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Abstract. We describe the development of a lightweight, high-resolution surveillance camera
for deployment on high altitude platform systems. The instrument is designed to operate at an
altitude of ∼20 km and has an expected ground resolution of better than 120 mm with an appro-
priate sensor. While designed specifically for imaging at visible wavelengths, it is shown that the
design is capable of diffraction-limited imaging at NIR and SWIR wavelengths up to 2.5 μm. We
have combined a range of materials from aluminum and titanium alloys through to carbon fiber-
reinforced plastic to produce an instrument with structural components that match the thermal
expansion of the optical glasses used. The use of these materials has resulted in an instrument
that weighs <2 kg, including a sensor package, and is designed to weigh <3 kg once integrated
with an enclosure and actuated gimbal. The successful testing of two prototype systems is
described, including several design outcomes from the program intended for implementation
in advance of flight trials. © The Authors. Published by SPIE under a Creative Commons
Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires
full attribution of the original publication, including its DOI. [DOI: 10.1117/1.OE.59.10.105104]
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1 Introduction

There is an emerging market for persistent airborne surveillance and high-bandwidth free-
space optical communications using high altitude platform systems (HAPS). In 2015, Glyndŵr
Innovations Limited successfully bid for funding from the UK Defence Science and Technology
Laboratory as part of its “Research and Development into Persistent Surveillance – Challenge 1”
to develop a lightweight imaging system targeted at HAPS deployment. Following successful
delivery of phase 1, a second phase of development was funded later in 2016 to design and
manufacture a flight-capable prototype system.

This paper describes the development of an imaging optical system (henceforth “camera
system”) for HAPS deployment, designed to meet the requirements set by a high-resolution
imaging application (panchromatic, multispectral, or hyperspectral) or to act as the front-end
to a LIDAR instrument. These application areas were chosen to represent the range of optical
systems expected to be deployed on HAPS, including the requirements for free-space optical
communications.1,2 Applications such as these require challenging optical performance speci-
fications as well as the engineering requirements specific to HAPS deployment.3 In addition,
most development activity for this technology is focused on the development of high altitude
long endurance (HALE) operations. For this mode of operation, a demanding set of SWaP
(space, weight, and power) requirements is also established to maximize mission durations.

The optical system described herein is a diffraction-limited modified Cassegrain telescope of
150-mm aperture operating throughout the visible spectrum. The performance requirement is to
attain a nominal ground resolution of 100 mm from stratospheric altitudes.While this demonstrator

*Address all correspondence to Paul C. T. Rees, p.rees@glyndwr.ac.uk

Optical Engineering 105104-1 October 2020 • Vol. 59(10)

https://orcid.org/0000-0001-8835-2331
https://orcid.org/0000-0002-1317-809X
https://doi.org/10.1117/1.OE.59.10.105104
https://doi.org/10.1117/1.OE.59.10.105104
https://doi.org/10.1117/1.OE.59.10.105104
https://doi.org/10.1117/1.OE.59.10.105104
https://doi.org/10.1117/1.OE.59.10.105104
https://doi.org/10.1117/1.OE.59.10.105104
mailto:p.rees@glyndwr.ac.uk
mailto:p.rees@glyndwr.ac.uk
mailto:p.rees@glyndwr.ac.uk
mailto:p.rees@glyndwr.ac.uk


system is limited to imaging applications at visible wavelengths, the design is intended to act as
a prototype for the fore optics for a LIDAR system with only minor modification. The end use of
a system of this design is surveillance and/or free-space optical communications.

2 Requirements

The challenge for the design of optical systems operating on HAPS comes with the combination
of expected operating environment and the payload SWaP requirements of the platform. These
requirements are discussed in what follows.

2.1 Optical Requirements

The required optical performance of the system is summarized in Table 1. Notably, the swath,
or projected field of view (FOV), was not defined. For this exercise, the swath was to be “as large
as the design will reasonably allow.”

2.2 Environmental Requirements

The environmental requirements are those of an instrument operating with only nominal protec-
tion from the external atmospheric conditions at an operating altitude of ∼21.3 km (70,000 ft).
These conditions can be summarized using the International Standard Atmosphere;4 i.e., an ambi-
ent temperature of −55°C and an atmospheric pressure of 45 mbar. The relative humidity is
expected to be close to zero at operating altitude, but during ascent and descent the relative humid-
ity can be expected to reach 100% for periods. In addition, heating from solar radiation can vary
between 700 and 1300 Wm−2 during the daytime to zero during the night-time.

From the above, an operating temperature range of −40°C to þ30°C was defined. This tem-
perature range includes laboratory and ground set-up temperatures, those experienced by the
instrument during ascent and descent, and operation at altitude within a “simple” aerodynamic
enclosure.

A survival temperature range was defined from −80°C to −40°C and from þ30°C to þ40°C.
Over these temperature ranges, the instrument is expected to survive and to recover its specified
optical performance once it returns to its operating temperature range.

These environmental parameters are summarized in Table 2. Note that the survival temper-
ature range is intended to encompass the night-time temperature, but that night-time operation is
not envisaged.

2.3 SWaP Requirements

The SWaP requirements for these platforms vary with type of platform. For fixed-wing aircraft
(for example, the Airbus Zephyr platform), a documented payload weight of up to 5 kg is
defined,5 with a maximum payload power consumption of 250 Wand an instrument pod volume
of between 15,000 and 24000 cm3, depending upon the geometry of the payload. Additional

Table 1 Optical specification characteristics for the pro-
posed optical system.

