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Machine learning‑assisted 
lens‑loaded cavity response 
optimization for improved 
direction‑of‑arrival estimation
Muhammad Ali Babar Abbasi1*, Mobayode O. Akinsolu2, Bo Liu3, Okan Yurduseven1, 
Vincent F. Fusco1 & Muhammad Ali Imran3

This paper presents a millimeter-wave direction of arrival estimation (DoA) technique powered by 
dynamic aperture optimization. The frequency-diverse medium in this work is a lens-loaded oversized 
mmWave cavity that hosts quasi-random wave-chaotic radiation modes. The presence of the lens is 
shown to confine the radiation within the field of view and improve the gain of each radiation mode; 
hence, enhancing the accuracy of the DoA estimation. It is also shown, for the first time, that a lens 
loaded-cavity can be transformed into a lens-loaded dynamic aperture by introducing a mechanically 
controlled mode-mixing mechanism inside the cavity. This work also proposes a way of optimizing 
this lens-loaded dynamic aperture by exploiting the mode mixing mechanism governed by a machine 
learning-assisted evolutionary algorithm. The concept is verified by a series of extensive simulations 
of the dynamic aperture states obtained via the machine learning-assisted evolutionary optimization 
technique. The simulation results show a 25% improvement in the conditioning for the DoA estimation 
using the proposed technique.

Accurate direction-of-arrival (DoA) information is a key requisite for mmWave channel sounding. Classical 
methods of DoA estimation require an array of antennas connected to the associated radio frequency (RF) 
hardware per antenna, also called the RF-chain, in conjunction with techniques such as the ESPRIT1, Capon2, 
Bartlett3 and MUSIC4,5 algorithms. The development of antenna arrays and RF chains can be both complex 
and costly at mmWave frequencies. This is because an increase in the number of antennas required to provide 
sufficient angular discrimination compensating for the high path loss at mmWave frequencies can aggressively 
enhance the complexity and cost of the mmWave radio hardware. Moreover, multiple RF-chain systems need 
a high degree of hardware thermal considerations, adding further complexity to the system6,7. As an alterna-
tive, recently a number of mmWave antenna hardware simplification approaches that focus on classical beam 
synthesis approaches using fewer RF chains have been investigated3,8–11. Highly directional frequency-diverse 
antenna apertures have also been investigated as a promising alternative to a fully connected antenna array and 
RF-chain system. Frequency-diverse antenna aperture is derived from microwave computational imaging con-
cepts (e.g.12–16), where field-of-view (FoV) information is captured and reconstructed, using single or sometimes 
multiple RF chains17. Recently, it has been shown that channel information within an FoV (in terms of far-field 
radiation) can also be constructed from quasi-random measurement modes using computational techniques18. A 
preliminary theoretical investigation of DoA estimation using a mode-mixing cavity was presented in18. However, 
this was limited by the use of a hypothetical frequency-diverse antenna aperture with high-Q factor. A numerical 
and experimental validation of DoA estimation using a lens-loaded cavity aperture was presented in19. These 
works (i.e.18,19) both adopted computational methods for the DoA estimation, carried forward in this paper.

In this work, it is shown that DoA estimation capabilities of a lens-loaded cavity can be systematically 
enhanced by converting it into a lens-loaded dynamic aperture optimized efficiently. This is implemented by 
introducing dynamic reconfigurability into the lens-loaded cavity by adding a mechanically controlled mode-
mixing mechanism; thus, adding another dimension to physically control the aperture performance. The ben-
efit of using a lens structure placed in front of the cavity is that it enhances the quasi-random variations in the 
radiation modes previously shown in19,20; hence, impacting positively to the spatio-temporal bases, which in 
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turn improves the DoA estimation accuracy. This is then followed by dynamically reconfiguring the lens-loaded 
aperture optimized by a machine learning (ML)-assisted evolutionary algorithm for a given wireless channel, 
which enhances the DoA estimator performance further, shown in this paper. To circumvent the need for a rea-
sonably good initial design, ad-hoc process, and a large number of full-wave electromagnetic (EM) simulations 
which are often needed by popular global optimization techniques (e.g., evolutionary algorithms), an ML-assisted 
antenna design optimization algorithm from the surrogate model-assisted differential evolution for antenna syn-
thesis (SADEA) series21–25 is employed for the targeted aperture optimization. In comparison to standard global 
optimization methods (e.g., particle swarm optimization), the selected algorithm (i.e., SADEA-I21) provides 
up to 20 times speed improvement, while obtaining design solutions of comparable or better quality for many 
antenna cases26, making it a good choice for the targeted problem. SADEA-I employs the surrogate model-aware 
evolutionary search (SMAS) framework for surrogate model management27, which shows a harmonious balance 
between evolutionary algorithm-based global search and surrogate modeling.

