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Abstract—A directly modulating antenna using metasurfaces
is optimized using the surrogate model assisted differential
evolution for antenna synthesis (SADEA) method and simulated.
Metasurface modulation holds promise as an energy efficiency
transmitter technology, but suffers from modulation distortion
and many differing parameters, making achieving good designs
difficult. The algorithm used here, SADEA, obtained a design
that shows improvement over conventional design techniques,
producing amplitude variation of 1.8 dB over 360o and an average
efficiency of 65%, up from 50% obtained by the standard model.

I. INTRODUCTION

Direct modulation, where a radio frequency (RF) carrier
wave is modulated at transmit power, has been proposed as a
form of energy efficient transmitter [1]. Conventional transmit-
ters require amplification of a modulated signal, placing limits
on the linearity of the power amplifier (PA) and so reducing the
transmitter efficiency, often to below 30% [2]. Reconfigurable
metasurfaces have been suggested as a mechanism for per-
forming direct modulation, as tuning a metasurface’s response
produces a phase change in the transmitted or reflected signal
[1]. Techniques have also been demonstrated for producing
more complex quadrature modulation [3], [4].

However, both transmissive and reflective metasurface phase
modulation techniques suffer from an unwanted variation
in magnitude with phase. As the metasurface response is
effectively a filter, there is significant variation at the carrier
frequency as the filter response tunes across its bandwidth.
The effect is worsened by losses in resistive parts of the
metasurface, in particular the tuning elements. This affects the
quality of modulation, introducing distortion to the intended
constellations.

Machine learning-assisted optimization methods are attract-
ing a lot of interest for the expedited design of contemporary
antennas in recent times [5]. To address the challenges above,
this paper utilizes the surrogate model assisted differential
evolution for antenna synthesis (SADEA) method to minimize
the magnitude variation of a directly modulating antenna using
transmissive metasurfaces. SADEA is a purpose-built machine
learning-assisted global optimization method for antenna de-
sign [6]. When compared to standard global optimization
methods for antenna design, SADEA offers up to 20 times
speed improvement and obtains design solutions of enhanced
quality [7]. Hence, it is used in this work.
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Fig. 1. (a) Unit cell of metasurface, (b) Directly modulating antenna

II. DIRECTLY MODULATING ANTENNA

The general design of the modulating unit was first intro-
duced in [1], and is shown in detail in Fig. 1. The working
principle is that a 1.8 GHz carrier wave is introduced into a
cavity by a monopole of length l. It illuminates a series of
reconfigurable metasurfaces, which acts as a bandpass filter.
By tuning the response continuously over its range, the phase
of the carrier wave is altered, allowing information to be
modulated onto it, for example with phase shift keying.

The metasurface unit cell is shown in Fig. 1a, with two
varactor diodes arranged in line with the expected E-field
from the transmitter in a conventional tuneable bandpass
loop configuration. The diodes are modelled as a series RLC
circuit with resistance 0.7 Ω, inductance 0.5 nH and variable
capacitance between 0.8 pF and 1.5 pF. Each metasurface
consists of a 5x5 grid of unit cells, and put on a substrate
of Rogers RO3003 with a relative permittivity of 3 and a loss
tangent of 0.001. Bias lines are placed on the back of each
surface to allow voltages to reach each diode, with thickness bt
and offset bo from the cavity wall. Four layers of metasurface
are used to ensure 360o phase change is available, and they
are integrated into an antenna cavity as shown in Fig. 1b.

The monopole feed is placed at a distance of da from the
back of the cavity. Each surface is then spaced from each other
by distances of d1, d2 and d3, respectively. The width of the
cavity W is determined by 5p where p is the periodicity of
the unit cell.

The large number of interacting parameters makes manual
optimization of the structure difficult. To allow machine opti-
mization, the whole capacitive tuning range is represented by



TABLE I
DESIGN PARAMETERS FOR THE ANTENNA (ALL SIZES IN mm)

Parameter Lower Bound Upper Bound Standard SADEA-Optimized
p 15.00 23.00 23.00 22.60
g 0.25 1.30 1.00 0.28
s 20.00 50.00 17.00 20.54
l 15.00 50.00 42.00 38.63
d1 40.00 80.00 57.00 77.00
d2 40.00 80.00 57.00 65.00
d3 40.00 80.00 57.00 63.00
da 40.00 70.00 57.00 66.00
db 20.00 50.00 57.00 46.84
bt 0.50 5.00 1.00 3.32
bo 1.00 20.00 5.00 18.27

four evenly spaced samples from across the range: 0.88 pF,
0.95 pF, 1.02 pF and 1.09 pF.

III. SADEA-BASED OPTIMIZATION

SADEA works by harmonizing machine learning and evo-
lutionary computation techniques in a unified optimization
framework for improved efficiency and optimization quality
[6]. To carry out global optimization, SADEA employs differ-
ential evolution, and it uses Gaussian process-based surrogate
modelling to predict the performances of candidate antenna
designs in the optimization process. The harmonious co-
working of global optimization and surrogate modelling in
SADEA is achieved via surrogate model-aware evolutionary
search framework [8].

In this work, SADEA is implemented in MATLAB [9]; a
population size of 50 and a computing budget of 200 full-wave
EM simulations for each capacitive state of the modulating
antenna have been used. Other settings are the default recom-
mended in [6]. The design parameters and their search ranges
considered for the optimization of the modulating antenna are
shown in Table I. To ensure geometric congruity during the
optimization, the geometric constraints used are bt/2 < bo
and s + g < p. The optimization goal is to minimize the
difference between the magnitudes of the E-field components
at the antenna’s boresight, at an operating frequency of 1.8
GHz for the capacitive states, subject to a return loss lower
than -6 dB and a total radiation efficiency better than 65%.

IV. RESULTS AND DISCUSSION

After 144 full-wave EM simulations for each capacitive
state considered, SADEA converged to obtain the optimized
design shown in Table I. For comparison, a standard design
was manually produced with conventional design rules, such
as spacing all surface layers λ/4 apart, and these dimensions
are also shown in Table I. Both designs were then simulated
over the range of capacitances available to the diode, and their
simulated results are shown in Fig. 2.

The optimized antenna’s E-field at boresight shows a signif-
icant reduction in amplitude variation with phase at 1.8 GHz,
compared with the standard antenna (Fig. 2a). As such the
modulation produced will be less distorted when the optimized
antenna is used. For example, the optimized antenna’s QPSK
constellation has points 82%, 92% and 94% of the maximum
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Fig. 2. (a) Normalised E-field magnitude and phase at boresight of antennas
at 1.8 GHz, with changing capacitance (b) Total efficiency of modulating
antennas at 1.8 GHz against phase change produced

amplitude, while the standard model has a more distorted con-
stellation with points at 75%, 84% and 93% of the maximum
value. Around 360o phase change, the optimized model has
1.8 dB variation, a significant improvement over the 3.1dB
variation of the standard model.

Further, the efficiency of the optimized antenna is also
greater than that of the standard model. The average efficiency
over 360o phase change has increased from 50% to 65%. As
such, the SADEA-based optimization enables improvement
of complex directly modulating antennas well beyond the
performance of standard design rules.

V. CONCLUSIONS

A directly modulating antenna using metasurfaces has been
optimized using SADEA. The optimized antenna showed
an improved constellation over a conventionally designed
standard antenna, reducing a 3.1 dB variation in amplitude
over 360o to 1.8 dB. The average efficiency over 360o also
improved from 50% to 65%. This demonstrates the utility
of the algorithm in optimizing complex directly modulating
structures. Future work will explore algorithmic co-design of
the modulating antenna and the physical layer waveform.
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