Parameter Assumed value

Aperture 150 mm

Operating wavelength range 450 to 750 nm

Reference wavelength 550 nm

Ground resolution 100 mm

Swath To be defined
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space for payload storage is available within the wing sections of the aircraft. Inflatable HAPS
vehicles (for example, the Thales Alena Stratobus), can allow payloads of 250 kg or greater and
up to 5-kW payload power. For the instrument described herein, the more demanding SWaP
requirements for a fixed-wing HAPS were adopted.

The defined SWaP requirements are presented in Table 3.
The dimensions of the instrument space envelope were a self-imposed goal. They were

imposed to ensure a provision was made for other instrumentation within the pod with the cam-
era system acting as front-end optics.

2.4 Other Requirements

Two further requirements remained unspecified throughout the development process but need
mention:

(1) A maximum shock loading for the system, representative of landing.
(2) A vibration spectrum for the platform, representative of the vibration expected while

flying at operational altitudes.

Neither of these quantities was freely available during the development of the optical system.
Because of this, they were estimated (Table 4) from published studies of vibration modes of
composite aircraft.6,7

Table 3 Specified SWaP requirements adopted for the instrument.

Parameter Assumed value Comments

Maximum nose
pod volume

24;000;000 mm3 The nose pod is assumed to be custom-made to suit
the dimensions, weight and functionality of the payload

Instrument space
envelope

150 mm × 150 mm ×
400 mm

The target volume defined for the imaging instrument

Payload mass <3 kg Payloads of >3 kg but <5 kg are possible, but will have
a detrimental effect on the platform mission capability

Electrical power <250 W Assumed to be peak power consumption

Table 2 Specified environmental requirements adopted for
the instrument.

Parameter Assumed value

Operating temperature range −40°C to þ30°C

Survival temperature range −80°C to −40°C

þ30°C to þ40°C

Operating atmospheric pressure range 40 to 1000 mbar

Solar heating during operation 700 to 1300 Wm−2

Table 4 Specified frequency-related loading requirements adopted for the instrument.

Parameter Assumed value Comments

Maximum shock loading 2.5 g In any one direction

Safety factor 2.0 To be applied to maximum shock loading

Maximum modal frequency of the platform 50 Hz Assumed
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3 Optical Design

3.1 Detector Choice

At an altitude of 21.3 km, the target resolution of 100 mm subtends an angle of 4.7 μrad, or
0.97 arcsec. At a reference wavelength of 550 nm, a 150-mm circular aperture has an Airy disc
radius of 4.5 μrad or 0.92 arcsec. This suggests that resolving 100 mm from the stratosphere with
an instrument of 150 mm aperture is feasible without postprocessing of image data, although
close to the physical diffraction limit. To achieve this resolution, the focal plane must be
adequately sampled. For modern sensors of 3 to 6 μm pixel pitch, an effective focal length
(EFL) in the range 700 to 1500 mm is required to satisfy the Nyquist sampling criterion.

After a review of suitable sensors, a packaged industrial vision camera using a Sony EXview
HAD II ICZ814 CCD sensor was chosen as a demonstrator sensor. The sensor chosen is mono-
chromatic (from 400 to 1000 nm wavelength), has a square pixel pitch of side 3.69 μm, and a
detector area of 3376 × 2704 pixels. These pixel dimensions indicate an EFL of >850 mm is
needed to achieve the required ground resolution (i.e., a focal ratio > f∕5.5).

3.2 Telescope Design

A review of possible optical designs against the SWaP requirements indicated that an on-axis
reflective telescope design is most likely to meet the design volume and weight requirements.
Our review indicated that off-axis designs with an aperture of 150 mm, e.g., three-mirror
anastigmats (Korsch8), are at a disadvantage because of the limited design volume available. Also,
Cassegrain designs with a full-aperture transmissive corrector (e.g., Maksutov8 or Schmidt8

designs) are at a weight disadvantage in this application. Designs with a single full-aperture optic
such as the Classical Cassegrain8 or Ritchey-Chrétien8 designs are favored. Of the Cassegrain
designs, the Ritchey-Chrétien design was selected. This design, modified with a Wynne9-style
refractive field curvature corrector, can deliver a well-corrected FOV of suitable size.

An EFL of 900 mm (i.e., a focal ratio f∕6) was selected for the reflective Cassegrain tele-
scope. A primary mirror focal length of 300 mm (focal ratio f∕2) was selected as a near optimum
balance between the compactness of the telescope design and the predicted alignment sensitivity.
The design of the Wynne corrector modifies the EFL of the telescope system slightly to give an
EFL of ∼914 mm.

The optical design was modeled using Zemax OpticStudio optical design software. The opti-
cal design is shown in Fig. 1. The large separation between the primary mirror vertex and the
focal plane in this design is to accommodate the support for the mirror, a focusing assembly, and
an interface between the telescope structure and a gimbal for pointing.

The glass selected for the corrector lens elements was Schott N-BK7. One corrector lens is
planoconvex in form and the other planoconcave. This design provides a well-corrected FOVof
>1.2 deg at visible wavelengths (i.e., from 450 to 750 nm). Image quality degrades rapidly for

Fig. 1 The optical layout of the telescope design, incoming beam to the left, focal plane on the
right. Colored rays represent different field points, from field center to field edge.
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fields >1.4 deg in diameter. A three-element corrector is also feasible and can produce a well-
corrected FOV of 1.9 deg for the same Cassegrain telescope design.