The key contributions of this work are summarized as follows:

•	 A novel lens-loaded dynamic aperture geometry with an associated computational DoA estimation system 
is proposed with the capability of updating itself.

•	 It is shown for the first time that mechanical rotation of a mode-mixing scatterer updates the state of a 
frequency-diverse antenna, resulting in a unique set of radiation modes.

•	 It is shown for the first time that ML-assisted antenna design optimization techniques (in our case, SADEA-I) 
are well suited for simulation-driven lens-loaded dynamic aperture optimization.

System model and methods
Lens‑loaded dynamic aperture.  The system block diagram is shown in Fig. 1—a single-input single-
output lens-loaded cavity antenna is connected to a baseband processing unit via a single RF chain. The lens-
loaded cavity antenna in and of itself serves as a replacement for an antenna array aperture, so therefore, it is 
simply referred to as an aperture in this work. The processing unit comprises an estimator or a matched filter 
responsible for the DoA estimation. The lens-loaded cavity comprises an oversized chaotic cavity operating as 
a frequency-diverse compressive medium18. A constant-εr lens is placed in front of the chaotic cavity while the 
medium of EM energy transfer between the cavity and the lens structure is a curved surface with sub-wavelength 
holes. The structural configuration of the lens-loaded cavity is clearer in Fig.  2a where the perspective view 
shows the surface of the sub-wavelength hole. The lens-loaded cavity is placed in a Cartesian coordinate system 

Figure 1.   Operational block diagram of a state-diverse mode lens-loaded cavity aperture.

Figure 2.   (a) Lens-loaded cavity structure with a mode mixing scatterer connected to a stepper motor to 
include state-diversity. (b) Simulated peak realized gain representing high and low magnitude values on the 
radiation mask when a test signal of 28.1 GHz is excited at the WR28 input.
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where its FoV is along the +z-axis. When looked at from one side, i.e., xy-plane, a portion of the lens can be 
seen to be submerged in the chaotic cavity, however, it is important to note that the lens is making any contact 
with the cavity. The gap between the lens and the surface containing the sub-wavelength holes is governed by the 
focal length of the lens at the frequency of operation, which is 28 GHz for this particular case. Note that the test 
frequency band in this work is among the mmWave 5G as defined by the 3GPP New Radio (NR) FR2 enlisting 
n257. Details of the synthesis approach to developing a constant-εr lens for a given frequency can be found in28 
and the works discussed therein. The spherical constant-εr lens (see Fig. 2a) used in this study has a radius of 
66.5 mm while the distance between the centre of the lens and the chaotic cavity is 70 mm. A careful adjustment 
of this gap is critical for the best radiation performance of the lens-loaded cavity. As an example, the radiation 
performance of the cavity in terms of simulated peak realized gain is shown in Fig. 2b.

The chaotic cavity in Fig. 2a has physical dimensions of 170 mm × 178 mm ×180mm in (x × y × z) directions. 
The cavity structure is basically a metallic box with a simple geometric configuration. The constant-εr lens is 
placed in front of the cavity (i.e., facing the +z-axis) while RF chain is connected to the back side (facing −z-axis). 
For 28 GHz operation, a standard waveguide probe (WR28) is used to connect the cavity to the RF chain and the 
subsequent computation DoA estimation system. The most important component of the chaotic cavity relevant to 
this study is the metallic mode mixing scatterer. The scatterer is a metallic strip of size 78 mm × 45 mm randomly 
oriented and asymmetrically placed within the chaotic cavity. The main purpose of the scatterer is to enhance 
the quasi-randomness of the cavity by randomly reflecting the EM energy within the metallic structure. This is 
similar to other mode-mixing structures in13,14 and the works discussed therein. However, the unique feature of 
the mode-mixing scatterer of this kind is that with a slight rotation, the disturbance in the wave-chaotic medium 
results in a new set of radiation modes. This feature allows to dynamically reconfigure the chaotic cavity by simply 
controlling the rotation of the mode-mixing scatterer by connecting it to a stepper motor, as achieved in this 
study. This reveals that by controlling a single parameter (i.e., angle of rotation of the mode-mixing scatterer) 
of the aperture, it is possible to generate unique sets of radiation modes; hence, determining the best angle of 
rotation can be formulated as a 1-D optimization problem that can be solved in a short time.

