

 Wrexham University Research Online

Conference Paper

Pyp2pcluster: A cluster discovery tool

Tracey, R., Akinsolu, M. O., Elisseev, V., and Shoaib, S.

This is a paper presented at the 2024 18th European Conference on Antennas and Propagation
(EuCAP).

The published version is available at: https://ieeexplore.ieee.org/document/10027584.

Copyright of the author(s). Reproduced here with their permission and the permission of the
conference organisers.

Recommended citation:

Tracey, R., Akinsolu, M. O., Elisseev, V., and Shoaib, S. (2022), 'Pyp2pcluster: A cluster discovery tool',
2022 IEEE/ACM International Workshop on HPC User Support Tools (HUST), Dallas, TX, USA, 2022, pp.
11-19, doi: 10.1109/HUST56722.2022.00007

https://ieeexplore.ieee.org/document/10027584

pyp2pcluster: A cluster discovery tool

1st Robert Tracey
IBM Research Europe

Wrexham Glyndŵr University
Warrington, U.K.

robert.tracey@ibm.com

2nd Mobayode O. Akinsolu
Wrexham Glyndŵr University

Wrexham, U.K.

mobayode.akinsolu@glyndwr.ac.uk

3rd Vadim Elisseev
IBM Research Europe

Wrexham Glyndŵr University
Warrington, U.K.

vadim.v.elisseev@ibm.com

4th Sultan Shoaib
Wrexham Glyndŵr University

Wrexham, U.K.

sultan.shoaib@glyndwr.ac.uk

Abstract—It is becoming increasingly common for laboratories
and universities to share computing resources. Also as cloud
usage and applications continue to expand, a hybrid cloud
working model is fast becoming a common standard practice. In
line with these present-day trends, we present in this paper an
open-source Python library that provides information on high
performance computing (HPC) clusters and systems that are
available to a user via a peer to peer (P2P) infrastructure. These
metrics include the size of system and availability of nodes,
along with the speed of connection between clusters. We will
present the benefits of using a P2P model compared to traditional
client server models and look at the ease in which this can
be implemented. We will also look at the benefits and uses of
gathering this data in one location in order to assist with the
managing of complex workloads in heterogeneous environments.

Index Terms—python, P2P, cluster, HPC

I. INTRODUCTION

Building a high-performance computer (HPC) and the re-

quired infrastructure to support it is a costly endeavour. For

example Fugaku supercomputer which topped the Top 500 list

in June 2020[1], cost roughly 1.2 billion dollars to build and

consumes 29,899 kW of electric power[2]. This is an extreme

case as it is one of largest in the world but still requires a very

large investment. On a smaller scale JADE 2 a recently built

supercomputer in the UK for ground breaking work in areas

such as energy storage and improved drug design, cost roughly

£5 million to build[3]. Even for a much smaller system this

is a very large investment and requires backing from multiple

institutions to fund and then run. That is why more and more

groups are being created that share HPC resources such as

EuroHPC[4] and Supercomputing Wales[5]. Also there is a

greater focus on cloud environments and configuring them

to be cloud HPC environments [6], these obviously have the

advantage of being scale-able in order to save costs. In a paper

by Gupta and Milojicic[7] the use of cloud as a HPC resource

was looked at and the costs involved and an evaluation was

made. They found that for a lot of applications the cloud is a

suitable alternative and can be lower cost, but in some cases

a physical HPC will still perform better.

Another consideration when choosing clusters and nodes

can be the network connection between them. Scheduling

jobs among multiple clusters can be done at the via a master

scheduler that is aware of multiple clusters [8]. This can be

done for many reasons, including access to more resources,

free spaces on clusters and in order to take advantage of

specific hardware for different parts of the job. When this is

done, the network connections between the clusters become a

very important factor. How this is measured is often disputed,

however metrics such as latency, link speed and the number

of hops are quite popular for carrying out this evaluation.

In one example latency was used to look at the connection

speed between nodes within countries and between countries

to identify slow and fast connections [9]. This data was able to

be used to help with network design and towards advancement

in internet technologies.