A representative spot diagram is presented in Fig. 2. It is clear from Fig. 2 that the design is
capable of diffraction-limited performance from 450 nm (blue) through to 2.5 μm (SWIR)
wavelengths. This performance is valuable for use in simultaneous imaging in the visible and
NIR/SWIR or in LIDAR applications.

Notwithstanding wavefront degradation from optical fabrication and integration tolerances,
the ground resolution of the telescope system operating at an altitude of 21.3 km is the product of
the optical resolution delivered to the camera sensor and the sampling of this image by the sen-
sor. The ability to resolve detail at the ground-based target will also depend upon the contrast
apparent at the target and the signal/noise ratio of the image data.

The modeled modulation transfer function (MTF) of the system is shown in Fig. 3. Using
the pixel pitch for the chosen sensor, Sony EXview HAD II ICX814, the combined MTF of the
optical system and the camera sensor can be approximated [Fig. 3(b)]. In Fig. 3(b), the modu-
lation data at the target are calculated by approximating the CCD pixel as a rectangle function.
While this approximation is idealized, it modulates the optical MTF sufficiently realistically to
illustrate the effects of sensor pixel size on system resolution.

The system resolution will also be affected by noise in the image data. In this context, we
define “noise” as any source of infidelity in the expected mapping of the object onto the recorded
image. Noise can therefore originate both outside of and within the camera system, including
detector noise. By this definition, noise may be random, pseudorandom, or nonrandom. If this
noise contribution is approximated by a “white” frequency distribution and is assumed to be
pseudorandom in nature, then the effect of a noise equivalent modulation (NEM) upon resolution
can be estimated. In Fig. 3(b), the NEM is estimated to be 0.05. This is intended to represent the
lowest useful modulation for a quantitative application.

The intersection of the NEM and the predicted system modulation represents the expected
maximum resolution of the system. Figure 3(b) shows that a ground resolution of 100 mm is
unlikely with this instrument when using a sensor of 3.69-μm pixel size. A maximum pixel size
of 3.0 μm is necessary to match the performance of the optical instrument.

In summary, a practical optical design has been developed. The full projected aperture of the
focal plane is 520 m at the target, nadir pointing, corresponding to an optical FOVof 1.4 deg, and
a focal plane of 22.3 mm diameter. In combination with the selected sensor, the instrument is
expected to deliver a ground resolution of ∼113 mm and offer a swath of ∼290 × 233 m2.

Fig. 2 The matrix spot diagram for the optical system, showing the optical performance of the
design from 450 nm to 2.5 μm wavelength. Solid circles represent the Airy disc.
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4 Optomechanical Design

Several key factors affect the optomechanical design of the camera system:

• The mass of the primary mirror.
• The mounting of each of the optics to the telescope structure.
• The alignment of each of the optics within the structure.

None of these factors are uncommon, but the environmental and SWaP requirements place
the optomechanical design within a challenging context.

All optical components used N-BK7 as a substrate material, including the mirrors. This
choice was intended to match the coefficient of thermal expansion (CTE) of the materials used
in the structure of the instrument; while using diverse materials (see Sec. 5), initial analysis
indicated an expected average structural CTE in the range 7 × 10−6∕°C to 10 × 10−6∕°C.

The rear of the primary mirror was light-weighted (Fig. 4) to optimize its mass. The light-
weighting removed ∼63% of the monolithic mass of the primary mirror.

The mounting arrangement of the primary mirror uses the central bore of the mirror, mounted
to an aluminum alloy (7075) cylinder with an elastomer interface (Fig. 5). No bonding is used in
this mounting arrangement. Fine alignment of the primary mirror is via three locking fine screw
adjusters that bear on the aluminum cell.

Fig. 3 (a) The predicted MTF of the system, showing the image resolution performance of the
system shown in Fig. 1. (b) The predicted MTF in target units, including the effects of sensor pixel
sampling.
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The light-weighting pattern was developed to deliver good performance against gravitation-
ally driven deformation (Fig. 6): finite element analysis (FEA) was used to predict a maximum
gravitationally induced deformation of the optical surface of ∼9-nm peak-to-valley (PV) for this
mirror.

Throughout this design program, the FE model was constructed using Autodesk Inventor
mechanical design software, and ANSYS FEA software was used to model both deformation
behavior and thermal behavior. For the FEA, the model for the primary mirror was meshed with
tetrahedron elements (Fig. 7), and the material properties applied were those defined for N-BK7.
The model was constrained on the two surfaces that are in direct contact with the mounting cell:
the central bore and the rear plano surface adjacent to the central bore. Gravity was applied as an
acceleration simulating the optic at each model orientation, and the mesh of the model was
refined until the convergence was <5%.

The secondary mirror was fabricated as a thin mirror of 6.5-mm center thickness with a plano
back. The mounting arrangement for the secondary mirror uses a machined titanium alloy
(grade 5) support plate. The mirror back is bonded to this support plate using a structural epoxy
resin. The support plate, or cell, is mounted in a cylindrical secondary mirror baffle (Fig. 8). Tilt
alignment adjustment of the mirror is via three locking fine screw adjusters that bear on the
titanium cell.

Titanium alloy is used for the secondary mirror cell because of the small center thickness of
the mirror: the titanium alloy has a good CTE match with that of Schott N-BK7 glass and so
reduces the risk of thermally induced deformation of the mirror.

