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Abstract: This paper provides a high accuracy assessment of domestic demand-side management (DSM) 

approach in the context of distributed renewable energy sources (RES). To determine the potential of domestic 

DSM for households, a microgrid model of a typical UK residential estate was developed to simulate the impact 

of RES. The microgrid model comprises of 15 UK households with appropriate allocation of washing machines 

(WM), tumble dryers (TD) and dishwashers (DW) in accordance to the statistical data. In order to obtain a high 

accuracy result, the power consumption of the microgrid model utilises real historical high-resolution data of 

household energy consumption and RES generation. Thereafter, 40% of distributed wind and solar energy are 

implemented in the model to produce two individual scenarios. The operation of the white appliances in the 

model is controlled using a domestic DSM based on a load shifting algorithm. The primary criterion of the DSM 

considered in this paper is the reduction of energy feedback to the grid in order to decrease the utilisation of the 

grid and to reduce the transmission losses. The results obtained from the model simulation are compared to the 

baseline model and discussed with respect to the possible benefits of implementation of domestic DSM under 

the impact of RES. It has been shown that the self-consumption ratio of the microgrid operating under the DSM 

is increased by 3% for both scenarios. The model analysis provides highly realistic results which can be used for 

efficiency assessment of various load shifting methods. 
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1. Introduction 

The principle of domestic demand-side management (DSM) was introduced firstly in the 80s; however, feasible 

concepts had not been proposed at these times [1-3]. Subsequently, in the early 90s the developments in internet 

communication, sensors and actuation technology have provided the technical feasibility of DSM 

implementation in domestic and commercial sectors [4-6]. In recent years, incoming smart grid technologies and 

distributed generation using renewable sources have dramatically extended the interest in DSM techniques for 

energy consumption control in residential areas. DSM becomes an essential component of domestic power 

systems utilising smart home concepts. It is predicted that domestic DSM will play a significant role in 

optimisation and efficiency improvement of energy consumption in future residential houses which integrate 

various controllable loads, renewable and conventional power sources, energy storages etc. [7-9] 

1.1 Domestic Demand Side Management 

The energy consumption control following the DSM approach helps to reduce the energy cost and to improve 

the efficiency and reliability of the supply network operation. DSM focuses on a customer load profile 

adjustment to provide energy consumption in an optimal way. It utilises the load management techniques aimed 

to manipulate load profile curves by several ways: (1) peak clipping; (2) valley filling; (3) load shifting; (4) 

strategic conservation; (5) strategic load growth; (6) flexible load shape [10]. Although these load manipulation 

strategies were defined a few decades ago, the resent literature search [11-15] shows that they are still 

dominating in state-of-the-art DSM proposals and applications in both industrial and domestic sectors. The 

appropriate DSM technique from the list must be selected with respect to particular system parameters to ensure 

the most efficient operation of power supply sources. The key system parameter affecting the selection of the 

strategy is the reliability of forecast/prediction of consumer load profile over a certain period of time. For 

example, industrial consumers operating in a predictable manner and having a calculable load profile 

traditionally use a peak clipping DSM strategy to reduce the capacity chargers [16]. In contrast to industrial 

customers, the power consumption in the domestic sector fluctuates and depends on a large number of factors 

such as the number and behaviour of household inhabitants, number and type of white good appliances, cost of 

electricity and gas etc. In addition, if a household is equipped with renewable energy sources (RES) generating 

electricity with sporadic weather conditions, the prediction of a household energy balance is more sophisticated.  

The DSM strategy selection also depends on the structure and controllability of the electrical loads. There is a 

variety of algorithm approaches implemented into the load control systems to provide DSM operation. It has 

been admitted that the complexity of the DSM algorithms mainly depends on controllability properties of the 

electrical load components, electricity metering infrastructure and data communication [17-22]. While industrial 

consumers utilise comprehensive DSM methods to manage complicate structure load, the domestic DSM 

systems are relatively simple. Many recent papers [23-25] reported that due to limited control capability of 

household appliances, the most popular methods for domestic DSM is the load shifting (LS) applied to installed 

white goods in the form of ‘on-off’ control. 

Volt et al. [26] suggested that most suitable household loads for shifting control under domestic DSM are white 

goods devices, especially washing machines (WM), tumble dryers (TD) and dishwashers (DW). These 

appliances can be held and started at a particular time with a time delay. However, there are other household 

appliances such as freezers or boilers, which could be potentially used for domestic DSM, but their scheduling 

controllability is extremely limited. Lighting or TVs are considered as non-controllable appliances and, 

therefore, not objects for the domestic DSM [27]. Many previously published works [23, 28-34] discussed that 

the LS management of the controllable appliances could be achieved by: (1) direct control using, for example, 

automation technology for smart homes or (2) indirect control using the participation of household inhabitants in 

domestic DSM through, for example, financial rewards.  

1.2 Domestic DSM Frameworks and Algorithms 

As discussed above the dominating DSM strategy proposed for the existing housing sector is the load shifting. 