For an end user this creates an enviable problem where

they have too many resources at their disposal and are unsure

where there job should be run. Choosing the correct cluster and

resources is very important as if a cluster is chosen with too

few available nodes or nodes that are not powerful enough then

a job can be significantly delayed or even fail. This can also go

the other way if a too powerful cluster is used, then resources

are wasted and queue times are lengthened for other users

[10]. This is often referred to as heterogeneous environments,

running complex workloads in these environments is enhanced

if you have available to hand information such as how many

nodes a cluster has and the resources available to it.

For the project Dynamic routing of data based on resource
availability and benefit that is currently being worked on we

required an easy to use python library that would allow us to

get data from the various nodes and clusters and utilize it for

other algorithms and code. In this other project we need to

gather data concerning the size and specification from many

clusters and individual nodes and the speed of the networks

between them. We will then be applying fuzzy logic to the

data received from them in order to classify them by quality.

This data will then be fed into further investigations looking

at how jobs can be routed and scheduled to run on the best

available cluster using swarm intelligence. All of this data will

be collected and processed automatically so that it is regularly

updated. In order for this to work we had very specific needs

in a Python library which needed to be met these were:

• Easily adaptable for the needs of our project

• Be able to provide information from different types of

clusters

• Be able to work with single nodes

• To consume as few resources as possible

• To be able to obtain network speed information between

nodes.

• To be able to provide detailed information on a cluster

and resources

The outcome of this is pyp2pcluster library. We identified that

this library has other uses as well outside our project which

could be beneficial to many users. Examples of this are to

keep track of the health of a cluster for system administrators,

or to monitor network connections and quickly spot outages

that may occur. As mentioned it is also useful for users with

access to multiple clusters and the advantage of being able to

see the resources on them can be great, along with the fact

that it is scriptable. This makes it very versatile for a variety

of needs and users.

In this paper we present pyp2pcluster, this is a python

library that runs as a Peer-to-Peer (P2P) client on the gateway

nodes for all clusters that a user has access to. It allows

speedy reports of cluster status and available hardware and

also a way of testing network speeds between clusters. The

remainder of our paper is organized as follows: the differences

between peer-to peer networks and client server networks are

discussed in Section 2, job management in HPC is examined in

Section 3, existing libraries available for Python are reviewed

in Section 4, the library, its output when used and the features

it has and how they can be used are presented in Sections

5 and 6, and the concluding remarks alongside the planned

future direction for our work are detailed in Section 7.

II. PEER-TO-PEER SYSTEMS

Peer-to-Peer (P2P) networks are based on a distributed

environment and structure rather than a single node. These

types of systems were very popular in the late 1990s and early

2000s as a way of sharing files anonymously with services

such as Kazaa, Napster, Limewire and also BitTorrent. P2P

networks are also a way of sharing computing resources in

a distributed manner as demonstrated by networks such as

SETI@Home [11].

P2P networks fall in to two main categories: structured

networks and unstructured networks. In a structured network,

the nodes form a specific topology rather than just being

randomly connected and they use a distributed hash table

(DHT). This allows for specific nodes to be searched for within

the network. This type of network works best with a more

static design, as each node has to keep track of neighbouring

nodes in order to keep the DHT updated correctly[12]. In an

unstructured network, nodes can leave or join at will, as no

central directory is kept. If a search for a specific file is made

then it has to go through the whole network. This routine can

cause issues in larger networks as they can easily become

flooded by searches[13]. However, this type of network is

better at handling large amounts of nodes leaving and joining

at any time which makes it very flexible.

A. P2P vs Client Server

There are many advantages of a P2P-based system in com-

parison to traditional client-server-based communication. One

of the main advantages, in the context of our work, is that each

node can request and send data as needed. Unlike in a client-

server method where the clients request data from a central

location (i.e., the server) and the server can only respond as

requested and cannot receive data. Using a distributed P2P

network also decentralizes the infrastructure that helps with

costs, existing nodes not dedicated nodes can be used, and

also increases resilience at no extra cost. Also if one node

goes down the others can still handle requests and pass data

to each other. Finally one of the other key features of P2P

over client-server is that in a client-server network as soon

as a connection is made, a chunk of bandwidth is reserved

regardless of whether it will be fully utilized or even if needed

at all until the connection is terminated. On the other hand, in

a P2P network, the connection only uses as much bandwidth

as required when required, which keeps the network running

smoother, especially with multiple connected clients.