Even though the problem definition above bears a semblance of a partial geometry modification problem, it 
is not a typification of partial geometry modification problems in which parts of the EM structure are removed 
or replaced for alteration and modification29,30. This is mainly because the geometry of the EM structure (and 
its associated elements) in this study, in and of itself, is not altered or modified. Rather, the EM structure (unal-
tered and unmodified in terms of physical geometry) is characterized, as the mode-mixing scatterer (also with 
a consistent geometry and connected to a stepper motor) is rotated for various angular states to establish the 
near-optimum state for DoA estimation. The connection settings are shown in Fig. 2a. It is worth mentioning 
that it does not really matter to which side of the chaotic cavity the mode-mixing scatterer is attached via the 
stepper motor shaft; however, it is recommended that the mode-mixing scatterer is placed close to a corner of 
the chaotic cavity to ensure that the physical symmetry of the structure along all three axes is broken. For this 
purpose, the scatterer in this study is placed at positions (87 mm, 42 mm, 65 mm) along (x, y, z) from the three 
walls of the chaotic cavity. Another point to remember here is that the scatterer needs to be firmly fixed to the 
stepper motor to ensure the chaotic cavity retains its physical state at any particular rotation angle. Also, note that 
a rotation mechanism with enhanced rotational resolution can lead to quasi-continuous control of the scatterer.

Dynamic aperture optimization methodology.  Considering the targeted simulation-driven aperture 
design optimization problem, there are several local and global optimization methods in the literature, such 
as26,31–33. Local optimization techniques rely on good initial designs that the designer needs to specify as starting 
points31. However, in our case, it is difficult to find a good initial design. Global optimization-based EM device 
design techniques (e.g.33–35) do not require initial designs, but they often require a large (sometimes prohibitive) 
number of EM simulations to obtain optimal results26,33–35. For our targeted aperture, each EM simulation costs 
more than one hour. Hence, both kinds of methods are not suitable.

In recent years, the incorporation of ML techniques into the optimization kernel of standard EAs has been 
demonstrated to lower the computational cost of the optimization process, which is applied to EM device 
design36–38. This is mainly achieved through surrogate model-based optimization in which many computation-
ally expensive EM simulations in the optimization process are replaced with surrogate model-based predictions. 
These surrogate models, also called metamodels, are computationally cheap approximation models of expensive 
full-wave EM simulations. They are often constructed using ML techniques and are used to emulate the char-
acterization or behavior of the EM simulation model, as closely as possible. Even though many paradigms and 
methods are currently available for the ML-assisted optimization of EM designs as reported in36–39, some of these 
approaches still have the drawbacks of standard optimization methods and are not general due to the ad-hoc 
processes required to ensure their efficiencies.

The approaches in40–42 require good initial designs or starting points and may get trapped in local optima 
due to their use of a local search mechanism, trust-region gradient search. In43–45, the fidelity of the EM model 
is varied methodically in the optimization process to improve efficiency. This is implemented alongside ad-hoc 
processes such as verification and improvement of the generated designs using high fidelity simulations and 
input space mapping in the local region, respectively, and the use of user-defined thresholds to control the vari-
ance of the fidelity of the EM model in terms of cells or lines per wavelength. These methods are not applicable 
for our case because: (1) a good initial design cannot be deduced for the lens-loaded aperture a priori, as earlier 
mentioned, (2) the discretization of lens-loaded aperture requires millions of mesh cells at the host of a rela-
tively long simulation time (even for a relatively low mesh density, see section “Lens-loaded dynamic aperture 
operation”) to guarantee model accuracy. So, having an accurate coarse (low fidelity) model with a low cost in 
terms of simulation time is not feasible. SADEA-I21, adopted in this work, helps to overcome these drawbacks 
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by providing a methodology that implements supervised learning and evolutionary computation in a unified 
optimization framework to efficiently synthesize the lens-loaded aperture for mmWave DoA estimation. The 
supervised learning and evolutionary computation techniques and their harmonized framework in SADEA-I 
are discussed as follows:

Supervised Learning.  Like other methods in the SADEA series22–25, SADEA-I uses Gaussian process (GP)46,47 
for surrogate modelling. Given a set of EM design geometric and/or material properties ( x = (x1, . . . , xn) ), cor-
responding to a set of performances ( y = (y1, . . . , yn) ) from full-wave EM simulation results, GP predicts the 
targeted EM design performances ( y = f (x) ) for a candidate design x by modelling y(x) as a Gaussian distrib-
uted stochastic variable having a mean of µ and a variance of σ 2