The frameworks of the domestic DSM utilising LS strategy include the following methods (1) centralised 

control, (2) distributed control and (3) individual (autonomous) control [35]. Centralised framework provides LS 

control of a large number of households by a central node or hierarchy management system. The distribution 

control is usually applied to a smaller number of houses and based on a network which ensures 

intercommunication between system agents required for decision development. A single household can operate 
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under individual (autonomous) control framework. However, the individual control system could be part of 

centralised or distributed controller.  

The load shifting algorithms designed or suggested for domestic DSM applications are usually single or multi-

objective optimisation algorithms focusing on optimisation on one or several parameters. In terms of 

mathematical execution, the LS algorithms operate under various optimisation techniques require, in some 

cases, significant computational resources.  

For example, Abdelsalam et al. [15] suggested a multi-agent optimisation algorithm (antlion algorithm) to 

analyse three domestic DSM scenarios. Two scenarios represented singe objective optimisation where the 

objective function is (1) to minimise the energy consumption cost and (2) maximise the load factor. The third 

scenario is a multi-objective optimisation combining the objective functions from the first and second scenarios. 

Ebrahimi et al. [14] discussed an advanced particle swarm optimisation algorithm for load shifting control of 

domestic appliances. Almehizia et al. [36] implemented a genetic algorithm technique to optimise the cost 

function indirectly reflecting electricity cost. Mehta et al. [37] proposed an evolutionary optimisation algorithm 

focusing on keeping the overall load demand below a certain power consumption limit. Jamil and Mittal [13] 

offered a grasshopper optimisation algorithm to minimise load consumption using LS approach. Analysing LS 

in a residential area, they assume that the major controllable home appliances include dryer, dishwasher and 

washing machine.  

There is also a number of studies which propose various multi-objectives optimisation algorithms for the 

domestic LS. For example, Tsagarakis et al. [9] suggested a multi-objective optimisation algorithm to provide 

LS during the day. The algorithm aimed to optimise the load shifting using two objectives to reduce (1) 

electricity cost and (2) greenhouse emission. Another multi-objective optimisation algorithm proposed by Ran 

and Leng [12] focuses on the reduction of electricity cost taking into account the uncertainty of customer 

behaviour in the form of the robust index (RI).  

1.3 Impact of Renewable Energy Sources 

The role of large- and small-scale RESs in electricity generation is significantly increased over the last decades. 

Today, small size solar panels and wind turbines are very popular installations improving the energy balance of 

households. The integration of distributed RES into residential buildings affects the energy consumption profile 

of domestic households and makes the energy balance analysis more complicate [27]. It is related to the 

stochastic character of the power generated by RES following the weather conditions. However, the 

implementation of RES into the residential sector brings new objectives for LS control algorithms. For example, 

distributed RES can cause energy feedback into the grid; therefore, optimisation focusing the self-consumption 

would be more efficient in terms of economic benefit as it reduces grid utilisation. The efficiency of LS can also 

be improved if the forecasting of both the power consumption and the production of the distributed RES are 

included in LS control. The appropriate forecast suitable for LS could be developed using advanced and 

thorough analysis of both historical weather and domestic consumption data [38,39]. 

1.4 High-Resolution Modelling 

The manipulation of the consumption profile of domestic households in order to synchronise it with the 

production of domestic RES is a field of intensive research in recent years [40-42]. For example, Javaid et al. 

[43] deal with the problem of the disparity of domestic consumption and RES production using historical high-

resolution energy consumption and RES production data in order to develop an effective approach to load 

shifting. In that paper, the daily and seasonal pattern of the domestic RES is investigated for establishing a 

schedule which is then used to the load shift. However, this approach is based on empirical values of the past 

and does not consider short-term effects. Nevertheless, this procedure increases the optimal self-consumed 

component of the produced RES. Stavrakas and Flamos [21] suggested a high-resolution demand-side 

management model for a household which can be enlarged in a microgrid comprising a number of buildings. 

The model is comprehensive and includes solar RES and energy storage. However, the behaviour of the model 

components is simulated, excluding the weather condition, which utilises historical data. Thiaux et al. [20] 

introduced a model to investigate the demand-side management in a microgrid (20 households) equipped with 

solar RES, battery storage and diesel generator. This model runs simulations at a 10-minute time step and also 

uses historical data of the weather condition. However, the model is designed to analyse a stand-alone microgrid 

model only. 
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1.5 Contribution 

The present study is focused on the high accuracy assessment of a load shifting method for domestic DSM in the 

context of RES installed in domestic households. The main contribution of the paper is the development of a 

microgrid model reflecting RES integration into household power systems and its analysis using an LS 

algorithm for domestic DSM based on real historical high-resolution data of household energy consumption and 

RES generation. In contrast to the published works related to high-resolution modelling of domestic power 

systems, the proposed model implements high accuracy real data of both home appliances’ performance and 

whether condition recorded for the same time period. Implementation of these real data into the investigation 

model provides highly realistic results which is used for assessment of efficiency of an LS method. As 

discussed, LS method is recognised as a conventional, simple, effective and probably the only available 

approach for domestic DSM due to a limited number of controllable appliances and their ‘on-off’ elementary 

control nature. In this paper, three types of white goods are taken into account for modelling and analysis of a 

household energy consumption. These are washing machines, dryers and dishwashers. Small scale and, 

therefore, distributed RES are studied with respect to their interaction with domestic electricity consumption. 