An example of the differences in layout between client

server and P2P networks can be seen in Fig. 1. Fig. 1

highlights one of the major benefits of a P2P cluster over

a client-server network - it is not reliant on one central server

and all nodes can send and receive data.

III. HPC JOB MANAGEMENT

Job management and scheduling software is a vital part

of working with a HPC cluster. The job scheduling software

has the important job of keeping track of what resources are

available across the cluster, status of the various nodes and

what hardware they have available. Also, it keeps track of

what jobs are currently running, which are waiting and for

which users and if that user has the ability to use this cluster.

By using this software, a user is able to submit jobs to nodes

via queues, find information on available nodes and on running

job status. Some common examples of job schedulers are IBM

SpectrumLSF[14], Slurm[15] and OpenPBS[16]. In Fig. 2, it

can be seen how a user interacts solely with the gateway node.

This in turn uses job scheduling software to place the users

job on the next available node or nodes.

There are many types of algorithms used for job scheduling

on HPC systems [17]; the simplest being first-come first-

serve (FCFS). In FCFS, the jobs are queued up as they arrive

regardless of size or priority. It is simple and works. but it

is not very efficient and can lead to small jobs getting stuck

behind larger jobs, even if there is space for them to run.

Many other algorithms exist to help with the scheduling of

HPC systems that can manage jobs in a more efficient way. A

regular challenge for HPC administrators is to fill clusters in

the most efficient way possible by finding the perfect balance

between priority and job size. This is especially the case as

increasingly an important metric when monitoring a cluster is

its utilization and the patterns that form from users jobs [18].

This information is vital for decision making about resources

and efficient allocation of users jobs. This information is also

used by decision makers such as managers and laboratory

leaders about future purchases in regards to clusters and the

resources that will be required for future work. The study of

Fig. 1. Client server vs P2P networks

utilization has also led to research into how job scheduling

and utilization can affect energy efficiency[19].

As well as knowing what management system a user has

to interact with, the next challenge is ensuring that the cluster

required resources available. These can include the type and

number of central processing units (CPUs) available, available

memory per node, the number of nodes, and the number of

accelerators that are available. Accelerators are being used

increasingly in HPC environments to enable specialist code

to run faster and more efficiently than on a CPU alone.

These include Field Programmable Gate Arrays (FPGA) [20],

Graphics Processing Unit (GPU) [21] and three-dimensional

(3-D) Memory [22].

As more systems at multiple locations are made available

to users and they move to more heterogeneous environments.

In order to support this job managers that support multiple

clusters have started to be developed. Examples of these are

Globus[23] and Flux[24]. These tools are able to see multiple

clusters and schedule jobs on them from one central location.

IV. EXISTING LIBRARIES

Many Python P2P libraries currently exist with features that

could be used for the project this tool was built for. In order

for these Python libraries to be suitable for us to work with,

they need to be usable with the latest versions of Python, be in

active development, have good documentation and be flexible

so that they can be adapted to the challenge we have. We will

look at some of the libraries we found in greater detail below.

A brief list of them and their current status of development

can be found in table I.

Library Current status

pyp2p Not active
pydevp2p Not active
dispersy Not active
trinity Not active

py-libp2p Active
Zyre Active

libp2p Active
TABLE I

PYTHON P2P LIBRARIES

A. Non active libraries

Firstly. there is a pyp2p library[25], which is a simple

working library that has abilities to bypass network address

translation’s (NAT) to make linking P2P networks easier. It

has some documentation and some good example codes that

allows potential users to demo on the same node if only a

single node is being used for tests and experimentation. It also

supports broadcast communication and direct communication

which is useful if there is a need to switch the P2P network

from structured to unstructured. The major drawback of the

pyp2p library[25] is that it has not been updated in a long

time, in this case, the last commit was 2016 and it has only

been tested on Python 2.6 and 3.3. This means that it could

have issues with modern libraries that require newer versions

of Python and lots of work could end up being spent debugging

these issues rather than doing actual development work.