1  . If y(x) is continuous, as it is the case for typical 
EM device design landscapes, the function values ( y(xi) and y(xj) ) of any two candidate designs such as xi and 
xj should be in proximity if they are highly correlated. A Gaussian correlation function is used to deduce this 
correlation between two candidate designs in SADEA-I:

where d is the dimension of x and ζl is the correlation parameter that determines how rapidly the correlation 
diminishes as xi moves in the t direction. The smoothness of the function is related to ρt with respect to xt . To 
deduce the parameters ζt and ρt , the likelihood function that y = yi at x = xi(i = 1, . . . , n) is maximized. Hence, 
the Gaussian process regression or kriging-based prediction of the performance ( y(x∗) ) of a candidate design 
( x∗ ) is carried out as follows:

where

The mean squared error of the prediction uncertainty is:

where

A number of prescreening methods are available for the appraisal of the quality of a candidate design with 
respect to the predicted value in Eq. (2) and the prediction uncertainty in Eq. (6)48. In SADEA-I, the lower con-
fidence bound (LCB) method49 is used. If the predictive distribution of y(x) is N(ŷ(x), ŝ2(x) for y(x), then the 
LCB prescreening of y(x) can be estimated as follows:

where L is a constant that is often set to 2 to have a good balance between exploration and exploitation48.

Evolutionary computation.  The EA driver in the SADEA-I is differential evolution (DE)50. DE is a popular 
EA widely used in engineering optimization. It outperforms many other EAs for continuous optimization 
problems50. Suppose that Pdesigns is a population of candidate designs in the aperture optimization process. Let 
x ∈ R be a candidate design (individual solution) in Pdesigns . To generate a child solution C for x, mutation is first 
carried out to produce a donor vector:

where xbest is the best individual of the current population having a size of Pdesigns by 1, and xr1 and xr2 are two 
mutually exclusive solutions randomly selected from Pdesigns ; vi is the ith mutant vector in the population after 
mutation; F ∈ (0, 2] is the scaling factor (a control parameter). The mutation strategy in Eq. (9) is called DE/
best/1. After the mutation is completed, the following crossover operator is applied to produce the child, C, as 
follows: 

1	 Randomly select a variable index jrand ∈ {1, . . . , Pdesigns},
2	 For each j = 1 to Pdesigns , generate a uniformly distributed random number rand from (0, 1) and set: 

(1)Corr(xi , xj) = eH ; H = −
d
∑

t=1
ζl|x

t
i − xtj |

ρt

for ζt > 0, 1 ≤ ρt ≤ 2

(2)ŷ(x∗) = µ̂+ zTZ−1(y − Iµ̂)

(3)Zi,j =Corr(xi , xj), i, j = 1, 2, . . . , n

(4)z =[Corr(x∗, x1),Corr(x
∗, x2), . . . ,Corr(x

∗, xn)]

(5)µ̂ =(ITZ−1I)−1ITZ−1y

(6)ŝ2(x) = σ̂1
2[I − zTZ−1z + (I − zTZ−1z)2(ITZ−1I)−1]

(7)σ̂ 2
1 = (y − Iµ̂)TZ−1(y − Iµ̂)n−1

(8)ŷ(x)− Lŝ(x)
L ∈ [0, 3]

(9)vi = xbest + F · (xr2 − xr3)



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8511  | https://doi.org/10.1038/s41598-022-12011-z

www.nature.com/scientificreports/

where CR ∈ [0, 1] is the crossover rate (a constant).

Note that since the EA process is 1-D, the DE mutation and crossover operations (Eqs. (9) and (10) , respec-
tively) are implemented using populations with a size of Pdesigns by 1, as detailed above. Additional details on how 
DE mutation and cross over operations are implemented generally and specifically can be found in50.

The SADEA‑I method.  The essential steps of SADEA-I for the lens-loaded aperture optimization are described 
as follows21:

•	 Step 1: Using the Latin Hypercube sampling method51, a small number ( α ) of designs are sampled from 
the design space of the lens-loaded aperture, and full-wave EM simulations are carried out to obtain their 
performances. The initial database is created using these designs and their simulation results.

•	 Step 2: If a preset stopping criterion such as the maximum number of EM simulations is met, output the best 
design from the database; otherwise go to Step 3.

•	 Step 3: Select the γ best designs from the database to form a population of Pdesigns having a size of Pdesigns × 
1, and update the best solution obtained so far.

•	 Step 4: Apply DE mutation and crossover operations (Eqs. (9) and (10) , respectively) on Pdesigns (the size is 
as described in Step 3) to generate child populations having γ child solutions each.

•	 Step 5: For every candidate design in each population, build a GP surrogate model using the nearest designs 
based on Euclidean distance from the database and their simulation results as the training data points.

•	 Step 6: Use the surrogate models in Step 5 to prescreen the child solutions in Step 4 according to Eq. (8), and 
select the best child solution based on the LCB values.

•	 Step 7: Evaluate (simulate) the prescreened best child solution from Step 6. Add it and its simulation results 
to the database. Go back to Step 2.

In terms of algorithm parameters (see section “Example and discussion”), α = 20, γ = 20 and F = 0.8 are used.