The impact of domestic LS is then investigated using a microgrid model. The model of the microgrid for this 

analysis comprises of 15 households and based on high-resolution historical consumption data provided by the 

Customer Led-Network-Revolution (CLNR). The data used for the modelling represent the years 2013-2014, 

and this data is also presumed to be relevant for the near to medium-term future for the vast majority of the 

households in the UK.  

In order to verify the proposed model, the performance of the microgrid is analysed under a case study dealing 

with a proportion of 40% distributed RES with respect to the overall consumption of the microgrid. In this 

investigation, the distributed RES are solar and wind energy sources investigated in two separate scenarios. Both 

scenarios are developed to provide a thorough assessment of an LS based domestic demand-side management 

algorithm. The LS management algorithm implemented in the case study is a conventional algorithm based on 

the criteria of the energy balance of the microgrid. This algorithm is aimed to improve the energy self-

consumption in order to decrease utilisation of the power network and energy losses. It is assumed that the 

algorithm provides automatic control of the household appliances available for DSM using, for example, smart 

home actuator technology. However, the algorithm override option is always possible for the household 

customer to cancel DSM in order to switch to the manual control of the appliances. Finally, the impact of 

domestic LS implementation is investigated, whereby quantitative as well as qualitative results have been 

obtained. 

2. Domestic Microgrid Model 

2.1 Modelling Methodology 

The microgrid model is the main tool for investigation of the RES impact on the energy consumption of the 

households operating under an LS algorithm. The proposed model operation is based on the principle of energy 

balance between electricity generation and load consumption. The model consists of a number of households 

(m) and is supplied from two sources: (1) the grid and (2) renewable energy source (solar or wind).  

( ) ( )( )
1

m

GRID RES BASE k LS k
k

E E E E
=

+ = +      (1) 

where EGRID is the energy drawn from the grid; ERES is the energy produced by renewable energy sources; 

EBASE(k) is the energy consumed by uncontrolled (base) loads of k-th household; ELS(k) is the energy consumes by 

shiftable household appliances in k-th household; m is the number of households in the residential microgrid 

model. 

It is assumed that the model included three types of controllable (available for load shifting) appliances: 

washing machine; tumble dryers and dishwasher. The energy consumed by these appliances in k-th household 

ELS is represented as follows 

( ) ,1 ,2 ,3k WM k TD k DWLS k
E d E d E d E= + +     (2) 
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where dk,1 is model dissemination coefficient of the washing machines; dk,2 is model dissemination coefficient of 

the tumble dryers; dk,3 is model dissemination coefficient of the dishwashers; EWM is the energy consumed by 

washing machine; ETD is the energy consumed by tumbler dryer; EDW is the energy consumed by dishwasher. 

The model dissemination coefficients specify the distribution of controllable appliances across the model 

households. The coefficient is 1 if the k-th household is equipped with an appropriate appliance; it is 0 if the 

appliance is not installed.  

Therefore, the energy consumption by shiftable loads of the model households can be represented as column 

matrix ESL[m] having m elements in the row. 

= LSE D E       (3) 

where D[m,3] is a binary matrix of the model dissimilation coefficients. The matrix consists of three columns 

corresponding to three types of shiftable appliances and m rows corresponding to the number of households in 

the model. 

1,1 1,2 1,3

2,1 2,2 2,3

,1 ,2 ,3

... ... ...

m m m

d d d

d d d

d d d

 
 
 =
 
 
 

D      (4) 

E[3] is the column matrix of the energies consumed by three shiftable appliances. Hence, the matrix has three 

elements in one column.  

WM

TD

DW

E

E

E

 
 

=
 
  

E       (5) 

The energy consumed by controllable appliances over simulation time span consisting of n time samples are 

represented below. The activation coefficient g at i-th time sample in (6)-(8) is g = 1 if an appliance is in 

operation and g = 0 if the appliances is on hold. 

( )
1

n

WM WM i

i

E P g h
=

=       (6) 

( )
1

n

TD TD i

i

E P g h
=

=       (7) 

( )
1

n

DW DW i

i

E P g h
=

=       (8) 

where PWM is rated power of WM; PTD is rated power of TD; PDW is rated power of DW; h is the time sample 

rate. 