The next library is the pydevp2p library[26]. This is a low-

level library that was built to help with Ethereum mining,

but could easily in theory, be adapted for other purposes. It

Fig. 2. Job management for HPC system

uses RLPx network layer, a specialist network layer built for

Ethereum mining. The pydevp2p library[26] has many features

such as built in encryption for both transportation of messages

and handshakes between nodes which increases security and

privacy across the network. Despite the aforementioned pros,

the pydevp2p library[26] suffers from a few major issues.

Similar to the pyp2p library[25], it has not been updated in

a long time, in this case, since 2018. This suggests that it is

not under active development. Secondly and most importantly,

it has no documentation at all, indicating that potential users

need to reach out to the developer directly or work through the

library code to decipher how to use the library. As a result of

these drawbacks, this library was not considered in our work

which aims to the purposes of our project.

Another library examined is the dispersy library[27]. This

library allows users to create a fully decentralized network

that can scale up to hundreds of thousands of nodes. It also

transverses easily over NAT’s, making networking easier for

users on organizational networks. For this library, each node

runs all the algorithms needed, helping to keep it robust and

an elliptic curve cryptography is used to keep communications

secure. The dispersy library[27] has been proven to work well

over wireless fidelity (WiFi) and cellular networks, making

it very practical for mobile devices and remote devices.

However, unlike the previous two libraries, the development

of the dispersy library[27] has ceased. As a matter of fact,

on GitHub, there is a notice that no further development will

happen to the library [27]. Hence, this library is not suitable

for the aim of the work carried out in this paper.

The trinity library[28] was also reviewed. Like the

pydevp2p library[26], this library was also written to sup-

port Ethereum mining. However, in this case, it was more

application-specific, so much so that it likely can not be

used for anything else. The trinity library[28] has a lot of

documentation, enabling potential users to be able to make

use of it proficiently, relatively quickly. The major drawback

of this library is that it is no longer under active development.

Therefore, it is impractical to use it for our work.

All the libraries discussed above had various issues that

made them unsuitable for use in our work. A common

drawback to all the libraries is the lack of update and/or

development[25, 26, 27, 28]. How often a library is updated

is a critical factor when choosing what to use it, as this can

impact the number of bugs that needs to be fixed before

the library can be used. Aside from bugs, compatibility with

other libraries and the current versions of Python, and the

level of help and information available from other users and

developers are also directly related to the updates and recurrent

development of the library. In the next section, some other

libraries that are in active development still are reviewed.

B. Active libraries

The py-libp2p library [29] is a library that is under very

active development. It has many features, such as support for

multiple transport protocols which makes it very flexible. It

also has a good set of documentation that details how the

library can be used and its many features accessed. The main

cons of this library are its complexity, considering the intended

use in our work, and too many features and settings that

avert rapid development. The py-libp2p library [29] is also

geared towards Ethereum mining who funds it, suggesting that

it is leans more towards mining, rather than traditional P2P

networks.

Another library under active development is the Zyre
library[30] that is written in C. Despite this, this library

can still be considered as it has bindings for many other

languages, so that these other languages can use its interfaces

and this includes Python. The Zyre library[30] has extensive

documentation and many features such as groups for peers,

ease of joining and leaving the network for nodes, and it can

work on multiple operating systems. However, it was designed

and built to run on local networks, rather than over the internet.

This would make it useful for a single site with multiple nodes,

but for our work, this is not suitable.

Finally we will look at libp2p[31] this is a very interesting

and different library for a number of reasons. Firstly it is

modular so it allows you to bring in only the parts you need

and extend it as needed. It can use multiple transport types and

supports encryption in communication between nodes. The

main issue and blocker for the use in our work is that that

although it has been released for a few languages the Python

implementation is still being worked on and has therefore not

been released yet. This obviously stops it from being useful

for our project at this time.

From the review of the current libraries, it can be seen

that none of them meet the required criteria for our work,

as mentioned earlier in Section I. As a result, we have written

and developed a P2P library in this paper to meet the said

requirements. This allows for the flexibility of having a library

that can be coded and documented for the specific versions of

Python used in our work.

V. PYP2PCLUSTER

The pyp2pcluster library has been designed to be very

simple to use and to be as flexible as possible. The library

has been tested running on Python versions 3.6, 3.7 and 3.8,

and it requires only one extra library to be installed, i.e., the

tcp latency library. Because the type of available resources

and clouds to be used by a user changes very often, the

library is designed as an unstructured P2P network, so no

DHT exists for all nodes. In Fig. 3, the flow of data to the

node is illustrated, a selection of choices are available to the

user (more details on these choices are provided later on), and

then the required data is returned to the master node.