Fig. 5 Mounting arrangement for the primary mirror. The cell is machined aluminum alloy (7075).

Fig. 4 (a) Model of the primary mirror light-weighting and (b) a light-weighted primary mirror during
fabrication.
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Fig. 8 Mounting arrangement for the secondary mirror. The cell is machined titanium alloy
(grade 5).

Fig. 7 Finite element mesh used for the analysis of gravitationally induced deformation of the
primary mirror.

Fig. 6 FEA results for gravitationally induced deformation of the light-weighted primary mirror:
(a) results for nadir pointing and (b) results for 40 deg to nadir.
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For the FEA, the model of the secondary mirror was meshed with tetrahedron elements and
used the material properties defined for N-BK7 (Fig. 9). The model was constrained on the three
7-mm-diameter adhesive bond areas that attach the secondary mirror to its cell assembly. Gravity
was applied as an acceleration simulating the optic at each model orientation, and the mesh of the
model was refined until the convergence was <5%.

The FEA results are presented for the secondary mirror in Fig. 10: the analysis predicts a
maximum gravitationally induced deformation of the optical surface of <3-nm PV. Note that the
trefoil-shaped deformation of the secondary mirror is attributed to its mounting arrangement.

5 Mechanical Design

The factors that affect the mechanical design of the structure of the camera system are the
expected thermal behavior of the system, and the effects of gravity vector and vibration.
Several different manufacturing processes and materials were considered during the design
process. These included:

Fig. 10 FEA results for gravitationally induced deformation of the secondary mirror: (a) results for
nadir pointing and (b) results for 40 deg to nadir.

Fig. 9 Finite element mesh used for the analysis of gravitationally induced deformation of the
secondary mirror.
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(1) A titanium alloy only structure, manufactured by direct metal laser sintering. This offers
a good match for the CTE of the optical glass, ensuring a near athermal design. However,
a process must be developed to treat parts that will interface to the optics, specifically to
avoid hysteretic thermal behavior. Suppliers of sintered titanium alloy also raised con-
cerns regarding possible deformation of the vanes during the build process and could not
guarantee manufacture of the structure.

(2) A structure mostly fabricated from aluminum alloy, manufactured using precision machin-
ing production techniques. This design is arguably the easiest to manufacture but would
not provide a design that behaves athermally because of the mismatch in CTE between
structure and optics. As a result, an actuated focus mechanism is a requirement for this
design approach and may require some level of real-time focus control during operation.

(3) A structural design using a combination of materials, including: carbon fiber-reinforced
plastic (CFRP), titanium alloys, aluminum alloys, and plastics. This design solution
offers the opportunity to “tune” the structure design to ensure its thermal expansion
closely matches that of the optical components. However, because of the diversity of
materials used and the specified operating temperature range, this approach requires the
careful use of structural adhesives.

Option (3) was chosen for the material selection in the design of the structure. A numerical
model was used to determine the most suitable materials for each structural component.
Consideration was given to the manufacturability of the parts as well as their impact on the
thermal expansion of the structure. Figure 11 shows the final design of the instrument, as mod-
eled in Autodesk Inventor.

The design of the tube assembly is driven by the need to baffle the optical system effectively
and to minimize mass. The design provides a good stiffness to weight ratio. It is suited to appli-
cations that require a low mass solution, and where an external housing provides sufficient pro-
tection from sources of transient forces (such as wind) and from excessive amounts of stray light.

The three vane components are fabricated from commercial off-the-shelf (COTS) CFRP to
provide a high degree of axial stiffness. Two CFRP products were investigated: a bespoke CFRP
manufactured at the Advanced Composite Training and Development Centre, Wrexham
Glyndŵr University, and a COTS product. The testing program indicated that the bespoke
CFRP had a lower CTE but that the COTS CFRP recorded significantly higher stiffness.
Each vane is cut by water jet from a 2-mm thickness CFRP sheet.

The primary mirror and secondary mirror baffles have been designed to minimize stray light
based upon a geometric model.

Fig. 11 A schematic view of the design of the camera system, showing its main components.
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The structure at the rear of the primary mirror is tubular to maximize its stiffness. It provides
an interface to the sensor package, it allows the incorporation of a focus mechanism, and it
provides an interface with a gimbal. Each of the tubular sections is fabricated from machined
titanium alloy and assembled using suitably sized fine pitch screw threads. The developed design
removes the need for a wide yolk structure, allowing the tube to be supported at the rear of the
primary mirror with only a small out-of-balance torque.

As has been discussed, a COTS machine vision camera sensor was chosen for the technical
demonstrator system to provide images for system testing and evaluation. While not intended as
a choice for operational use, this camera sensor provides a representative payload mass and
power dissipation.

FEA of the static deflections resulting from variation in gravity vector indicate decentration
between primary and secondary mirrors to be the greatest gravity-driven optical misalignment.
This decentration is expected to have a maximum value of 18 μm from nadir pointing to horizon
pointing and introduces a net wavefront error at the image of 11 nm RMS in the form of coma;
i.e., negligibly small.

A modal analysis has been performed for the design using ANSYS, for frequencies up to
1000 Hz (Fig. 12). Although the structure is most susceptible to torsional loads, analysis results
indicate that the fundamental modal frequency is in excess of 120 Hz (Fig. 12). Published

Fig. 12 Modal analysis results for the camera system: (a) the modal analysis results summary and
(b) the deformation behavior associated with the principle vibration mode.
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vibration data are not currently available for this type of aircraft. However, from published data
for composite airframes of similar wingspan,6,7 a principle vibrational mode lower than 20 Hz is
expected for the platform. Vibration modes with higher frequencies are reported, but it is unclear
if these higher-frequency modes extend beyond 100 Hz. While this suggests that the vibrational
modes of the instrument will not be excited by the aircraft, more representative vibration data are
being sought.

