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control [5]. The essence of SDN lies in centralizing network 
intelligence into controllers, abstracting the network 
infrastructure from applications, and relegating network 
devices to mere data packet forwarding [6]. This concept 
stems from virtualization, which segregates software 
management from hardware. 

Typically, SDN's architecture comprises three layers: the 
data plane that forms the foundational physical layer, the 
control plane that offers a virtualized environment, and the 
management plane that hosts network applications [6]. 
These layers embody SDN's core principles: centralized 
intelligence, programmability, and highlevel abstraction [6]. 
The abstraction layer is particularly vital for deploying AI 
solutions, machine learning (ML) techniques in particular, 
as it provides extensive network data and facilitates dynamic 
modifications [7]. SDN represents a paradigm shift, 
empowering network administrators to orchestrate network 
services by abstracting lower-level functions [5]. This 
abstraction fosters a dynamic and efficient approach to 
network management, surpassing the capabilities of 
conventional network architectures. 

As networks grow in complexity and size, optimizing 
performance and security becomes increasingly challenging 
[8]. SA emerges as a critical tool in this scenario, providing 
sophisticated methods to bolster SDN's effectiveness [9]. SA 
does so by pinpointing key parameters and assessing their 
influence on network performance. A crucial aspect of 
model development and evaluation involves a thorough 
delineation and comprehension of how variations in model 
parameters affect predictions. SA is a vital step in this 
process, examining the significance of input parameters on 
the model's output and quantifying the impact of each input 
on the overall results [10]. 

Traditionally, SA involves analyzing the relationships 
between various sources of uncertainty in the inputs to 
models and the uncertainties in the outputs of models 
(numerical or otherwise) [11]. While closely related to 
uncertainty analysis (UA), SA is distinct in that UA focuses 
on characterizing uncertainties in the model's predictiveness 
without pinpointing which assumptions contribute most to 
the uncertainties [9]. Ideally, UA should precede SA, as 
uncertainties need to be estimated before they can be 
apportioned [12]. However, this sequence is not always 
necessary, and model optimization applications may not 
require the quantification of uncertainty [12]. 

Abstract— This paper presents an overview of how artificial 
intelligence (AI) techniques are being explored for sensitivity 
analysis in the context of software-defined networking (SDN). 
Sensitivity analysis (SA) is pivotal in determining the influence 
of variable inputs on system outputs, a process essential for the 
enhancement of SDN's performance and dependability. The 
incorporation of AI techniques, especially machine learning 
algorithms, has led to substantial progress in executing both 
local and global sensitivity analyses within SDN frameworks. 
Such progress is instrumental in improving the network's 
adaptability, operational efficiency, and security measures. This 
paper highlights some of the present-day methodologies and 
practical applications in this area, focusing on the role of AI in 
refining sensitivity analysis in SDN. The objective is to provide 
a brief overview of the latest research developments for scholars 
engaged in this rapidly growing field. 
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I. INTRODUCTION

Artificial intelligence (AI) and software-defined 
networking (SDN) are transformative technologies 
reshaping the landscape of computing and network 
management. AI premises on processing extensive data to 
extract meaningful insights, proving beneficial in sectors 
like healthcare, finance, autonomous vehicles, and others [1]. 
As 5G networks become increasingly prevalent and with the 
present-day advent of 6G networks, the relevance of AI- 
driven sensitivity analysis (SA) within SDN has never been 
more critical. 5G networks, characterized by their ultra-low 
latency, enhanced connectivity, and higher data rates, rely 
heavily on sophisticated network management and 
optimization strategies [2]. 

Looking ahead, 6G networks are expected to further 
enhance connectivity with even greater speeds, lower 
latencies, and advanced capabilities such as holographic 
communications, ubiquitous connectivity, and integrated AI 
functionalities [3]. The complexity of 6G networks will 
necessitate even more advanced AI-driven techniques for 
network management. The integration of AI within SDN for 
6G networks will enable more autonomous and intelligent 
network operations, pushing the boundaries of current 
telecommunications technology [4]. SDN primarily 
enhances network management by separating the control 
plane from the data plane, improving network flexibility and 
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The literature offers various categorizations for SA 
techniques. For instance, [13] and [14] classify SA 
techniques based on their scope as local or global SA and 
based on their framework as deterministic or statistical SA. 
In [15], [16], and [17], statistical frameworks for SA are 
generally assumed to stem from the design of experiments, 
with classifications according to the parameter space of 
interest to include both local and global SA methods. 
Consequently, this work also categorizes SA methods into 
local and global SA methods. Given the increasing 
convergence of AI and SDN, numerous practical approaches 
have recently been proposed to implement AI-driven SA in 
this context. These AI-driven techniques have demonstrated 
significant advantages in the characterization, robustness, 
security, and performance optimization of SDN 
environments [18]. In this paper, some of the contemporary 
approaches reported in recent literature are discussed, 
aiming to highlight their practical applications and real- 
world effectiveness. 