Lens‑loaded dynamic aperture operation
To understand the proposed lens-loaded dynamic aperture optimization technique proposed in this work, it 
is important to first look at the block level operation of the system when the mechanical state of the metallic 
scatterer is fixed. In other words, when there is no input to the stepper motor (see Fig. 1) and SADEA-I-based 
optimization process is not yet initiated. The operation of the lens-loaded cavity in this state can be understood 
by looking at the radiation modes excited by the lens-loaded cavity shown in Fig. 2b. Here, the input of the 
lens-loaded cavity is excited by a 28 GHz signal, and the radiation in terms of far-field realized gain values is 
recorded at test frequencies within the range of 27–29 GHz. Full-wave EM simulations are carried out using 
the transient finite integration technique (FIT) solver in CST microwave studio with an accuracy of − 50 dB. As 
can be seen in Fig. 2b, the structure has quasi-random radiation with high and low gain values spread across 
the azimuth and elevation directions within the FoV along the x-axis. Note that the 3D plot of the realized gain 
magnitude (referred to as radiation mask from this point onward) will be unique (and different) if the input 
signal is changed from 28 to 28.05 GHz. This phenomenon and its benefit to the spatial incoherence of the 
radiation modes are discussed in the preceding investigation19. Conversely, if the lens-loaded cavity is used as a 
receiver and a broadband far-field source’s signal is impinging on the lens structure, the signal will use a similar 
wave-chaotic transfer function, E. This is evident in Fig. 3, where closely-spaced radiation modes can be seen, 
corroborating the benefits of multiple modes generation in a frequency diverse antenna18. The advantage of 
placing the lens in front of the chaotic cavity is that it confines the radiated energy within the FoV, depicted via 
the radiation mode mask shown in Fig. 4. As a result, the lens structure enhances the peak realized gain value of 
the radiation mask, making it as high as 6 dBi. This is because when the lens-loaded cavity is used as a receiver, 

(10)Cj =

{

vj , if ( r and ≤ CR)|j = jrand
xj , otherwise

Figure 3.   Comparison between the return loss before and after the mode optimization step.



6

Vol:.(1234567890)

Scientific Reports |         (2022) 12:8511  | https://doi.org/10.1038/s41598-022-12011-z

www.nature.com/scientificreports/

the lens structure helps in delivering comparatively larger energy to the mode mixing cavity compared to when 
there is no lens placed in front of the cavity15,19. The operational FoV for the lens-loaded cavity spans across 
∼ 120◦ both along with azimuth and elevation plans directions20. Assuming that the field distribution radiated 
by different sources incident on the aperture is P defined as P = e−jk0(y sin θ cosφ−x sin θ sin φ) , when k0 is the wave 
number). The compressed measurements, g, can be correlated to P through the aperture radiated fields projected 
on a characterization plane giving the transfer function, E, as follows19,52,53:

In Eq. (11), n denotes the system noise, r refers to the coordinates across the aperture, ω is the frequency 
for frequency-diverse operation and k is the aperture state. From Eq. (11), an estimate of discretized P, Pest , can 
be deduced by means of a simple matched-filtering operation, Pest = E†g , where † is the Hermitian transpose. 
Finally, the Fourier transform of Pest produces the DoA estimation pattern. The exponential decay of the imping-
ing signal on the lens-loaded cavity dictates the impulse response in time domain h(t) = n(t) exp−

2t
τ  , which is 

proportional to the Q-factor of the structure. Here, n is N(0, σ 2
2 ) and N is normal distribution having a mean of 

0 and variance of σ 2
2  , and τ is the the centroid absolute value of the impulse response. Calculating the Q-factor 

of the lens-loaded cavity (Fig. 2) using Q = π f0τ gives a value of  4600, evaluated by studying h(t) using full-
wave EM simulations. Given the Q-factor, the theoretical number of modes can be calculated using M = QB/f0 , 
which is ∼ 300 in the static state of the lens-loaded cavity. It has been elaborated in19 that the DoA estimation 
is possible via this static state of the lens-loaded cavity structure by using the iterative method for least-squares 
reconstruction, governed by:

where N is the number of modes and M is the number of pixels on the characterization plane while the match-
filter solution Pest,M = E†N×MgN is used as an initial estimation. When the source projection patterns are esti-
mated, the DoA estimation can be retrieved by performing a Fourier transformation operation on the final Pest . 
The final DoA angle in θ and φ can further be retrieved by the peak-finding algorithm18. The system-level blocks 
for DoA estimation are shown in Fig. 1 as a part of the baseband processing unit. The DoA estimation depends 
upon the current cavity state, defining the field patterns on the characteristic plan (or measurement modes) for 
discrete frequencies within ω . This is similar to the measurement modes in microwave imaging12,13,15,16 in which 
for the same cavity state, when the driving frequency of the cavity is varied, the radiation masks changes. This 
leads to a diverse set of measurement modes by moving along the frequency axis (for example in Fig. 3). The lens 
structure enhances the gain of the sidelobes probing the FoV; hence, sharpening the masks further and reducing 
the overlap between masks in neighbouring frequencies.