Table 5 presents the mass breakdown of the camera system, divided into its main subassem-
blies. In Table 5, the tube assembly, (a), includes the mass of the primary and secondary mirrors
and the tube structure. The focus mechanism, (b), includes the corrector lens assembly, the focus
assembly, its servo actuation, and the packaged machine vision sensor. Of the 0.52 kg presented
in Table 5 (b), the servo-actuator, external encoder with 2 m of cable total 0.22 kg. The camera
and the focus mechanism require supervisory control, (c). The listed mass is for the COTS desk-
top arrangement used during testing and includes an embedded micro-PC and associated
cabling. For a flight instrument, it is expected that the embedded control computer will be a
suitable small-format system with lower mass. The total mass of the camera system is 1.64 kg.

There is a gimbal arrangement included in the design for this prototype camera system, (d).
This mass includes the physical interface between the payload and the platform. It is expected that
the operational camera system will be enclosed, and that the gimbal arrangement and its actuation
will form part of this enclosure assembly. The gimbal mass of 0.64 kg gives a total mass for the
camera system and gimbal of 2.28 kg, which conforms to the requirement of <3 kg and leaves
a mass “surplus” of 0.72 kg available for an aerodynamic enclosure for the instrument.

The maximum payload volume is specified as 24;000;000 mm3, with a volume of
150 × 150 × 400 ð¼ 9;000;000Þ mm3 allocated to the camera system. The current design occu-
pies a volume of 150 × 150 × 438 ð¼ 9;855;000Þ mm3. While not conformant with the length
specification, this length includes the COTS machine vision camera (57.5 mm). The length of the
instrument is driven by the focal ratio of the primary mirror, the length of the focus mechanism,
and the sensor packaging. Some of the excess length can be mitigated by folding the optical
beam between the focus mechanism and the sensor assembly. This simple modification has the
potential of removing up to 55 mm from the total length of the instrument, while adding
<0.02 kg to the total mass from an additional fold mirror.

Table 6 presents power consumption data for the camera system. The total power consump-
tion is expected to be ∼28 W with all motor servos operating. This power consumption is well
within the specification of 250 W peak power.

The expected natural frequency of the instrument is>100 Hz, which is expected to be higher
than any excitation vibration modes produced by the platform in flight. However, measured
vibration data for these platforms are not yet in the public domain.

6 Thermal Design

There are three aspects to the thermal behavior of the system throughout the specified temper-
ature range:

Table 5 Mass breakdown of the camera system. See the
enumerated comments in the text for the scope of each
subassembly.

Mass (kg)

Tube assembly (a) 0.77

Focus mechanism (b) 0.52

Drive and supervisory control (c) 0.35

Gimbal assembly (d) 0.64

Total 2.28
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(1) The structural integrity of the system.
(2) The effects of localized heat sources.
(3) The performance of the optical system.

Because of the diversity of materials used in the camera system, it was necessary to use an
epoxy structural adhesive to bond disparate materials in the structure: specifically, the secondary
mirror to its support and the CFRP vanes to their aluminum interfaces. 3M Scotch-Weld DP190
adhesive was used for both interfaces. While analysis confirmed the strength of this adhesive
for this application, the significant variation in CTE between the adhesive and the structural
materials meant that experimental verification of the structural integrity was required during
environmental testing of the instrument.

At atmospheric pressures representative of operation at altitude, only radiative cooling is
available to remove heat dissipated by local heat sources. As a result, any components that
dissipate power must either be packaged to allow effective radiative cooling or have a con-
ductive “bridge” to a correctly specified radiative heat sink. The DC servo motor and camera
sensor both dissipate several Watts during operation. However, while the focusing function is
designed to be intermittent and can be powered off when not in use, the camera sensor
remains powered on throughout. A maximum dissipation of 4.5 W is documented for the
packaged camera sensor and requires a strategy for removing the thermal load from the vicin-
ity of the primary mirror.

Figure 13 shows the effects of the heat dissipation from the camera sensor over the opera-
tional range of temperature and pressure, modeled using ANSYS. For high environmental
temperatures (þ30°C), the sensor packaging will reach nearly þ52°C. At altitude, where the
specified temperature is −40°C, conduction through the titanium structure enables this structure
to act as a suitable radiative heatsink for the packaged camera sensor. Here, the sensor pack-
aging reaches a temperature of þ29°C. This indicates that heating is expected to be localized
for an operational sensor choice of similar dissipation, and that modest radiative cooling mea-
sures are a tractable approach to removing this dissipated heat from the vicinity of the large
optics.

By the careful use of structural materials with differing CTE, the design of the instrument is
intended to maintain the optical system near focus throughout its operational temperature range.
For the final structural design, the instrument drifts approximately half a wave in focus through-
out its specified temperature range (Fig. 14). This defocus behavior was confirmed during
environmental testing.

7 System Performance

Two prototype instruments have been built and tested. Of these, one has remained unmodi-
fied and one has been modified to accommodate the findings of earlier system tests. These
instruments have been subjected to both a laboratory testing campaign and environmental
testing.