Figure 1. Illustration of a typical sensitivity analysis implementation. 

II. OVERVIEW OF SA

The origins of SA date back to scientific and engineering 
studies in the early 20th century, where it was employed to 
assess the reliability and performance of systems under 
varying conditions [19]. With advancements in 
computational methods, SA has become an integral 
component of modern analytical practices. In many 
applications, the main purpose of SA is to ascertain, under a 
given set of assumptions, how various values of independent 
variables affect a specified dependent variable [10]. This 
approach helps identify the most influential variables in 
determining the behavior of complex systems, making SA an 

of the model's output, as indicated by its variance, can then 
be analyzed according to its sources, facilitating a thorough 
SA. LSA and GSA are further discussed as follows: 

A. LSA

By concentrating on the sensitivity bothering on a set of
parametric measures, LSA evaluates the local influence of 
input factor changes on a model's response [21], [22]. When 
examining the sensitivity of an input factor in LSA, the other 
parametric measures are typically fixed. In many cases, LSA 
is implemented by estimating how small perturbations around 
nominal input parametric values affect the model output [23]. 
This disturbance is often implemented on a single parameter 
sequentially, roughly estimating the first-order partial 
derivative of the model's output concerning the perturbed 
parameter, as demonstrated in [24]. 

As reported in [25], this derivative can be estimated using 
effective adjoint methods that handle various parameters. 
Regardless of the technique used, sensitivity coefficients 
derived from deterministic LSA have the benefit of being 
intuitive to comprehend in addition to being numerically 
efficient [26]. Their equivalency to the derivative of the 
output concerning each parameter around a predefined point 
(i.e., nominal parameter values) is primarily responsible for 
their intuitiveness. As a result, these parametric coefficients, 
regardless of the range of parameter variations as exemplified 
in [13], may be easily compared across many modelled 
systems. To evaluate the sensitivity for a certain fixed set of 
input parametric measures or values, LSA may additionally 
entail the use of the partial derivatives of the model's response 
to the input parameters [27], [28]. 

Considering the model, F, for the system described as 
follows: 

y = F(x, γ) (1) 

The dependent variable y is influenced by the independent 
variation of x and the parameters γ = [γ1, ...,γr] of F, as 
indicated by the LSA. The primary idea of LSA is based on 
calculating the impact of model parameter γ or pattern 
characteristics xi, i = 1,..., N on the output value yj, j= 1,..., 
N, where N and J stand for the number of outputs and features, 
respectively, following a training procedure [24],[25]. The 
actual coefficients Sji characterise this influence. 

essential technique for understanding and improving models, 
and thus invaluable in decision-making processes [20]. 

SA methodologies can be broadly classified into two 
categories: local and global [20]. Local SA (LSA) examines 
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the effects of small deviations around a specific input 
benchmark, whereas global SA (GSA) evaluates the impacts 
across the entire spectrum of input possibilities, thereby 
providing a more comprehensive perspective on the 
dynamics between inputs and outputs [20]. SA involves 
quantifying output uncertainty attributable to different 
sources of input uncertainty [20]. For instance, Figure 1 [12], 
provides a basic illustration of the interaction between input 
variables and output responses, laying the groundwork for a 
standard SA procedure. 

In Figure 1, the various sources of uncertainty are 
processed through the model, resulting in an empirical output 
distribution (represented by the grey curve). The variability 

Based on the pth training pattern, p = 1, ..., P, Equation (2) 
gives the sensitivity value of the jth neural network output 
signal on the ith attribute of the input vector x. If the inputs 
to the model act additively or linearly, or if there is little 
uncertainty in the inputs, the LSA technique may be useful 
[26]. 