Now let us examine when the SADEA-I-based optimization process is initialized and the lens-loaded cavity 
static state is updated via the rotation of the stepper motor shaft for the first design from the initial database of 
SADEA-I. The set of modes generated by the previous state of the lens-loaded cavity are no longer valid, and 
a new set of modes are generated, given the frequency-diverse functionality of high-Q chaotic cavity. Hence, 
the previous E(r,ω, 1) and estimated Pest,M,1 are also no longer valid; however, they are buffered to be used by 
the surrogate model to evaluated E(r,ω, 2) and Pest,M,2 for the updated state of the lens-loaded cavity (i.e., the 
subsequent designs generated by SADEA and each new design is numbered in 3rd subscript), here, represented 
as k ∈ [0◦, 360◦] i.e., updated cavity state number. Note that only one (the best) state of the cavity is used for 
DoA estimation. Also, consider the number of resonances over a specific bandwidth, NR , from the full-wave 

(11)g(ω) =

∫

r
E(r,ω, k)P(r)dr + n(ω)

(12)Pest+1,M = argmin
∥

∥gN − EN×MPest,M
∥

∥

2

2
,

Figure 4.   Impact of the presence of constant-εr lens in front of the chaotic cavity on the FoV described using 
simulated peak realized gain at a test frequency of 28.1 GHz in UV plane (normalized).
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EM simulation of each design (i.e., each static state of the lens-loaded cavity for a single E). These designs (i.e., 
k) and the associated NR are used for a SADEA-I-based optimization of the lens-loaded cavity aperture for the 
first time in this paper, as described in the next section.

Example and discussion
Considering the lens-loaded cavity in Fig. 2a described in the previous section as having a mode-mixing scat-
terer whose orientation defines or determines the state of the chaotic cavity. To have the best number of practical 
modes to ensure the best frequency-diverse performance of the chaotic cavity, the orientation of the metallic 
scatter (k) is optimized by SADEA-I using the following goal:

Using a single rotating frame of reference as illustrated in Fig. 2, the search range for k is defined as 0 ◦ to 360◦ . 
In other words, the optimization is over a continuous space. For a given k such as ki in the optimization process, 
as earlier discussed and illustrated in Fig. 5a, NR is defined as the total number of resonances in the frequency 
response for ki . The condition used to judge whether a resonance exists is if the corresponding prominence is 
not smaller than 1 dB in terms of the S-Parameter values over a frequency range not greater than 0.5 GHz in the 
given bandwidth. The computing budget used for the SADEA-I is set as 200 full-wave EM simulations and the 
convergence criterion used is that if NR does change or improve after 20 full-wave EM simulations.

SADEA-I is implemented in MATLAB54 and the EM simulator is CST Microwave Studio (CST-MWS). The 
working environment is a Red Hat Enterprise Linux Server 7.6 (Maipo 7.6 64-bit) where all EM simulations 
were carried out using CST-MWS distributed computing feature with 2× 18 Core 3.30 GHz processor and 2 
Tesla M60 accelerator devices with 755.6 GB RAM. The simulation model was discretized using a mesh density 
of 3 cells per wavelength to have around 8.5 million mesh cells in total, and each full-wave EM simulation costs 
about 70 to 80 minutes on average.

For clarity, the increasing number of resonances (i.e., NR ) during the optimization process is shown in Fig. 5b 
within the frequency range of 28–28.4 GHz for four randomly selected designs. It can be observed that the return 
loss response of the chaotic cavity gets updated for every design generated in the optimization process, confirm-
ing the frequency-diverse operation. The flow diagram of how SADEA-I worked for aperture optimization is 
shown in Fig. 6a. Following the stopping criterion, after 33 full-wave EM simulations using 660 surrogate models 
(calculated by α × number of optimization goals and/or targets × the total number of full-wave EM simulations 
used), SADEA-I converged to obtain the optimized design: k = 280.11◦ with NR = 94.

In addition to the increase in NR , the spatial quasi-randomness of the radiated field and its low correlation 
with the fields of the neighboring modes helps in conditioning a frequency-diverse cavity for enhanced DoA 
estimation accuracy18,19. Based on this principle, it is assumed that minimizing the correlation between aperture 
radiated fields projected on a characterization plane for neighboring modes against a single lens-loaded aperture 
state k can provide even a refined solution. To take this into account, the following optimization criterion is 
proposed to determine the best value of k:

where CAP is the mean correlation between all the radiation modes for single lens-loaded aperture state k, defined 
as follows:

It is expected that reduced correlation between neighboring modes will enhance the amplitude and phase of 
the impinging signal or channel state parameters in a given FoV. Note that in (14), minimizing the maximum 

(13)maximize (NR) 27GHz to 29GHz

(14)minimize (CAP)+ maximize (NR) 27−29GHz

(15)CAP =

∑NR−1
i=1 Corr(E(ωi , k),E(ωi+1, k))

NR
.