Table 6 Power consumption breakdown of the camera sys-
tem. The data are based upon laboratory measurements.

Component Power consumption

COTS supervisory PC 8

Packaged sensor 5.2

Focus servo assembly 4.85

Gimbal servos 9.7

Total 27.75 W
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7.1 Laboratory Testing

The primary and secondary mirrors for both instruments were fabricated in-house. The design of
the corrector lenses was modified to use COTS lenses of similar prescription and fabricated from
Schott N-BK7. While this optical design change degrades the off-axis performance of the instru-
ment, the on-axis performance remains unchanged.

To define the top-level optical performance of the system, the Maréchal criterion10 was used:
a “well corrected” optical system is one with a phase variance over the pupil of < 0.2 waves,
indicating a Strehl ratio of > 0.80 and an RMS wavefront of 1/13.4 waves. The Maréchal
criterion indicates that the RMS wavefront irregularity emerging from the optical system must
be 47.2 nm or less to achieve a well corrected or “diffraction limited” optical performance,
assuming a test wavelength of 633 nm.

Figure 15 shows the fabricated surface error maps for the primary and secondary mirrors,
after coating, as derived from interferometric data. Table 7 presents a wavefront error budget
for the instrument, taking account of fabricated surface accuracy only; i.e., no accommodation

Fig. 13 FEA of heat flow dissipated from the camera sensor packaging through the focusing
mechanism assembly. These data are steady state results. (a) At a temperature of þ30°C,
1000 mbar pressure the sensor can reach þ52°C; and (b) at a temperature of −40°C and 40 mbar
pressure the sensor can reach þ29°C.
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of sources of wavefront error from integration of the optical system. The COTS lenses were not
verified individually, so the manufacturer’s quality data were used. Note that while the full-
aperture figure error of the COTS lenses is quite large, the optical footprint of the beam is small
because of their proximity to the focal plane. This lowers the contribution of figure errors to
the propagated wavefront.

It can be seen from Table 7 that the fabricated quality of the optics is sufficient to meet
the Maréchal criterion, but with little margin to accommodate the impact of integration upon
the system wavefront error. Specifically, we expect wavefront degradation attributable to:

(1) Integration of the optics into their respective cells;
(2) Residual misalignments.

Initial optical alignment of the integrated system was performed using a point source
microscope.11 Fine optical alignment was performed using interferometric data acquired using
a 4D PhaseCam 6000 stabilized Twyman Green interferometer (Fig. 16). In both optical align-
ment stages, the integrated system was tested in autocollimation against a calibrated optical flat.
The expected RMS surface error of the optical flat over the beam footprint was 6-nm; i.e., 12-nm
RMS wavefront.

Figure 17 shows the measured wavefront error map of the integrated system after final align-
ment. The system wavefront error is 52.1-nm RMS and 298-nm PV. This result is to be compared
with an expected system wavefront error of 45.1-nm RMS, estimated from the wavefront con-
tribution from each of the optical elements, and a target of 47.2-nm RMS (Maréchal criterion).

The low-order Zernike aberration coefficients derived from these measurements are pre-
sented in Table 8. The coma term indicates that optical alignment is sufficient, contributing
15 nm to the wavefront RMS in root sum square (RSS), but the residual astigmatism is high.
The astigmatism contributes 35 nm to the wavefront RMS in RSS and is the main cause of the
wavefront degradation. Further investigation of the astigmatism identified its cause as the defor-
mation of the primary mirror surface from mounting forces and found this effect to be hysteretic.

7.2 Environmental Testing

Two sets of environmental tests were conducted on the assembled prototype instruments: those
designed to test the survival of the system; and those designed to test the optical performance of
the system.

Fig. 14 Spot diagrams resulting from a Zemax thermal analysis illustrating the variation of focus
with operational temperature/pressure: (a) þ20°C, (b) þ30°C, and (c) −40°C.
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Two survival tests were performed:

(1) Survival of the assembly with increased loading at −80°C.
(2) Survival of the assembly throughout several þ30°C to −80°C duty cycles, designed to

replicate a diurnal mission profile.

The tube assembly consists of three CFRP vanes bonded to the aluminum baffles of the
primary and secondary mirrors using an epoxy adhesive. To validate the integrity of this sub-
assembly, the unit was loaded to the equivalent of five times gravity and cycled several times
from þ30°C to −70°C at ambient pressure in an environmental chamber. The duty cycle for
the temperature variation was 12 h. Figure 18 shows this loading test. At the end of the test,

Fig. 15 Fabricated surface error maps for the primary and secondary mirrors: (a) the primary
mirror (18.1-nm RMS surface error) and (b) the secondary mirror (13.0-nm RMS surface error).
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all bonded interfaces were inspected for visible signs of stress fracturing. No visible signs of
failure were found under magnification at any of the six interfaces. The integrity of these bonds
was monitored throughout the remaining environmental testing program with no visible signs of
failure being found.

The camera system was then cycled in the chamber at ambient pressure through the temper-
ature rangeþ30°C to −70°Cwith the camera sensor and focus actuation enabled. The function of
the camera sensor and focus mechanism were checked at ambient and both temperature
extremes. Correct function was observed at all test points throughout a 3-day trial.

It is noted that the environmental chamber used for these tests was not a “dry” testing
environment. During the test, it was clear that ice was building up on the actuators and mirrors
at low temperature. This ice build-up subsequently melted as the unit was cycled through to
the higher temperature. However, the unit stayed functional throughout the testing program.