2.2. Domestic Load Profile Assembly 

The core of the domestic microgrid model consists of 15 households (m = 15) performing differently in terms of 

energy consumption. The load profiles of the households combined into a microgrid are summarised in order to 

deliver a sophisticated picture of the total microgrid energy balance. This investigation uses historical electricity 

consumption data of domestic households from the CLNR. The CLNR is the most profound investigation 

regarding the monitoring of domestic energy consumption. Data of approximately 13,000 households have been 

collected by the CLNR between the year 2012 and 2014. The results of the CLNR are provided in several 

databases with different monitoring approaches. 
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Fig. 1. An example of the energy demand of one household over 6 hours from 18.00 to 24.00. 

 

 

Fig. 2. An example of the energy demand of the individual appliances of the household. 

 

Fig. 3. The assembled energy demand profile of the household showing the demands by the shiftable appliances 

(washing machine, tumble dryer, dishwasher) and the appliances not available for the load shifting (fixed load).  

The first used database is the ‘TrialMonitoringDataMicrowatt’ which contains the overall consumption of a 

household [44]. The sample rate of the used data is 1 minute, whereby the used unit for the demand is Wh/min 
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because the used meters integrated the consumption for the obtained samples. Fig. 1 shows an example of the 

energy demand of one household extracted from the database. The example demonstrates the energy 

consumption over 6 hours in the evening – from 18.00 to 24.00. It can be seen that this profile has a certain 

basic load and some peaks related to the operation of the white goods appliances. It is assumed that the basic 

load is non-controllable demand, whereas peak loads belong to the appliances available for the LS control 

(shiftable household appliances). 

In order to determine the energy consumption by individual loads within a household power system, the 

‘TrialMonitoringDataPassiv’ database has been utilised for the data processing. This database also has a sample 

rate of 1 minute; however, in contrast to the previous database, its unit is kW because the demand has been 

measured punctual The data extracted from the database are used to determine the demand caused by the 

shiftable appliances. Fig. 2 shows an example of the energy demands produced by three shiftable appliances of 

one household: washing machine, dryer, and dishwasher. 

Finally, the data of both databases are assembled into the form of the energy demand profile (Fig. 3), which 

takes into account the consumption of the shiftable appliances. This type of energy demand profile is the 

foundation for further modelling procedures. 

2.3 Model Architecture 

15 UK households proposed for the microgrid model are located somewhere inside the Northern Powergrid, one 

of 14 distribution network operators across the UK, covering areas of North East of England, Yorkshire and 

North Lincolnshire. The exact locations of the household are not provided by the CLNR in order to protect the 

privacy of the residents. The first aspect considered regarding the microgrid model is the dissemination of the 

shiftable domestic appliances in the UK. Hence, the UK’s dissemination of WM, TD and DW is presented in 

Table 1. 

Table 1. The dissemination of the domestic appliances of the microgrid [45-47]. 

Appliances Dissemination (UK) Dissemination (Microgrid model) 

Washing Machine 97% 100% (15/15) 

Tumble Dryer 56% 53.33% (8/15) 

Dishwasher 45% 45.67% (7/15) 

 

Table 2. The weeks for the different seasons considered for the microgrid analysis 

Season Start Date End Date Days 

Spring 17.03.2014 23.03.2014 7 

Summer 17.06.2013 23.06.2013 7 

Autumn 16.09.2013 22.09.2013 7 

Winter 16.12.2013 22.12.2013 7 

 

In order to establish a profound microgrid model, the season variations in the energy consumption have to be 

considered. Hence, there is the need to define the time-spans for the respective seasons of the year. The selected 

time-spans are representing 7 days in each season (Table 2). Subsequently, consumption profiles have been 

selected in order to match the before presented dissemination. 

In terms of the total microgrid consumption, the individual peaks of the households are smoothed by the other 

houses in the microgrid model. Therefore, the microgrid model is used to determine a baseline model of 

household energy consumption. This baseline model of an average household is taken into consideration as a 

reference for further investigation. 

An additional component related to the renewable energy source (RES) is included in the microgrid model. This 

component represents two RES options: (1) solar panels installed in the households and combined into one 

source or separate solar microgrid farm and (2) microgrid wind farm. Both RES options are analysed in the case 

study separately. The microgrid feeder is connected to the main grid through a smart meter which is installed to 
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provide the readings of the microgrid energy balance. This balance is then used as the main criteria for the LS 

algorithm. The schematic structure of the proposed domestic microgrid is shown in Fig. 4. 

 

Fig. 4. The structure of the microgrid model. 

3. Baseline Model  

The baseline model represents an energy consumption of an average household developed from the combination 

of the energy demands of 15 households allocated in the microgrid model. The results obtained from the 

baseline simulation are used as a reference for further energy demand management measures. The load 

management algorithm described and assessed in the case study is actually based on the consumption behaviour 

of the baseline model. The baseline model results have to be compared with statistical data in order to provide 

the microgrid model validation. 