B. GSA

GSA studies how various sources of input uncertainty can
be attributed to uncertainty in a model's output [11]. By 
thoroughly characterizing the output response surface that is 
Figure 1. Illustration of a typical sensitivity analysis 
implementation. produced, GSA aims to investigate the 



complete input parameter space and determine the relative 
importance of each input. This characterization often 
concentrates on locating the system's crucial points, such as 
saddle points, minima, and maxima, within a global 
deterministic framework [13], [25]. GSA aids in 
comprehending the extremes of the system's behavior under 
many circumstances by identifying these crucial areas. Some 
statistical methods for GSA ([16], [20]), examine the model 
output's variance [32], [33], correlation [34], or elementary 
effects [34] to ascertain level of spread and relationships. 

GSA methods also provide a statistical characterization of 
the output response surface, offering insights into how input 
uncertainties propagate through the model [15], [16]. For 
example, variance-based methods quantify how much of the 
output variance can be attributed to each input parameter [32], 
[33], while correlation-based methods assess the strength and 
direction of linear relationships between inputs and outputs 
[34]. Elementary effects methods evaluate the sensitivity of 
the output by systematically varying one input parameter at a 
time across its entire range and observing the effects [35]. 
GSA studies the effects of changing parametric measures 
uniformly and concurrently throughout their entire spectrum 
[15], [16]. This holistic approach ensures that GSA provides 
a comprehensive understanding of how input uncertainties 
influence the model's behavior, making it a powerful tool for 
identifying key drivers of variability and for improving the 
robustness and reliability of complex models. 

Because different GSA methods have different 
characterizations, they can produce false results that are not 
comparable to results from LSA approaches [26]. This is 
because GSA methods do not have a uniform definition for 
sensitivity coefficients. So, the use of different GSA 
techniques may occasionally result in contradictory and 
inconsistent parameter significance rankings [16]. Moreover, 
the results of GSA may be significantly influenced by the 
input parameters' range of variation and the assumed 
probability distribution of those values [14], [25]. Despite 
these challenges, GSA effectively handles both linear and 
nonlinear responses, and can reveal the relationships between 
multiple input parameters [36]. A commonly used method for 
implementing GSA is the variance-based SA (Sobol’ 
method), which breaks down the model output's variance into 
fractions that can be linked to individual inputs or groups of 
inputs [20]. The total variance V(Y) of the model output Y in the 
Sobol’ method is often expressed as: 

V(Y) = ∑k i=1 Vi + ∑i<j Vij + ∑i<j<l Vijl +...+V12…k (3) 

where Vi is the variance ascribed to the i-th input alone, Vij is 
the variance that can be ascribed to the interaction between 
the i-th and j-th inputs, Vijl is the variance that can be ascribed 
to the interaction among the i-th, j-th, and l-th inputs, and 
V12…k is the variance ascribed to the interaction among all k 
inputs. 

III. AI-DRIVEN SA IN SDN

Within the framework of SDN, SA is an indispensable tool 
for network administrators, helping to elucidate the effects 
that various network parameters and configurations have on 
network performance [24]. These insights are crucial for 
refining network operations, resolving technical issues, and 
making strategic decisions regarding network enhancements 

and modifications [24]. The impact of AI, ML techniques in 
particular, has been significant across various domains, 
including SDN. In SDN, LSA and GSA are essential for 
understanding how different parameters influence network 
performance [37]. AI-driven sensitivity analysis, leveraging 
ML techniques, offers a more robust and comprehensive 
understanding of these influences. This section summarily 
discusses some of the recent approaches for ML-assisted LSA 
and GSA in SDN. 

A. ML-assisted LSA in SDN

One common approach for ML-assisted LSA involves
using gradient-based methods [38]. These methods compute 
the gradient of a performance metric with respect to a 
particular parameter. Techniques such as gradient boosting 
machines (GBMs) and neural networks are frequently 
employed to approximate these gradients efficiently [38], 
[39]. GBMs can model the relationship between network 
parameters and performance metrics in SDN environments, 
allowing network administrators to identify which 
parameters have the most significant local impact on the 
network performance [38]. Similarly, neural networks, 
particularly those utilizing backpropagation, can be 
employed to estimate the gradients of performance metrics 
resulting from input parameters [39]. This enables precise 
LSA and assists in fine-tuning individual network settings in 
SDN environments. When training neural networks, several 
kinds of batch training algorithms are employed, each having 
unique properties and performance in terms of speed, 
accuracy, and memory requirements [24]. Levenberg- 
Marquardt is considered one of the most efficient training 
algorithms for training artificial neural networks (ANNs) due 
to its speed and precision, but it requires substantial 
computational memory, which can be a limitation for certain 
applications [40], [41]. 