To test the alignment of the optics over the required operating temperature range, a test was
devised to use the two imaging systems mounted facing each other (Fig. 19). One system had the
COTS machine vision sensor at its focal plane and the other system had a test target at its focal
plane (a micromachined plate illuminated by an LED light source). The optical path between
these two optical systems was collimated. The camera system was adjusted to provide a focused
image of the target.

Once integrated and aligned at room temperature, the test arrangement was placed in an
environmental chamber and tested at pressures down to 30 mbar and temperatures down to

Table 7 Wavefront error budget for each optic. Data for on-axis wavefront performance only.
M1 and M2 are the primary and secondary mirrors, respectively, L1 and L2 are the two corrector
lenses.

Surface
OCA
(mm)

Footprint
(mm)

Budgeted full
aperture surface
error (nm RMS)

Budgeted
wavefront error

(nm RMS)

Fabricated
surface error
(nm RMS)

Derived
wavefront error

(nm RMS)

M1 148.6 148.6 19.0 38.0 18.1 36.2

M2 60.0 52.6 16.9 33.8 13.0 26.0

L1 plano 22.9 8.1 63.9 97.9 97.9 6.1

L1 convex 22.9 7.8 69.0 49.0 49.0 2.8

L2 concave 22.9 4.7 142.4 49.0 49.0 1.0

L2 plano 22.9 4.3 170.2 97.0 97.0 1.7

RSS Total 47.2 45.1

Fig. 16 Interferometric testing of the camera in autocollimation using a 4D Technology PhaseCam
6000 stabilized Twyman-Green interferometer. The return flat is outside the field on the right.
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−40°C, with a test profile designed to represent an expected operational profile. After an
initial period of thermalization within the chamber, the test target was focused (Fig. 20).
Each illuminated point in Fig. 20(a) is the image of a 15-μm diameter pinhole and has a measured
full-width at half maximum (FWHM) of 18 μm. There is some evidence of both flaring and
residual coma in these data, which is attributed to a small misalignment in one or each of the
two telescope assemblies.

During the test, images of the test target were taken every 10 s. Both defocus and trefoil were
apparent in the data at the −40°C test point. The trefoil can clearly be seen in Fig. 20(b); the
defocus has been removed. Because the two telescopes are identical and mechanically aligned,

Fig. 17 Final wavefront error map for the optical system. The final measured wavefront error is
52.1-nm RMS and 298-nm PV.

Table 8 Final Zernike terms for the camera system,
expressed as wavefront Fringe Zernike coefficients.

Zernike term Fringe Zernike coefficient (nm)

X-astigmatism 9.1

Y-astigmatism 84.9

X-coma −40.1

Y-coma −13.8

Primary spherical þ2.5

X-trefoil −8.4

Y-trefoil −1.8
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this trefoil must arise in both units. The trefoil is attributed to temperature-induced stress in the
secondary mirror caused by its mounting arrangement. It is likely that some of the observed
defocus was the result of the same causal factor, but this was not quantified. This mounting
arrangement has since been redesigned (see Sec. 8).

Fig. 18 Assembly for test loading the bonded joints of the instrument.

Fig. 19 Test arrangement for environmental verification of optical performance.

Fig. 20 Test image data: (a) in focus at the start of cooling and (b) exhibiting trefoil at −40°C.
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7.3 Summary

In summary, the system testing has produced the following results:

(1) From an assessment of the fabrication quality of each of the optical elements, the system
wavefront error is expected to be close to that required to deliver the specified optical
performance.

(2) The wavefront accuracy of the integrated system, measured under laboratory conditions,
diverges slightly from the target wavefront performance.

(3) The cause of the degradation of the expected system wavefront accuracy is variable
astigmatism resulting from the influence of the mounting arrangement of the primary
mirror.

(4) The key design issue arising from the environmental testing was the temperature-related
deformation of the secondary mirror. Investigation has shown this deformation to result
from a CTE mismatch between the titanium alloy secondary mirror cell, the N-BK7
mirror substrate, and its rigid interface to an aluminum alloy structural subassembly.
The forces induced from this CTE mismatch are transferred between the cell and the
optic via the three epoxy bonds between the M2 and its cell.

(5) The variation in focus during environmental testing, while predicted, means that an actu-
ated focus mechanism remains a requirement. This mechanism both increases the weight
of the instrument and its complexity. As a result, a passively athermal design is to be
sought.

(6) During environmental testing, certain temperature points resulted in significant amounts
of icing and condensation on the telescope system. While the telescope system remained
functional throughout these tests, further investigation is required of the expected
environmental conditions during flight.

Sufficient understanding of the thermal behavior of the system has been acquired to move to
a fully passively athermal system design requiring no in-flight focus actuation.

Further environmental testing is required to achieve a status of “flight ready.”

8 Design Outcomes

On review, we identify several areas where further development would improve the product.
These are categorized as follows:

(1) Improvement for optical performance;
(2) Improvement for SWaP conformance;
(3) Reducing production costs.

Three areas of improvement of optical performance are identified:

• Minimizing mounting stresses on the primary mirror;
• Minimizing thermally induced stresses on the secondary mirror;
• Minimizing thermally induced focus variation (athermalization).

Deformation of the primary mirror from mounting stresses results from the “clamping”
arrangement between its central bore and the cell. These clamping forces are difficult to assess
during integration. They must also remain constant throughout the operating temperature range
of the instrument. Replacing this clamping arrangement with a bonded interface using RTV
silicone adhesive removes the need for clamping forces in the cell arrangement. The correct
selection of RTV silicone adhesive will minimize the risk of thermally induced deformation of
the mirror.