3.1 Daily Domestic Load Profile 

In order to demonstrate the expected benefits of domestic load shifting regarding the daily domestic load profile, 

it is necessary to get knowledge about the initial situation. Fig. 5 shows the results obtained from the analysis of 

the initial system without any load shifting measures. It can be seen that the daily energy demand profile 

demonstrates the morning demand surge and the overall demand peak during the evening. In addition, there is a 

lower energy demand during the worktime occupation gap (9:00-16:00). Analysis of the load profile of the 

shiftable loads determines that there are two peaks – the first peak is in the morning from 8:00 to 12:00 and the 

second one in the afternoon from 17:00 to 21:00. The demand drop in the late evening is caused by the residents 

who went to bed and, therefore, stopped consuming energy. 
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Fig. 5. Daily energy demand profile of one average household of the microgrid. 

3.2 Weekly Domestic Load Profile 

Fig. 6 shows the weekly load profile combined with the shiftable load to demonstrate the opportunities for the 

domestic load shifting. The profile is based on a 6-minute sample rate to make the graph surface smoother. It 

can be seen that the energy demand is similar on weekdays. In contrast to the weekdays, the weekend has a 

significantly different consumption profile where more shiftable appliances are in operation causing the weekly 

routines of the residents. 
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Fig. 6. Weekly average energy demand of one household of the microgrid. 

3.3. Daily Load Profile with Respect to the Season 

The domestic energy consumption is strongly linked to the seasons; consequently, the seasonal impact needs to 

be considered by the model. Analysis of the domestic energy demand with respect to the season shows that the 

highest energy demand occurs during the winter; in contrast, the summer is the season with the lowest energy 

demand. The energy demand during spring and autumn are similar. The average demand for one household is 

shown in Fig. 7. 
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Fig. 7. Energy demand of one household with respect to the season. 

To ensure understanding of the daily consumption variation of the single house, there is a need for a histogram 

demonstrating the distribution of energy consumption. Hence, individual values of the houses are required 

instead of average values which have been used for the graphs before. When considering the consumption 

behaviour shown in Fig. 8 it can be determined that more than 90% of the consumption is between 0 and 1 kW. 
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Moreover, the histogram shows a higher probability of consumption above 1 kW during the winter in 

comparison to the spring, summer and autumn scenario. It can also be recognised that the summer scenario has 

the highest probability of consumption below 0.5 kW. 

 

Fig. 8. The consumption distribution of the single houses used for the microgrid model. 

3.4. Validation of the Baseline Model 

In order to use the baseline model for further load shifting measures, there is a need to prove the plausibility. 

Therefore, the baseline model is compared with official data of UK households regarding the overall electricity 

consumption and the daily load profile. The data provided by the CLNR have been collected between 2013 and 

2014; hence, statistics of the year 2014 are considered for the validation of the baseline model. 

Overall electricity consumption: When considering the data provided by the Department of Climate & Energy 

Change, the average annual electricity consumption of a UK household is 4001 kWh [48]. The annual electricity 

consumption of the baseline model is 3885 kWh; consequently, it can be said that the overall consumption of the 

microgrid is plausible.  

Daily load profile: The diurnal domestic load profile has two peaks, the first in the morning when the residents 

get ready for the day and the second when the residents come back home. Moreover, there is a large 

consumption ‘valley’ during the night and a less significant ‘valley’ from 10:00 to 16:00 caused by lower 

residential occupation regarding this time span. The described daily demand characteristic of the baseline model 

concurs with the data provided by [49].  

Difference between working and weekend days: In contrast to the weekdays, the weekend days have a less 

clear pattern regarding the diurnal peaks. The daily routines during the weekend vary much more; therefore, the 

consumption pattern is quite different with respect to working days. The results of the baseline model regarding 

the workday/weekend day deviation are very similar to the results provided by Richardson et al. [50] where the 

authors investigated the consumption differences between working days and weekends days.  

Therefore, it has been confirmed that the baseline model results are in accordance with the results of other 

researchers and official institutions regarding the total electricity consumption and its variation characters. 

Consequently, the baseline model can be used for further load shifting measures in order to demonstrate the 

impact of domestic energy usage on a future Smart Grid. 

4. Case Study 

The developed microgrid model is used as an analytical tool for the investigation of the LS approach using a 

case study. The case study represents two options of the RES integration into the microgrid model: a scenario 

with distributed solar energy and a scenario with distributed wind energy. Both scenarios assume that the rated 

power of distributed RES integrated into the microgrid model comprises 40% of the microgrid consumption. 



12 

 

4.1. Implementation of Environmental Data 

In order to simulate a microgrid model which considers the impact of fluctuating RES, it is necessary to use 

historical climate data. Therefore, data provided by the Met Office Integrated Data Archive System (MIDAS) 

have used to reproduce the impact of distributed RES. This investigation considers environmental data closed to 

Grimsby in the UK because it is located inside the Northern Powergrid, the only known location identifier 

provided by the CLNR. The used solar radiation data is provided by the dataset ‘MIDAS: Global Radiation 

Observations’, whereby the sample time is 1 hour [51]. The used wind data for this investigation are extracted 

from the dataset ‘MIDAS: UK Mean Wind Data’, whereby the sample time is 1 hour [52]. 