Each node or cluster runs a script in the background which

calls the library, and this does all of the sending and receiving

of data. In the example shown in Listing 1, we have the code

for a standard node. This code has three simple parts: the

first couple of lines import the pyp2pcluster library and also

the sys library to support command line arguments. Then

variables for port and also the system ID are taken from the

command line arguments when the script is executed. The sys
is commonly the host name, but it can be anything in order to

identify this cluster or node. This name is currently not used

in the code but has been added in case DHT features ever

needed to be introduced. The library is used to create a object

that will loop and wait for connections to use the library. Once

this is running, requests can be sent to this node and if needed,

the node running this loop will request from other nodes as

well.

from pyp2pcluster import pyp2pconn as pyp2p
import sys

port = int(sys.argv[2])
sysid = sys.argv[1]

loop = pyp2p(port,sysid)
loop.mainloop()

Listing 1. Example of creating a node using pyp2pcluster

A. Connecting to the nodes

Connecting to the nodes is a simple process due to the fact

that each P2P node is just listening for text input. This is then

used to process specific commands and actions. By default,

if a message is sent that does not match an action that the

node is aware of, then it echoes it back to the sender. This

feature is useful for debugging and basic connection checking

- a very basic form of this can be demonstrated using the nc
command. The nc command demonstrates that a server is able

to reply. It can be viewed as the simplest way to connect to a

node and example can be seen in Listing 2.

echo "test_message" | nc 192.168.0.103 44444

Listing 2. Example of using nc command to connect to cluster

Listing 2 can be expanded further for use in Python which

provides more opportunities for larger and more complex

scripts to be written and developed. In Listing 3, a function

that sends data, receives the basic reply and then stores it as

a variable is being executed. As can be seen in Listing 3,the

pickle library is used to decode any messages sent or received,

as they are received in binary format.

import socket
import pickle

def testmessage(host, port):
message = ["tester"]
with socket.socket(socket.AF_INET, \
socket.SOCK_STREAM) as s:

s.connect((host, port))
messageb = pickle.dumps(message)
s.sendall(messageb)
data = s.recv(2024)
outy = pickle.loads(data)

return outy

output = testmessage("192.168.0.103", 44444)

Listing 3. Example of creating a node using pyp2pcluster

Now that a basic connection has been made and tested as

revealed in Listing 3, it is important to look at the specific

messages that will run actual commands on the P2P nodes.

This is discussed in Section V-B.

B. Cluster information

The cluster information call is done via a message that is

made up of three parts and sent to the P2P node. The first

part is the command getcluster - this tells the node that it is a

Request for data
with message

Data response

Echo message

Cluster status

Latency to another
node

P2P nodeMaster

Possible responses

Fig. 3. communication to API

cluster information call, the second part is the type of cluster

- this currently accepts three arguments: lsf, slurm and single
(lsf and slurm correspond to the type of clusters that can be

talked to if they are present on the node, and the library uses

a combination of commands for each cluster type to generate

an output, and single is for getting data from single nodes that

can be used but have no job scheduling software installed).

The third part or option of the message used for the cluster

information call sets how the data will be returned, and the

options are table and summary. table gives a dictionary output

of all the nodes and lists the characteristics for each one

individually. This can then be used for scripts or converted to

a dataframe, if working with a library like pandas. summary
returns a summary with three values: the average number of

CPUs over the whole cluster, the average memory across the

cluster and the total number of nodes in the cluster. This was

added for ease in scripting. Also one of the main purposes of

this library was to support the implementation of fuzzy logic

that fits appropriately to it. In Listing 4, it can be seen that a

request is being made to an lsf cluster, for the data to returned

in a table format.

import socket
import pickle

def clustertest(host, port, cluster,mode):
message = ["getcluster",cluster,mode]
with socket.socket(socket.AF_INET, \
socket.SOCK_STREAM) as s:

s.connect((host, port))
messageb = pickle.dumps(message)
s.sendall(messageb)
data = s.recv(1024)
outy = pickle.loads(data)

return outy

clustertest("192.168.0.125", 44444,"lsf","table")