For the secondary mirror, design changes for the removal of trefoil aberration seen in the
optical performance at low temperature consist of a partial redesign of this subassembly and
a change to the cell–mirror interface. The aluminum structural subassembly that interfaces
to the titanium alloy cell has been replaced with one fabricated from stainless steel (316) to
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achieve a better CTE match. The three epoxy bonds between the cell and the secondary mirror
have been replaced with a single, central bond at the rear of the secondary mirror. A review of the
adhesive choice may also be required but awaits the results from further environmental testing.

A review of the temperature-driven focus behavior was performed with a goal of full passive
athermalization over the specified operating temperature range. Reanalysis of the temperature-
driven interaction between the optical system and the structure of the instrument indicates that a
change in composition of the primary mirror cell from aluminum alloy (7075) to stainless steel
(314) brings the optical system to near full passive athermalization. This is shown in Fig. 21 and
can be compared directly with the performance of the existing design shown in Fig. 14.

The SWaP performance of the camera system is conformant except for the physical length of
the instrument. The nonconformance is smaller than the length of the COTS machine vision
sensor packaging and may be resolved by folding the beam between the rear of the primary
mirror and the focal plane.

The authors are aware that for HALE operations the smallest practicable payload cross-
section can improve both aerodynamic performance of the platform and mission duration.
Reducing the size of the instrument also allows greater flexibility when the telescope is used
as the fore optics to additional instrumentation within the SWaP volume. By removing the focus
mechanism, reducing the focal ratio of the primary mirror to a maximum of f∕1.7 and using a
fold mirror to illuminate the focal plane (Fig. 22), it is possible to shorten the total length of the
instrument to nearer 300 mm. The optical “cost” of this change is the requirement for a three-
element field corrector to achieve similar optical performance, the introduction of a fold mirror to
the design (and thereby its impact upon the wavefront) and increased sensitivity to misalignment.
Further reduction in primary mirror focal ratio below f∕1.7 is feasible but will result in increas-
ing sensitivity to optical misalignment and require greater complexity in the design of the field
corrector.

We identify the following production cost drivers for this design:

• Optical manufacturing costs: The manufacturing costs of highly light-weighted aspheric
optics of this size are a significant proportion of the total cost of each unit. While the
productionization of the manufacturing process will recover some of these costs, it is
appropriate to review the light-weighting design and manufacturing method of the primary
mirror.

Fig. 21 Spot diagrams illustrating the variation of focus with operational temperature/pressure
after changing the primary mirror cell material from aluminum alloy (7075) to stainless steel (314):
(a) þ20°C, (b) þ30°C, and (c) −40°C.
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• Assembly of the tube structure: The epoxy bonding of structural components incurs a sig-
nificant labor cost. Once again, the productionization of this process (including improved
bonding fixturing) will recover some of these costs. However, other assembly designs may
offer a cost advantage over the diversity of materials used here.

• Alignment and interferometric verification of the instrument: Typically, final alignment
and interferometric verification in the laboratory takes a minimum of 2 days when starting
from a mechanically assembled optical system. Once again, optical alignment as part of a
production process requires bespoke alignment jigs to be designed and manufactured. For
a system like this, a final alignment and verification program lasting no more than half of
one day is a production target.

9 Conclusions

While HAPS are still very new, they offer a unique set of aerial capabilities that sit between
conventional aircraft and space-borne platforms, particularly in the areas of surveillance and
communications. They also have considerable potential for scientific exploitation, offering the

Fig. 22 (a) Layout of an optical design using an f∕1.7 primary mirror with a fold prior to the focal
plane and (b) the resulting matrix spot diagram. Note that the optical design does not perform as
well as the existing design, despite using a three-element field corrector. This design just fits within
300 mm instrument length.
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possibility of access to Earth observation and atmospheric monitoring instrumentation at a lower
cost than space-borne experiments and with a more rapid development timescale between con-
cept and deployment.

In this paper, we have reviewed the design and testing of a prototype high-resolution camera
suitable for deployment on HAPS as a reconnaissance instrument. In summary, while the emerg-
ing HAPs market presents quite specific requirements for optical systems in terms of both SWaP
and environmental conditions, a high-resolution camera system is both technically feasible for
HAPS deployment and economic to manufacture. We highlight the key SWaP attributes of this
system as:

• Total payload mass (without enclosure): 2.3 kg;
• Total payload power consumption: 28 W;
• Total payload volume: 150 × 150 × 438 mm3.

An instrument such as the one described has significant potential as a reconnaissance tool, or
as the fore-optics to a LIDAR or spectroscopic instrument.

Because of their SWaP and athermal behavior, these technologies are appropriate for deploy-
ment on other platforms, from airborne and space-borne to ruggedized instruments for land-
based use. We observe the launch vibration requirements to be a design driver for deployment
on a space-borne platform. Similarly, land-based operational use requires design effort to protect
the optical system from the frequent shock loading likely from operational use.

Inevitably, the use of this design as fore-optics for other instrumentation, e.g., spectroscopic
or LIDAR, will lead to design changes aimed at optimizing the system for each role. However,
the relative simplicity of the optical design enables modification over quite a wide range of
system characteristics without changing the design fundamentals. This is an important feature
of the system from the standpoint of its commercial exploitation.
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