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Fast cancellation of sidelobes in the pattern of a uniformly excited array
using external elements

Abstract
A method for wide null steering in the pattern of a uniformly excited linear array that utilizes the edge
elements of the array is investigated. Simpler and faster algorithms for sidelobe reduction are introduced
which use one or two external edge elements. Comparisons between these methods are held. Sample results
are given.
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function of the number of terms required to achieve a specified 
degree of convergence. In each case the “error” is computed by 
comparing the result to a series evaluation which has been computed 
to machine precision. The convergence criterion E, is indicated 
alongside each point of the figures. It is evident from the results that 
the first order acceleration of the series with the Shanks’ transforma- 
tion converges faster or at least as fast as the first order acceleration 
alone in each case. It is interesting to note, as can be seen from 
Figs. 2 and 4, that as the observation point approaches the source 
point, the spectral sum converges faster. 

Next we look at the convergence of the spatial sum, that is the 
last series in (23). The relative error versus the number of terms for 
the accelerated series with and without applying Shanks’ transform 
is shown in Figs. 8 and 9. We find that for the spatial sum, the two 
methods yield convergence within approximately the same number 
of terms. Also the relative position of the source and observation 
points seems to have little effect on the convergence. 

It is found that the choice of the smoothing parameter U has a 
more dramatic impact on the rate of convergence of the spatial sum 
than it does on the spectral sum. This is obvious from the expression 
for the spatial sum which has exponential decay proportional to U. 
A reasonable choice of u which seems to ensure good convergence 
for both the spatial and the spectral sum in (23) is about half the size 
of the maximum reciprocal lattice base vector. 

Numerical experiments reveal that the rate of convergence of the 
series does not depend significantly upon the interelement phase 
shift constant m, and no. It should be pointed out that a summation 
of the unaccelerated series in (15) typicdy takes more than io4 
terms for a convergence criterion of E, = 0.001. By contrast, the 
accelerated series typically converges in less than 200 terms with the 
same criterion. Hence the acceleration methods provide consider- 
able savings in computation time. 

Finally, it has been observed previously [8, p. 3721 that Shanks’ 
transform is sensitive to round-off error. However, for the computa- 
tions in this work the problem of round-off error was not encoun- 
tered for the range of convergence factors used. 
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Fast Cancellation of Sidelobes in the Pattern of a 
Uniformly Excited Array Using External Elements 
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MEMBER, IEEE, AND P. s. EXCELL, SENIOR MEMBER, IEEE 

Abstract-A method for wide null steering in the pattern of a uni- 
formly excited linear array that utilizes the edge elements of the array is 
investigated. Simpler and faster algorithms for sidelobe reduction are 
introduced which use one or two external edge elements. Comparisons 
between these methods are held. Sample results are given. 
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I. INTRODUCTION 

Phased arrays are expected to have significant applications in 
future small earth stations [l]. In many applications, interfering 
signals could be incident from some directions. These could be 
accidently generated, or could emanate from jammers: for brevity, 
the sources of such signals will be referred to here as jammers, 
whether the interference is deliberate or not. Instead of creating a 
null in the exact direction of the unwanted signal only, it is 
sometimes more convenient to cancel, or at least reduce, the side- 
lobe into which the unwanted signal is coming. Such a class of 
arrays is the class of sidelobe cancellers. Sometimes only a few 
elements of the array are arranged to be controllable. Full control 
could be prohibitively expensive in many applications and may raise 
reliability problems. In a previous paper [2], a simple algorithm for 
canceling specific sidelobes, using the edge elements alone, was 
presented. In this communication, this algorithm is improved by 
appending two external elements to the array. The new algorithm is 
found to be faster and simpler than that of [2]. Another improve- 
ment suggests the use of only one external element. Comparisons 
between these methods are held. Sample results are given. 

II. CANCELLATION BY Two EXTERNAL ELEMENTS 

Consider a linear array with N isotropic elements separated by 
equal intervals of size h = h/2. Assume a uniform excitation 
function such that w(n)  = 1 for all elements. Take the center of the 
array as a reference point. 