Listing 4. Example of requsting cluster information

C. Latency between clusters

The latency call is designed to test the latency between

clusters. As a result, it does not test for latency between the

nodes on the same cluster. It is designed in such a way that

a P2P node or cluster can reach out to another, and carry

out a latency test between them. This has several applications,

but most importantly, it allows the development of a map of

how connectivity looks between clusters. This map can prove

useful for splitting jobs between clusters or if resources for a

job such as a database are to be hosted elsewhere, then an idea

of the quality of network between the clusters can be easily

observed or visualized. Such an observation or visualization

can help with the decision of which clusters to use or where

resources should be hosted.

In Listing 5, an example of how to request the latency is

shown. The message sent to the P2P node is made up of two

parts: the command nodetest which tells the node that checks

the latency on another node, and the secondary node to be

targeted from the primary (this can be sent as a hostname or

IP address; a hostname will only work if it can be resolved by

the primary node either through lookup or DNS). The result is

returned to the user as a float. If latency needs to be checked

from the user’s machine to any node, then this can easily be

done without the library by just using the tcp latency library

to talk to the node directly.

import socket
import pickle

def nodetest(host, port, target):
message = ["nodetest",target]
with socket.socket(socket.AF_INET,\
socket.SOCK_STREAM) as s:

s.connect((host, port))
messageb = pickle.dumps(message)
s.sendall(messageb)
data = s.recv(1024)
outy = pickle.loads(data)

return outy

nodetest("192.168.0.125", 44444,"192.168.0.111")

Listing 5. Example of requsting latency between two nodes

VI. OUTPUT

In this section, the output and results when the library is

running on a collection of nodes are presented and discussed.

In Table II, the full cluster output for a system using the table

option can be seen. Each host is listed with CPU cores, amount

of memory and how many GPUs it has (if it has any). In

Listing 6, an example of the summary of lsf is shown, and

the items are listed in the order of average number of CPU

cores, average amount of memory and the total number of

nodes. Notice that numbers of GPUs are not available in this

view.

Hostname CPU’s Memory GPU’s

LoginNode 128 64.0G 0
Host1 32 1.1T 4
Host2 32 1.1T 4
Host3 32 1.1T 4
Host4 32 1.1T 4
Host5 20 512.0G 4
Host6 19 512.0G 4
Host7 20 512.0G 4
Host8 20 512.0G 4
Host9 20 1.0T 0

Host10 20 1.0T 0
Host11 20 1.0T 0
Host12 20 1.0T 0
Host13 20 1.0T 0
Host14 20 1.0T 0
Host15 20 1.0T 0
Host16 20 1.0T 0
Host17 20 1.0T 0
Host18 20 1.0T 0
Host19 20 1.0T 0
Host20 20 1.0T 0

TABLE II
OUTPUT OF CLUSTER INFORMATION COMMAND ON LSF SYSTEM

{1: 27.381, 2: 913173.7142857143, 3: 21}

Listing 6. Summary output of LSF cluster

Hostname CPU’s Memory(MB) GPU’s

Node1 1 196 0
Node2 1 199 0
Node3 1 199 0
Node4 1 200 0

TABLE III
OUTPUT OF CLUSTER INFORMATION COMMAND ON SLURM SYSTEM

{1: 1.0, 2: 198.5, 3: 4}

Listing 7. Summary output of Slurm cluster

In Table III, the full output from a slurm cluster is shown using

the table option. It is noticeable that the output is similar to aid
in reading and scripting. The only difference is that memory

sizes are in int format and represent megabyte (MB), rather

than human readable format like the LSF output. The summary

seen in Listing 7 again follows the same pattern as the LSF
summary in order to make scripting as simple as possible.

In Listing 8, the output from a single node can be seen. For

single nodes, there is no table option because none is really

needed, so only the summary option is available. summary
command returns two numbers: the number of CPU cores on

the machine and the amount of memory in kilo bits (kb).