4.2. Determining the Amount of Distributed RES 

Firstly, there is a need to determine the total energy consumption of the microgrid. The microgrid model 

considers all seasons with respectively one week and a sample time of 1 minute; thus, there are 40320 samples. 

40320

,

1

B B i

i

E e
=

=        (6) 

where EB is the total energy consumption of the microgrid; eB is a 1-minute sample of the microgrid energy 

consumption. 

Next, the gained total energy consumption of the microgrid is used to determine the produced energy by 

distributed RES. 

0.4PV WT BE E E= =       (7) 

where EPV is total energy produced by solar panels; EWT is total energy produced by wind turbines. 

4.3. Modelling of the Distributed Solar Energy 

State of the art solar panels have currently an efficiency of around 20% [53]. Hence, when considering the 

starting solar irradiation of [54,55], the output of the solar panels can be described as follows: 

( )

2

2 2

0 if 50W/m

50W/m 0.20 f 50W/m
PV

SI
F

SI SI

 
= 

−  

   (8) 

where FPV is the output of the solar panels in W/m2; SI is the solar irradiation in W/m2. 

The microgrid model considers all seasons with respectively one week and a sample time of 1 hour; thus, there 

are 672 samples. Hence, the average output of the solar panels is determined by using the following equation. 

672

1

672

PV,i

i

PVavg

F

F ==


      (9) 

where FPVavg is the average output of the solar panels in W/m2. 

Consequently, the equation for determining the amount of distributed RES can be rewritten as follows. 

PV PVavg PVE F A t=        (10) 

where EPV is total energy produced by solar panels; APV is the area of the solar panels in m2; t is the entire time-

span of the simulation. 

Thus, the area is calculated as shown below. 

PV

PV

PVavg

E
A

P t
=


      (11) 
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The finally calculated area of the solar panels is then used to determine the solar energy samples which will be 

implemented to the microgrid model. According to (6), the area of the solar panels is 36 m2. 

4.4. Modelling of the Distributed Wind Energy 

When considering [56], the output factor of the wind turbines can be described as follows: 

( )
%

0 if 0m/s 3m/s

%
3m/s 12.5 if 3m/s 11m/s

m/s

100% if 11m/s 20m/s

0 if 20m/s

Wind

Wind Wind

WTin

Wind

Wind

v

v v
F

v

v

 

 −   

= 
  




   (12) 

where, FWT is the output factor of the wind turbines in %; vWind is the wind speed in m/s. 

Next, the average load factor of the wind turbine is determined by the following equation. 

672

1

672

WT,i

i

WTavg

F

F ==


      (13) 

where FWTavg is the average output factor of the wind turbines. 

Hence, the equation for the energy produced by wind turbines can be rewritten as follows. 

WT WTavg WTratedE F P t=        (14) 

where PWTrated is the rated power of the wind turbine in kW. 

Finally, the rated power of the wind turbine can be calculated as shown below. 

WT

WTrated

WTavg

E
P

F t
=


     (15) 

The rated power of the wind turbine is then used to determine the wind energy samples which will be 

implemented to the microgrid model. According to (15), the rated power of the turbine is 4.8kW. 

In order to meet the afore defined proportion of 40% distributed RES, the following expression has to be true. 

( ) ( )
672 672

1 1

0.4 1h 1hWT B WT,i WTrated PV,i PV

i i

E E F P F A
= =

=  =   =       (16) 

4.5. Energy Production of the Microgrid 

Based on this approach, the obtained solar energy can be seen in Fig. 9. When analysing the solar energy profile, 

it can be determined that the spring and the autumn have a similar pattern; however, the summer has the highest 

energy yield. In contrast, the energy produced in the winter is almost negligible. Moreover, there is a high day-

to-day fluctuation for all seasons. 

Subsequently, the wind energy has been generated (Fig. 10) based on the previously shown procedure, which 

uses historical wind data. In contrast to the profile of solar energy, the load factor of wind energy is significantly 

higher. However, the load profile of wind energy also fluctuates. 
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Fig. 9. The distributed solar energy which has been feed-in the microgrid. 

 

Fig. 10. The distributed wind energy which has been feed-in the microgrid. 

4.6. Energy Balance of the Microgrid with Distributed RES 

When merging the consumption profile and the energy production of the microgrid, the energy transmission 

between the micro and macro grid results are considered. The resulting energy transmission of the solar energy 

scenario is, therefore, shown in Fig. 11, whereby the seasons of the year have been considered. 

Following, the domestic consumption profile has been merged with the production profile of the wind turbines. 