The edge elements of the array produce a sine pattern with almost 
the same periodicity as the sidelobes of a uniformly excited array as 
discussed in [2]. In situations when the periodicity is not exactly the 
same as the periodicity of the array sidelobes, null steering is 
actually obtained instead of true sidelobe cancellation. 

Now consider the closed form of the pattern of the uniformly 
excited array (112 spacing): 

s N  sin 0 
sin ~ 

sin - 
2 

The main beam occurs when both the numerator and the denomina- 
tor are zero. The nulls of the pattern, however, occur at the other 
zeros of the numerator, i.e., at 

s N s i n  0 
2 

-- - f n s ,  n = 1 , 2 ,  a . .  

or, in other words: 

2 n  

N 
sine,, = f--, n = 1 , 2 ,  ... , 

The maxima of the pattern (the sidelobes) occur, approximately, 
at the peaks of the numerator: 

2 m + 1  
sin 8, = f ~ m = 0 , 1 , 2 ,  . 

N '  

A. The Algorithm 

The above analysis suggests that: an interferometer pattern, prop- 
erly scaled, may be used for sidelobe cancellation purposes. This 
pattern is, simply, the cosine function formed by two elements 
placed at distances equal to half the spacing between the other 
elements outside the array, i.e., h / 2 ,  and phase-shifted by - 712. 

A simple search algorithm can be used to determine the sidelobe 
containing the angle Oin,. 
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Fig. 1. The pattern of the external elements (solid curve), compared with 
the pattern of a uniformly excited 1 I-element array (broken curve). 

Similar to the algorithm of [2], the angle 0, of the sidelobe's 
center is first determined. Then, by applying a cancellation signal 
with conjugated phase shifts of r / 2  and - s / 2  to the first and the 
last elements, respectively, a superimposed interferometer pattern is 
created whose peaks coincide, approximately, with all of the peaks 
of the sidelobes and whose zeros coincide, exactly, with the nulls of 
the array pattern as shown in Fig. 1. By scaling the amplitude of the 
sine pattern by a factor C, say, so that it is equal in magnitude to 
and in antiphase with the array pattern at O m ,  the sidelobe in 
question would be canceled. 

The arithmetic involved in the above procedure is very much 
simpler than that of [2] and can be summarized as follows: 

1) The maxima of the sidelobes occur, approximately, at angles 
O m ,  where 

2 m  + 1 
sin 0, = k ~ (2) N '  

N is the total number of elements in the array, and m,  an integer 
such that 1 5 m 5 ( N  - 1)/2, is the index of the sidelobe to be 
canceled. 

2) The corresponding maxima f, can be computed from (1) 

(3) 

3) Apply conjugated phase shifts of -a12 and s / 2  to the 
cancellation signal of amplitude C fed to the external edge elements 
at Nh/2 and - Nh/2, respectively. The cancellation pattern is then 
given by 

= 2 ~ s i n ( ( r / 2 ) ( 2 m  + 1 ) ) .  (4) 

The locations of the peaks of the sine pattern almost coincide with 
those of the sidelobes, therefore, 

i.e., the excitation of each of the external edge elements is minus 
half the magnitude of the sidelobe to be cancelled. 

Swapping the signs of the phase shifts and Nh /2 and - N h  12 
results in canceling the lobe at - Om. 

The result of applying this simple algorithm is shown in Fig. 2 
where the third sidelobe is canceled. 
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- l o O U  - 120 -90 0 90 

8 in degrees 
The third sidelobe of a uniformly excited array with 11 elements 

canceled by two external edge elements (solid curve), compared with the 
original pattern (broken curve). 

Fig. 2. 

11. SIDELOBE CANCELLATTON BY ONE EXTERNAL ELEMENT 

It was suggested in Section II that two elements, placed at 
distance h/2 beyond the two edges of the array, can be used to form 
an interferometer which generates the cancellation pattern. It is 
clear that the pattern of such an interferometer depends on the 
separation, which is Nh in the present case, between the elements 
forming it. 

Now, instead of using two external elements, one of the actual 
edge elements of the array together with only one external element, 
placed at a distance h beyond the other end can be used to produce a 
similar effect. The arithmetic involved in this case is slightly more 
complicated than the previous case. 