Figure 5.   (a) Prominence and width of a resonance for a given frequency response. (b) Comparison between 
the frequency responses of selected designs generated during the SADEA-I-based optimization.
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correlation can also be used as a criterion calculated from all the radiation modes at a given state k instead of 
calculating mean correlation to optimize a lens-loaded dynamic aperture.

In our example, since we already have an optimized solution k = 280.11◦ , a simplified optimization criteria 
below is used to get to a final solution:

Note that the threshold of 90 used for the constraint imposed on NR has been informed from the result of the 
previous optimization carried out and the search range for k is the same as stated for the previous optimization 
(i.e., this optimization is also over a continuous space). The computing budget and convergence criterion are 
exactly the same as stated for the previous optimization. To better understand the characterization plane fields 
of neighboring modes factored as the correlation between neighboring modes in the optimization process, the 
simulated components of the fields on the characterization plane ( E(ω) ) for k = 280.11◦ at 28.1 GHz are shown 
in Fig. 7.

(16)
minimize (CAP) 27−29GHz

s.t.
NR ≥ 90

Figure 6.   (a) Flow diagram of SADEA-I. (b) Comparison between mean and maximum correlation coefficients 
when mean correlation coefficient against each iteration is plotted in descending order.

Figure 7.   Simulated x, y and z components of E-field (V/m) in terms of magnitude and phase contour plots.
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The convergence trend for the minimization of the objective function (i.e., CAP ) is shown in Fig. 6b. Con-
sidering the optimization goal stated in (16), after 142 full-wave EM simulations using 5,680 surrogate models 
(calculated by α × number of optimization goals and/or targets × the total number of full-wave EM simulations 
used), the final design obtained is k = 3.665◦ , having CAP = 0.070832935 and NR = 90 . Moreover, it can be seen 
that while the ML-assisted optimization process tried to reduce the mean correlation, the maximum correlation 
did not follow the same trend, until beyond iteration No. 120.

A quantitative analysis of the orthogonality of the modes radiated by the chaotic cavity can be carried out in 
the context of a singular value decomposition (SVD) study. In Fig. 8, we present the singular values of the cavity 
radiated modes for the initial, intermediate, and final optimized configurations. From Fig. 8, the decay slope of 
the SVD pattern for the initial cavity design is deduced to be 0.52/41 modes (or − 6.4 dB/41 modes), whereas 
the SVD decay slopes for the intermediate and final optimized designs are deduced to be 0.47/41 modes (or 
− 5.56 dB/41 modes) and 0.38/41 modes (or − 4.23 dB/41 modes), respectively. The decay slope of the SVD pat-
tern is an important metric because this slope governs the correlation between the antenna radiated modes13–15. 
In other words, higher SVD decay slopes correspond to reduced orthogonality between the radiated modes, 
reducing the information content captured by each mode. In contrast, a smaller SVD decay slope suggests higher 
orthogonality of the radiated modes, increasing the information content captured by each mode.

DoA estimation results.  Following the optimization of the chaotic cavity, a performance analysis of the 
cavity can be performed by considering an example DoA estimation scenario. For this study, we define an arbi-
trarily selected number of far-field sources that are incident on the aperture of the cavity at ( θ1 = 0◦, φ1 = 0◦ ), 
( θ2 = −20◦, φ2 = 20◦ ) and ( θ3 = 30◦, φ3 = −25◦ ) respectively. To retrieve the DoA pattern, we use the initial 
(before training) and final (after training) set of modes radiated from the cavity. The DoA retrieval is accom-
plished by solving the least-squares problem of Eq. (12) and the reconstructed DoA patterns are shown in Fig. 9.

As can be seen in Fig. 9, the DoA pattern reconstructed using the optimized cavity modes exhibits better fidel-
ity. Whereas all far-field sources are clearly distinguished in the retrieved DoA pattern reconstructed using the 
optimized (final) cavity configuration in Fig. 9b, the DoA pattern reconstructed using the initial (non-optimized) 

Figure 8.   Singular value comparison between initial, intermediate and final optimized states of the lens-loaded 
cavity.