The resulting energy transmission profile with respect to the seasons is presented in Fig. 12. In contrast, to the 

solar energy scenario, there is less energy feedback caused by the high load factor of wind energy. 
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Fig. 11. The energy transmission of the microgrid in the context of solar energy (negative value shows the 

energy feedback). 

 

Fig. 12. The energy transmission of the microgrid in the context of wind energy (negative value shows the 

energy feedback). 

Both scenarios of the case study applied to the model demonstrate that the microgrid generates a certain amount 

of electrical energy transmitted into the main grid. It can be seen that generated electricity is variable and its 

production mainly depends on the season and weather condition. The results obtained from the case study are 

based on high-resolution historical data and show a highly realistic picture of the microgrid performance under 

the impact of RES.  

5. Demand Side Management using Load Shifting 

At the next stage, the model is extended by the load shifting algorithm to provide the DSM operation, where the 

previously obtained data are used as an input for the investigation of both scenarios of the case study. The 

flowchart of the implemented LS algorithm is shown in Fig 13. 

The applied LS algorithm is a conventional, simple algorithm considered as an example to demonstrate the 

ability of the model to provide the efficiency assessment. The LS algorithm utilises an elementary ‘on-off’ 

control and is based on the microgrid energy balance criteria. It is designed to control three types of white 

machines: washing machines, tumble dryers and dishwashers. However, the distribution of these appliances 

across the households varies as shown in Fig. 4.  
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5.1. Load Shifting Criteria for the Algorithm 

Energy Balance: The first criterion which is considered is the energy balance of the microgrid. According to 

this criterion, the shiftable appliances are only started when the energy balance is negative in order to reduce the 

energy feedback of the microgrid. 

Priority Mode: In case if the consumer wants to operate an appliance manually, there is the possibility to start 

the appliance with priority mode, which means that the appliance starts unconditionally. This investigation 

considers the priority mode for the historical consumption data only in the case of operation sequence, because 

the load shifting of the appliances is then certainly not possible and the priority mode is necessary in any case. 

Promising shifting time: In order to determine the promising shifting time, the type of distributed RES has to 

be considered. Following the interaction of energy demand and energy production, which can be seen in Fig. 11 

and Fig. 12, the energy feedback is represented in terms of a daily pattern. Consequently, the load shifting 

algorithm, which holds the appliances in a waiting loop, only enables before a promising shifting time. 

Moreover, in the case of solar energy, the season is also considered because the solar energy yield during the 

winter can be neglect. 
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Fig. 13. Flowchart of the load shifting algorithm. 

5.2. The Load Shifting Algorithm 

The LS algorithm shown in Fig. 13 is based on the afore presented criteria. It can be seen that, according to the 

algorithm, each household of the microgrid operates independently, whereas the smart meter monitors the 

connection of the microgrid to the feeder and provides the readings of energy balance. These readings are the 

input variable for each household algorithm sequence. The algorithm is equipped with the queue controller, 

which is common for all houses in the microgrid model. The purpose of the queue controller is to collect the 

requests from the households asking to start appliances outside the time interval available for the LS operation. 

It is assumed that the time where the LS algorithm enables is set from 5:00 to 12:00. Therefore, the queue 

controller prevents a massive pick of energy demand at 12:00 if all household appliances start simultaneously in 

an automatic mode. At 12:00 the controller holds all requests in a queue and gives the permissions to start 

appliances with a certain time delay. The queue controller can be overridden under the priority mode. 
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6. Results and Discussion 

6.1. Domestic Load Shifting in Context of Solar Energy 

The determination of the promising shifting time is the first step of the solar energy scenario. Therefore, Fig. 5, 

which shows the daily load profile of the shiftable load, and Fig. 11, which presents the energy balance of 

microgrid, must be analysed. Firstly, Fig. 11 shows that the energy feedback takes place mostly between 

morning and early afternoon; however, particularly at noon. Therefore, the LS algorithm must be enabled 

between the early morning and the noon, where the LS algorithm keeps the shiftable loads in the waiting loop 

until the energy balance is negative. Thus, the time when the LS algorithm enables is set from 5:00 to 12:00. In 

the case of a cloudy day, all appliances, which are in the waiting loop, will start at 12:00 in any case. The 

resulting LS measures are then presented in Fig. 14. 

 

Fig. 14. The load shifting measures in relation to the produced solar energy. 

 

Fig. 15. The energy balance in relation to the shifted energy in the context of solar energy. 

Next, the LS is compared with respect to the energy balance profile of the microgrid. It can be recognised that 

the shiftable loads are shifted in accordance with the algorithm presented in Fig. 13 with the aim of building a 

load during noontime. Moreover, the load shifting in the context of solar energy reduces the domestic energy 

demand during the morning, when the residents are getting ready for leaving the house. The comparison of the 

domestic energy balance and shifted loads in the context of solar energy are presented in Fig. 15. 