A .  The Algorithm 

Similarly to the previous case, assume an array with N elements 
whose center is the reference point and the separation between 
elements is h = X/2. A simple search algorithm can be used to 
determine which sidelobe contains the angle O i n t .  Then, O m ,  the 
angle of the sidelobe center, is determined by (2). Let an external 
element be located at ( N +  l )h /2 .  The cancellation pattern f, 
formed by the external element and the edge element at - (N - 
1 )  h /2 ,  is given by 
fc( 0) = c e - d * / 2 ) ( N -  1) sin 0 + A x  /2) + ce j ( r  / 2 ) ( N +  1) sin 0 - j ( r  /2) 

>. - - ce j ( r  / 2 )  sin 0 ( e -  j ( r  /Z)Nsin  0 + j ( r  / 2 )  + e j ( r  / 2 ) N  sin B - j ( r  /2) 

(7) 
Therefore, 

(9) 
where m, the index of the sidelobe to be canceled, is an integer 
such that 1 5 m s ( N  - 1)/2. 

Therefore, from (8), (9), and (3): 

C =  

Now, f, is superimposed with the original excitation of the array. 
This means that the excitation of the external element is Ce-Jrl2 
and the new excitation of the edge element is 1 + Cejrl2. 

Cancellation of sidelobes where 0 is negative is computed by 

The plots of applying this algorithm are very similar to those 
substituting - ( 2 m  + 1) /N for (2m + 1)/N in (10). 

described in Section II. 

IV . COMPARISON OF THE METHODS 

The methods described in [2 ]  and the current paper share many 
common features. All support the concept of partial adaptivity 
without greatly affecting the main lobe gain since only two elements 
of the whole array are used. Additionally, the individual nulls 
produced are deep and wide enough to accommodate frequency 
fluctuations, usually overcome in conventional techniques by placing 
two adjacent nulls in the radiation pattern [3]. 

However, the most important advantage of the algorithms that use 
two elements is that they are suitable for real-time implementation, 
since, knowing the excitation fluctuation and the number of elements 
of the array, the values of the required excitations can be computed 
in real time by the closed form (1). Alternatively, these values can 
be precomputed and stored in short look-up tables as their number is 
less than half the total number of elements in the array. This means 
that, once the sidelobe to be canceled has been determined, the 
weights (excitations) of the (external) edge elements may be issued 
immediately without delays due to matrix operations or iterations. 
For a nonsteerable array these algorithms also give a great reduction 
in the number of RF devices required. For steerable arrays all 
elements must have active devices in the feeds, but the algorithm is 
simpler than that for full control because it involves direct control 
for the edge elements alone whereas the interior elements may be 
controlled indirectly using PROM's. 

The algorithm which uses external elements is better than that of 
[2] in many respects. For instance: 

1) Using the actual edge elements effectively results in wide 
null steering whereas using external elements results in side- 
lobe cancellation (or reduction). 

2) The second algorithm requires full control of both the ampli- 
tude and phase of feeds to the edge elements whereas the first 
algorithm requires control of the amplitude only while the 
phase remains fixed (just 1r/2 and - 7r/2). 
Processing the weights for the external elements is very easy 
(half the maximum of the sidelobe in question) whereas the 
weights of the edge elements in the second algorithm require 
further processing and time consuming evaluation of addi- 
tional mathematical functions (e.g., the square root and 
inverse trigonometric functions). 

3) 

The only advantage of the second algorithm over the first is that 
the edge elements are used during both the normal operation and 
cancellation modes whereas the external elements remain idle during 
the noncancellation mode in the first algorithm. 

On the other hand, one external element produces very similar 
results to those produced by two external elements. However, the 
amplitudes of the relevant elements are not equal as the case in the 
other algorithms. Furthermore, the phases applied to these elements 
are no longer conjugates. 

