adsorption or exclusion 342 

and their influence on the interfacial energy (Hyde, et al., 2017; Piculell & Nilsson, 1990). 343 

It is well known that the gelation of LM pectins is highly sensitive to the presence of 344 

Ca2+ ions (Rolin, 1993). As mentioned above the sample contains a small amount of Ca2+ ions 345 

and it is, therefore, likely that Ca2+ ions also have a role to play in gel formation for systems 346 
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at pH 4.50. As discussed previously (Siew, Williams & Young, 2005) the specific binding of 347 

Ca2+ ions to the pectin chain can give rise to mono-complex formation where one Ca2+ ion 348 

interacts with one carboxylate ion on the pectin chain resulting in localised charge reversal 349 

and the formation of positive electrostatic patches. This occurs because the spacing between 350 

the carboxylate groups along the pectin chain is too large for one Ca2+ ion to interact with two 351 

carboxylate ions on the same chain. For our system, these patches are not sufficient to induce 352 

gelation at pH 4.50 since the pectin chains are highly charged with ~90% of the carboxylate 353 

groups dissociated and electrostatic repulsions prevent them from associating. However, it is 354 

evident that when electrolyte is added the electrostatic repulsions will be screened sufficiently 355 

to enable the pectin chains to approach each other for association to occur through Ca2+ ion 356 

crosslinking. The Ca2+ ions bound to one chain are able to interact with carboxylate groups 357 

on another pectin chain as previously described (Siew, Williams & Young, 2005). There is 358 

also the possibility of additional association through hydrogen bonding. In order to further 359 

investigate the role of the Ca2+ ions we studied the effect of EDTA on the gelation process. 360 

The plots of G’ and G” on the gelation of 1% pectin solutions in the presence of NaCl and 361 

EDTA are presented in Figure 7. 362 

 363 

 364 

 365 

 366 

 367 

 368 



Figure 7. G’ (solid symbols) and G” (open symbols) for 1% pectin solutions at pH 369 

4.50 in the presence of NaCl and EDTA as a function of frequency. NaCl 35 mM 370 

(square), EDTA 35 mM (circle), NaCl 70 mM (up-triangle), EDTA 70 mM 371 

(right-triangle). 372 

 373 

EDTA is expected to chelate the Ca2+ ions present and thus eliminate crosslinking of the 374 

pectin chains. It is clearly seen that the values of G’ and G” are significantly reduced in the 375 

presence of the EDTA compared to systems containing NaCl but that gelation still occurs. It 376 

is evident, therefore, that the Ca2+ ions are involved in the gelation process. The fact that G’ 377 

and G” increase in value as the EDTA concentration increased from 35 mM to 70 mM 378 

indicates that the resultant additional charge screening facilitates increased pectin chain 379 

association through hydrogen bonding. 380 

3.3. Influence of NaCl at various pH on the gelation properties of pectin 381 

The pH of pectin samples containing 70 mM NaCl was adjusted by adding 1 M NaOH 382 

and the G’ and G” values were determined. The plots are shown in Figure 8 and it is noted 383 

that as the pH of the system increased the values of G’ and G” decreased and above pH 6.0 384 
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gelation did not occur. It is evident from Figure 3b that the degree of dissociation of the 385 

carboxylate groups is >90% above pH 4.5. This being the case there will only be a marginal 386 

increase in the electrostatic repulsions between the pectin chains as the pH increases which 387 

will have a limited effect on molecular association. It is possible that the decrease in G’ and 388 

G” at pH 5 and above is due to de-esterication of some of the carboxylate groups present and 389 

also to depolymerisation of the pectin chains. 390 

Figure 8. G’ (solid symbols) and G” (open symbols) for 1% pectin solutions in the 391 

presence of 70 mM NaCl at various pH as a function of frequency. pH 4.5 (square), pH 392 

5.0 (circle), pH 5.5 (up-triangle), pH 6.0 (down-triangle). 393 

 394 

3.4. Influence of temperature on the gelation properties of pectin 395 

The effect of temperature on the viscoelastic properties of the pectin solutions was 396 

studied. 1% pectin solutions were prepared at pH 4.50 in the presence of various 397 

concentrations of NaCl and heated to 80 oC. The values of G’ and G” were determined at a 398 

frequency of 1 Hz on cooling to 20 oC and then reheating to 80 oC. The results are reported in 399 
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Figures 9. For all samples both G’ and G” are seen to increase as the temperature is reduced 400 

and G’ is significantly greater than G” at all temperatures indicating gel-like characteristics. 401 

As might be expected, the reduction in the molecular mobility of the pectin chains as the 402 

temperature is reduced facilitates an increase in the number and/or length of the junction 403 

zones forming the three-dimensional gel network. On reheating the G’ and G” values are seen 404 

to decrease but it is interesting to note that the values are higher than on initially cooling. It is 405 

evident that the higher values are due to the increased molecular chain association which is 406 

not fully disrupted on heating.  407 
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Figure 9. G’ and G” for 1% pectin solutions at pH 4.50 containing varying 408 

concentrations of NaCl 35 mM (a), 70 mM (b) and 105 mM (c) as a function of 409 

temperature on cooling and reheating.  410 

 411 

Gilsenan, Richardson & Morris, (2000) also observed thermal hysteresis for LM pectin 412 

gels formed at low pH and concluded that this was due to the extensive aggregation of the 413 

pectin chains. In a further experiment we investigated the influence of temperature and 414 

shearing on gel formation and this is illustrated in the schematic shown in Figure 10. In the 415 

first experiment NaCl solid was added to 1% pectin solution at pH 4.50 at room temperature 416 

to give a 0.5 M solution and a gel was formed. The system was heated to 80 oC and 417 

continuously sheared slowly with a magnetic stirrer and it became liquid-like. On cooling the 418 

system remained as a liquid and the pectin was seen to form a precipitate after 24 h. It is 419 

argued that on shearing at 80 oC the gel is disrupted but the molecules are still highly 420 

aggregated and on cooling the aggregated molecules are unable to form a network. In the 421 

second experiment the sample was heated to 80 oC with shearing and then the NaCl solid to 422 

give a 0.5 M solution was added. The sample was liquid-like at this stage and on cooling to 423 
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20 oC the sample formed a gel. In this case the molecules were not in an aggregated state 424 

prior to cooling and hence were able to associate and form a gel.  425 

Figure 10. The schematic diagram of the effects of temperature and shearing on 426 

pectin gel formation. 427 

 428 

4. Conclusions 429 

The viscous fluid that exudes from the seeds of the fruit of the creeping fig plant 430 

contains pectin. It has a low degree of methoxylation and is able to form gels at low pH 431 

values. Gelation arises due to the association of the pectin chains brought about through 432 

hydrogen bonding. The rate of the gelation process increases as the pH is reduced. At pH 4.5, 433 

where the degree of dissociation of the carboxylate ions is greater than ~90%, the pectin 434 

forms a viscous solution. Unusually, the addition of Na+ and K+ salts to the solution results in 435 

gel formation. Gelation is due to the fact that the added electrolyte screens the electrostatic 436 

repulsions between the pectin chains facilitating chain association. The small number of Ca2+ 437 

ions naturally present in the pectin gives rise to positively charged patches which promote 438 



crosslinking of the pectin chains. The strength of the gels varies with the nature of the salt 439 

added and is in accordance with the Lyotropic series. The pectin could be of commercial 440 

interest since most pectins tend to have a high methoxyl content and are often de-esterified 441 

for particular applications. 442 
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