Subsequently, the probability of the energy balance is analysed regarding the impact of domestic LS, whereby 

the seasons of the year have been considered. This comparison, shown in Fig. 16, demonstrates a decreased 

probability of energy feedback and high energy consumption; additionally, an increase in the probability 

regarding low energy consumption has been pointed out. When considering the season, it can be recognised that 
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there is no LS measured during the winter and the impact of domestic load shifting in the context of solar energy 

is highest during the transition periods spring and autumn. 

 

Fig. 16. Comparison of the energy balance of the microgrid regarding domestic load shifting. 

6.2. Domestic Load Shifting in Context of Wind Energy 

At the next step, this study investigates the domestic LS in the context of wind energy. In accordance with the 

wind energy scenario, the first action is the determination of the promising shifting time. When considering the 

daily characteristic of the shiftable loads presented in Fig. 5 and the energy feedback characteristic demonstrated 

in Fig. 12, it can be seen that the evening peak of the shiftable loads can be used to reduce the energy feedback 

during the night. Hence, the domestic LS is enabled from 16:00, caused by the end of the intraday occupation 

gap, and ends at 00:00. The resulting shifted loads are presented in Fig. 17 with respect to the wind energy yield. 

 

Fig. 17. The load shifting measures in relation to produced wind energy. 
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Fig. 18. The load shifting measures in relation to the energy balance in the context of wind energy. 

Next, the shifted loads are analysed with respect to the weekly energy balance, where an average season model 

has been used. In contrast to the solar energy scenario, a load has been built during the late evening and early 

night. Moreover, the LS in the context of wind energy reduces the energy demand during the peak time in the 

evening. The comparison of the domestic energy balance and shifted loads in the context of wind energy are 

presented in Fig. 18. 

Finally, the probability of the energy balance in the context of wind energy is analysed regarding the impact of 

domestic LS, whereby the seasons of the year have been considered. The comparison shown in Fig. 19 

demonstrates a decreased probability of energy feedback and high energy consumption. In addition, an increase 

in the probability regarding low energy consumption has been pointed out. Thus, the qualitative impact of 

domestic load shifting is similar when comparing the solar energy and wind energy scenario. However, there is 

a huge quantitative difference when analysing the energy feedback characteristic of both scenarios. The much 

higher energy feedback of the solar energy scenario is caused by a low load factor of the solar panels because 

both scenarios consider a total renewable energy ratio of 40%. 

 

Fig. 19. Comparison of the energy transmission in the context of the wind energy scenario. 
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6.3. Summary 

To summarise, the proposed model has been used to assess the effectiveness of the domestic DSM operating 

under load shifting algorithm in respect to the type of distributed RES. First, it can be seen that the low load 

factor of solar energy causes more often high energy feedback. Moreover, it has been demonstrated that a high 

load factor of the RES is beneficial for energy demand management measures. The summary of the total system 

behaviour is, therefore, displayed in Fig. 20. 

 

Fig. 20. Comparison of the baseline energy transmission with the demand side management scenario. 

Finally, the self-consumption ratio (consumed energy/produced energy) of the analysed scenarios has been 

calculated in order to determine the impact of the LS implementation. Therefore, the solar energy and wind 

energy scenarios have been compared regarding the self-consumption ratio. The results are presented in Table 3. 

Table 3. Comparison of the self-consumption ratio. 

Scenario Energy feedback Self-consumption ratio 

Solar energy without DSM 571 kWh 48.9% 

Solar energy with DSM 539 kWh 51.77% 

Wind energy without DSM 118 kWh 89.4% 

Wind energy with DSM 83 kWh 92.49% 

 

7. Conclusion 

This paper suggests a high-resolution microgrid model based on historical data of energy consumption and 

weather conditions. The set of high-resolution historical consumption data is provided by the CLNR. The model 

can run a high accuracy simulation and represents a UK residential estate comprising of 15 typical UK 

households. The distribution of the home appliances across the households is based on the real statistical data 

provided by Northern Powergrid. The model is capable of analysing the performance of the microgrid under the 

impact of RES (wind or solar) which generate electrical energy according to the realistic historical weather 

records. The proposed model has been developed as a tool to verify and assess the effectiveness of DSM 

systems operating under various LS algorithms. Unlike other DSM assessment models usually based on 

simulated data, the proposed model shows the performance of the system precisely as could be in the real world. 

In order to demonstrate the effectiveness of the proposed approach, the model development is underpinned by 

case study where the DSM operating under a conventional LS algorithm has been assessed. The tested algorithm 

is based on the criterion of reduction of energy feedback to the feeder to decrease the utilisation of the main 

grid. The case study comprises of two scenarios according to the type of RES (wind and solar). It has been 

shown that the self-consumption ratio of the microgrid with the RES is increased by approximately 3% (Table 

3) for both scenarios. However, the LS algorithm is slightly more effective in the context of wind energy. 
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Moreover, the DSM of domestic appliances contributed to reducing the probability of peak energy demand and 

feedback, which leads to less energy transmission losses and reduces the utilisation of the grid.  
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