Figure 9.   Reconstructed DoA patterns using (a) initial cavity configuration (b) optimized (final) cavity 
configuration. Original distribution of sources (ground truth) is shown in (c). Colorbar: dB.
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cavity retrieved only some of the sources and with a substantially reduced accuracy. A quantitative assessment 
of the DoA estimations demonstrated in Fig. 9 is provided in Table 1.

Analyzing Table 1, it is evident that the DoA estimation obtained with the initial cavity configuration exhibits 
larger discrepancies between the estimated and original DoA values, and also fails to retrieve source 3. On the 
contrary, the DoA values estimated using the final, optimized cavity configuration are in good agreement with 
the original DoA values. In addition, all far-field sources, in this case, are clearly identified.

SVD results.  The advantage of the optimized chaotic cavity can be further seen by evaluating the ratio of 
the largest values to the smallest singular values in the SVD pattern, known as the condition number (CN)15. In 
Eq. (11), an increasing CN for the E-matrix calculated from its SVD analysis would suggest an ill-conditioned 
problem for recovering Pest , whereas an E-matrix with CN closer to unity would suggest a better-conditioned 
problem. In this context, the CN for the optimized design is calculated as CN1 = 1.61 whereas for the intermedi-
ate and initial designs, it is calculated as CN2 = 1.92 and CN3 = 2.13 , respectively. In other words, the CN of the 
optimized design is 25% smaller than the CN of the initial design.

Dynamic aperture validation results.  A mode-mixing scatterer is implemented on the same hardware 
shown in19,20. The lens-loaded cavity structure with the scatterer is connected to the stepper motor in a simi-
lar manner as shown in the simulated model in Fig. 2. The dynamic aperture is then placed in the near-field 
anechoic chamber where co-polarized complex E-field is measured. To test the sensitivity of the cavity, the 

Figure 10.   (a) Stepper motor connected to the lens-loaded cavity. Measured y-components of E-field in terms 
of (b) normalized magnitude (V/m) and (c) phase (degree) contour plots.

Table 1.   Analysis of the DoA reconstruction fidelity. The original (ground truth) DoA values are compared to 
the estimated DoA values reconstructed using initial and final modes.

Source DoA (ground truth) DoA (estimated)—initial DoA (estimated)—final

Source 1 (θ1 = 0◦ , φ1 = 0◦) (θ1,est = 0◦ , φ1,est = 0◦) (θ1,est = 0◦ , φ1,est = 0◦)

Source 2 (θ2 = −20◦ , φ2 = 20◦) (θ2,est = −22.6◦ , φ2,est = 21.4◦) (θ2,est = −20.1◦ , φ2,est = 20.1◦)

Source 3 (θ3 = 30◦ , φ3 = −25◦) (θ3,est = N/A, φ3,est = N/A) (θ3,est = 30◦ , φ3,est = −25.4◦)
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mode-mixing scatterer is rotated just by 1◦ to create three static cavity states, while the resultant fields against 
each state are recorded at an observation plane, shown in Fig. 10. The radiation modes can be observed to be 
updated when comparing the contour plots against k = 10◦ , 11◦ , and 12◦ , and this is true for both the magnitude 
(Fig. 10b) as well as the phase plots (Fig. 10c). This confirms the simulated predictions and the validity of the 
dynamic aperture operation discussed in section “System model and methods”.

Conclusion
In this paper, it has been shown that a mechanically controlled mode-mixing scatterer can dynamically update 
the state of the lens-loaded aperture, optimized by the SADEA-I method, to provide a state best suited for 
improved DoA estimation accuracy. To quantitatively analyze the achievable improvement, we first optimized 
the aperture to maximize the number of radiation modes, and afterward optimized it to simultaneously have 
a large number of radiation modes as well as a reduced amount of correlation between the radiation modes at 
adjacent frequency points. The optimization process shown in this work is purely simulation-driven, while it 
verifies the functionality of our unique enabling technology of real-time lens-loaded cavity optimization in 
practical channels. It is shown that a mechanical rotation of the mode-mixing scatterer inside the lens-loaded 
cavity can produce a unique set of frequency-diverse modes and radiation masks. If this rotation is optimized 
using SADEA-I based on a given criterion, it can improve the dynamic aperture conditioning to enable accurate 
DoA estimation verified in this paper by full-wave EM simulations campaign. To quantify the benefits of the 
proposed technique, we show the singular value decomposition spectrum against the initial, intermediate, and 
final state of the lens-loaded cavity, revealing a 25% reduction in the CN when comparing the initial with final 
state. Finally, DoA estimation patterns using initial and final cavity modes are compared with the ground truth 
to verify the validity of the dynamic aperture optimisation method. Future works include investigation of prac-
tical mode-mixing mechanism in a lens-loaded cavity hardware and practical verification of dynamic aperture 
optimization using the SADEA-I method.

Data availablity
All data is provided in full in the results section of this paper.
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