[’4’, ’2027368’]

Listing 8. Summary output of single node cluster

In table IV we have populated a table with the latency

between the master (user’s machine) and other nodes and then

the latency they have between each other as well by using the

P2P library. All of this data was gathered using either a direct

command from the master node or by requesting via the P2P

library. One thing to note is that the node dtfi4 is not running

any P2P software at present but the other nodes are still able

to do latency tests to it. This is useful for testing speeds to

nodes you may not fully control so are therefore unable to run

the P2P software or to test to nodes you maybe thinking of

renting/purchasing.

Source Destination Latency(ms)

Master flux 2.800941
Master nova 3.694057
Master sandbox 1.065969

flux nova 2.099037
flux dtfi4 11.276484
nova dtfi4 11.115551

TABLE IV
LATENCY BETWEEN NODES IN P2P NETWORK

In Fig. 4, the data from Table IV is applied to our network

diagram of nodes. This helps to visualize the received data and

gives an indication of the relative speed of connection between

nodes based on the latency.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed and demonstrated a new

Python library called pyp2pcluster and shown its features and

capabilities. We have looked at the ways of connecting nodes

and the data the libarary is able to collect. So far, we have

mainly focused on getting this library running and sharing

a basic set of data that is required for the project Dynamic
routing of data based on resource availability and benefit that

we are working on, which as mention previously will be to

apply fuzzy logic to this data in order to ascertain the quality

of a cluster. This means that as shown it currently only collects

a basic subset of data about the size of the nodes and their

Fig. 4. Latency of nodes

specification but can do this in an automatic continuous way so

the data can be regularly updated. As demonstrated the library

has other applications outside the scope of the main project

and would work well in assisting the arranging and scheduling

of jobs in a multi cluster or meta-scheduling environment. This

assistance as well as finding the best cluster for performance

can also help with the energy efficient scheduling. In the

future, we plan to expand the scope of this library so that

more information can be shared between the nodes such as

queue and job status which are easily obtainable from queue

management software as the length of queue will certainly

affect which cluster is chosen. We plan to also expand the

tool to communicate with cluster management software and in

the case of single nodes with the OS in order to get software

information as this is also an important factor. We also plan

to release a beta version of this library for others to use, with

plans to keep active development.

REFERENCES

[1] TOP500. Top500 June 2020. https://www.top500.org/

lists/top500/2020/06/.

[2] BIANCA. Fugaku is now the world’s fastest supercom-

puter but is set to lose the crown soon. http://tinyurl.com/

kwazph23.

[3] HARTREE STFC. New milestone brings the uk’s

largest AI supercomputer one step closer. https://www.

hartree.stfc.ac.uk/Pages/New-milestone-brings-the-UK’

s-largest-AI-supercomputer-one-step-closer.aspx.

[4] EUROHPC. EuroHPC. https://eurohpc-ju.europa.eu/

index en.

[5] SUPERCOMUTING WALES. Supercomuting wales. https:

//www.supercomputing.wales/.

[6] M. A. S. Netto, R. N. Calheiros, E. R. Rodrigues, R. L. F.

Cunha, and R. Buyya, “HPC cloud for scientific and

business applications: Taxonomy, vision, and research

challenges,” ACM Comput. Surv., vol. 51, no. 1, jan 2018.

[Online]. Available: https://doi.org/10.1145/3150224

[7] A. Gupta and D. Milojicic, “Evaluation of HPC appli-

cations on cloud,” in 2011 Sixth Open Cirrus Summit,
2011, pp. 22–26.

[8] W. M. Jones, W. B. Ligon, L. W. Pang, and

D. Stanzione, “Characterization of bandwidth-aware

meta-schedulers for co-allocating jobs across multiple

clusters,” The Journal of Supercomputing, vol. 34,

no. 2, pp. 135–163, Nov 2005. [Online]. Available:

https://doi.org/10.1007/s11227-005-2337-x

[9] A. Formoso and P. Casas, “Looking for network latency

clusters in the LAC region,” in Proceedings of the
2016 Workshop on Fostering Latin-American Research
in Data Communication Networks, ser. LANCOMM

’16. New York, NY, USA: Association for Computing

Machinery, 2016, p. 10–12. [Online]. Available: https:

//doi.org/10.1145/2940116.2940130

[10] R. Kuchumov and V. Korkhov, “Fair resource alloca-

tion for running HPC workloads simultaneously,” in

Computational Science and Its Applications – ICCSA
2019, S. Misra, O. Gervasi, B. Murgante, E. Stankova,

V. Korkhov, C. Torre, A. M. A. Rocha, D. Taniar, B. O.

Apduhan, and E. Tarantino, Eds. Cham: Springer

International Publishing, 2019, pp. 740–751.