V. CONCLUSION 

The concept of using the edge elements adds some physical 
insight to the contribution of the different parts of the array to the 
radiation pattern. comparing the procedure of sidelobe cancellation 
by the actual edge elements with that by external edge elements, it is 
found that using external elements is easier (because it requires 
fewer mathematical operations) with reduced hardware require- 
ments. 
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Exact Analysis of Radiation Patterns Using the 
Expansion of the Fourier Sum 

Abstract-The time required to compute radiation patterns of linear 
arrays, given in a form of a Fourier sum, depends on the number of 
array elements. In this communication, a new fast algorithm for com- 
puting Fourier sums is presented. The radiation pattern, given by this 
sum, can he replaced by an infinite series whose terms depend on the 
envelop of the excitation function, w( x), and its derivatives at the edges 
of the linear array. In cases when w ( x )  has a few nonzero derivatives, 
this infinite series can be replaced by a finite sum which can he evaluated 
faster than the original Fourier sum. This makes this new method more 
suitable for real-time applications. The effect of critical point is also 
investigated. Some sample case studies are included. 

I. INTRODUCTION 

The radiation pattern of a linear array is given by a Fourier sum 
of the form: 

N 
f,(e) = w ( a  + ih)ejk(u+ih)S1no 

where the excitation function w ( x )  is a real analytic function, 
k = 27r/X is the wavenumber, and X is the wavelength. 

The time required to obtain the above sum, in different directions 
(e), by computing the terms and adding them up, is proportional to 
the number of the array elements N + 1. 

In this communication, a new fast algorithm for computing the 
above Fourier sum is presented. The radiation pattern f,(O), given 
by this sum, can be replaced by an infinite series whose terms 
depend on the envelope of the excitation function w and its deriva- 
tives at the edges of the linear array. 

Such an expression represents a closed form for the radiation 
patterns for a wide class of excitation functions. The new method 
makes the evaluation of radiation patterns more convenient for 
real-time applications in the sense that it requires fewer operations. 
The effect of critical points in the excitation function is investigated. 
A few case studies of specific excitation functions are included. 

i = O  

11. FAST ALGORITHM FOR COMPUTATTON OF PA’ITERNS OF 

Limm PHASED ARRAYS 

Let an array with N + 1 elements be located along the x-axis 
with the zeroth element at point a.  The spacing between the 
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elements is h,  and the excitation of the nth element, located at 
x ,  = a + nh, is given by the real number w(x, )  = 6(x  - 
x , )w(x ) ,  where w ( x )  is a nonnegative real analytic function and 
6( x )  is the Kronecker delta function given by 

(1) 
i f x = O  

= A: otherwise. 
Then, the array factor, f , ( 0 ) ,  is given by the Fourier sum: 

N 
f,(e) = w(x, )e ikxns inB 

n=O 

N 

( 2 )  = + nh)ejk(a+nh)sino 
n=O 

Direct computer methods may be used to compute f,(O) in any 
direction 0. The time required to compute the above sum, term by 
term, increases with the number of the array elements N + 1. The 
problem is even worse if computation of the pattern in more than 
one direction is required. 

A .  The Expansion of the Fourier Sum 

Using the Euler-Maclaurin sum formula (see [l], [5] )  together 
with the expression for asymptotic expansions for the Fourier 
integral (see [3], [4]), it can be proved that 

f,(e) = w ( a  + nh)ejk(u+nh)sino 
N 

n = O  

(3) 
that is, the finite sum can be replaced by an infinite series whose 
terms depend on the excitation function w ( x )  and its derivatives at 
the edges of the linear array. Equation (3) will be called, hereafter, 
the expansion of the Fourier sum. 

B. The Expansion as a Fast Algorithm 

The expansion of the Fourier sum provides a fast algorithm for 
computing the radiation pattern levels of linear phased arrays due to 
a wide class of excitation functions. For instance, the polynomial- 
tapered excitation functions have zero derivatives for all m L M 
for some integer M and, hence, the infinite series can be replaced 
by a finite series which gives the exact sum with a number of terms 
( M  + 1 terms) very much less than the original sum ( N  + 1 terms) 
in the middle expression of (3). 

111. THE EFFECT OF CRITICAL POINTS 

It has been assumed until now that the excitation w ( x )  is an 
analytic function. Consider now an excitation function with critical 
points, i.e., points at which the excitation function w ( x )  is continu- 
ous but the derivatives do not exist. So, let w ( x )  have a critical 
point at c = NI h such that 

[ w 1 ( x > ,  if a 5 x 5 c = a + N l h  
if c s x ~  c + Nzh = a + Nh 
if x =  c w I ( x )  = w z ( x ) ,  

(4) 
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