[11] UNIVERSITY OF CALIFORNIA. SETI@home. https://

setiathome.berkeley.edu/.

[12] S. Sarmady, “A survey on Peer-to-Peer and DHT,” 2010.

[Online]. Available: https://arxiv.org/abs/1006.4708

[13] H. Barjini, M. Othman, H. Ibrahim, and N. I. Udzir,

“Shortcoming, problems and analytical comparison for

flooding-based search techniques in unstructured P2P

networks,” Peer-to-Peer Networking and Applications,

vol. 5, no. 1, pp. 1–13, Mar 2012. [Online]. Available:

https://doi.org/10.1007/s12083-011-0101-y

[14] IBM. IBM Spectrum LSF Suites. https://www.ibm.com/

uk-en/products/hpc-workload-management.

[15] SCHEDMD. Slurm support and development. https://

www.schedmd.com/.

[16] ALTAIR ENGINEERING, INC. Openpbs. https://www.

openpbs.org/.

[17] Y. Fan, “Job scheduling in high performance computing,”

2021. [Online]. Available: https://arxiv.org/abs/2109.

09269

[18] N. Chan, “A resource utilization analytics platform

using grafana and telegraf for the savio supercluster,”

in Proceedings of the Practice and Experience in
Advanced Research Computing on Rise of the Machines
(Learning), ser. PEARC ’19. New York, NY, USA:

Association for Computing Machinery, 2019. [Online].

Available: https://doi.org/10.1145/3332186.3333053

[19] “V. Elisseev et al., Energy Aware Scheduling Study on

BlueWonder, E2SC@SC18.”

[20] T. Nguyen, C. MacLean, M. Siracusa, D. Doerfler,

N. J. Wright, and S. Williams, “FPGA-based HPC

accelerators: An evaluation on performance and

energy efficiency,” Concurrency and Computation:
Practice and Experience, vol. n/a, no. n/a, p. e6570.

[Online]. Available: https://onlinelibrary.wiley.com/doi/

abs/10.1002/cpe.6570

[21] N. DeBardeleben, S. Blanchard, L. Monroe, P. Romero,

D. Grunau, C. Idler, and C. Wright, “GPU behavior on a

large HPC cluster,” in Euro-Par 2013: Parallel Process-
ing Workshops, D. an Mey, M. Alexander, P. Bientinesi,

M. Cannataro, C. Clauss, A. Costan, G. Kecskemeti,

C. Morin, L. Ricci, J. Sahuquillo, M. Schulz, V. Scarano,

S. L. Scott, and J. Weidendorfer, Eds. Berlin, Heidel-

berg: Springer Berlin Heidelberg, 2014, pp. 680–689.

[22] M. Ujaldón, “HPC Accelerators with 3D memory,” in

2016 IEEE Intl Conference on Computational Science
and Engineering (CSE) and IEEE Intl Conference on Em-
bedded and Ubiquitous Computing (EUC) and 15th Intl
Symposium on Distributed Computing and Applications
for Business Engineering (DCABES), 2016, pp. 320–328.

[23] GLOBUS. Globus. https://www.globus.org.

[24] LLNL. Flux: Building a framework for resource

management. https://computing.llnl.gov/projects/

flux-building-framework-resource-management.

[25] STORJOLD. pyp2p-github. https://github.com/StorjOld/

pyp2p.

[26] ETHEREUM. pydevp2p-github. https://github.com/

ethereum/pydevp2p.

[27] TRIBLER. dispersy-github. https://github.com/Tribler/

dispersy.

[28] ETHEREUM. trinity-github. https://github.com/ethereum/

trinity.

[29] LIBP2P. py-libp2p-github. https://github.com/libp2p/

py-libp2p.

[30] ZEROMQ. zyre-github. https://github.com/zeromq/zyre.

[31] PROTOCOL LABS. libp2p. https://libp2p.io/.

	642 Conference Paper cover sheet
	pyp2pcluster_A_cluster_discovery_tool