The work carried out in [24], adopted the Levenberg- 
Marquardt algorithm to train an ANN to assist in the 
evaluation of the sensitivity of SDN performance metrics, 
specifically throughput, jitter, and response time, under 
various forms of distributed denial of service (DDoS) attacks. 
The evaluation involved analyzing the distinctions between 
predicted target values and actual target values of the ANN 
model when additive white Gaussian noise was added to the 
SDN performance metrics, severally, showing that the SDN 
performance metrics are all sensitive to DDoS attacks. The 
work in [24] and other similar works demonstrate that 
Levenberg-Marquardt algorithm's balanced trade-off 
between speed and memory usage will be a benefit to 5G and 
future 6G’s higher data rates and ultra reliable low latency 
[42]. Increased data rates, reduced latency, and enhanced 
capacity of 5G and future 6G networks require efficient 
algorithms for real-time data processing such as the 
implementation of SA involving network parameters in SDN 
environments [43]. 

Another technique used in LSA is perturbation analysis, 
which involves slightly altering a single parameter and 
observing the resulting change in performance metrics [44]. 
This approach, when combined with ML models, can provide 
detailed insights into local sensitivity [44]. Support vector 
machines (SVMs), for example, can be used to model the 
boundary conditions of network performance [44]. By 
perturbing input parameters and observing the changes, one 



can determine the local sensitivity as reported in [44]. 
Additionally, feature importance scores in tree-based ML 
models like Random Forests and GBMs can also indicate 
how changes in specific parameters affect the model's 
predictions [45]. By examining these feature importance 
scores, network administrators can identify which parameters 
are most influential locally, helping them prioritize 
adjustments for optimal performance in SDN environments 
[45]. 

B. ML-assisted GSA in SDN

GSA typically works by examining the effect of varying
all parameters simultaneously across their entire range [10]. 
In SDN, this robust approach is essential for understanding 
the overall behavior of the network and for identifying the 
most critical parameters that influence the performance of the 
network. By exploring the full parametric space, GSA 
provides a holistic view of how different inputs affect the 
network, enabling more informed decision-making and 
optimization strategies in SDN environments. Variance- 
based methods such as the Sobol’ method are a prominent 
category within GSA. These methods mainly work by 
decomposing the variance of the output performance metrics 
into contributions from each input parameter [46], and they 
can be significantly enhanced by ML models, which provide 
accurate approximations of the variance components. For 
instance, Sobol’ indices that are used to quantify the 
contribution of each parameter to the output variance can be 
can efficiently computed by ML models such as neural 
networks and GBMs, offering valuable insights [46]. 

Monte Carlo simulations also play a crucial role in GSA 
[47], and their efficiency can be improved with ML 
techniques. By training models on a subset of data, 
predictions can be made across a larger parameter space, 
facilitating a more extensive GSA. Gaussian process, in 
particular, can model the distribution of network performance 
metrics across different parametric settings in this context 
[47]. Running Monte Carlo simulations on such models 
provides a comprehensive view of GSA [47]. Additionally, 
such ML models can serve as surrogate models to 
approximate complex network behaviors for implementing 
GSA in SDN [48]. Kriging or Gaussian Process Regression 
is a well-known effective surrogate modeling technique used 
in this way to provide accurate approximations of the 
network's performance landscape [48]. 
This approach allows for extensive exploration of the 
parametric space with reduced computational effort, making 
it highly suitable for GSA in SDN environments as carried 
out in [48]. 

A recent fairly approach in GSA is presented in [49], where 
exploratory data analysis (EDA) is employed to describe and 
picture disparities in SDN performance metrics across 
emulated scenarios, alongside linear regression to infer the 
sensitivity of these SDN performance metrics to these 
scenarios. Experimental results reveal that the SDN 
performance metrics fluctuate with changes in the SDN 
scenarios relative to various DDoS attacks, indicating their 
sensitivity to the attack scenarios with some interactions 
between them. The work in [49] strongly suggests that ML- 
assisted GSA can help in identifying critical parameters that 
influence reliability and performance in SDN environments. 
By  understanding  the  global  sensitivity  of  network 

performance to various inputs, network administrators can 
prioritize resources and configurations that maximize 
efficiency and reliability [50]. For present-day 5G networks 
and future 6G networks, ML-assisted GSA will be crucial in 
managing the increased complexity and ensuring that the 
networks can meet the stringent requirements of new 
applications [51]. 

IV. CONCLUSION

The integration of AI, specifically ML techniques, into SA 
for SDN represents a significant advancement in network 
management. ML techniques enhance both local and global 
SA, offering more robust understanding of network behavior 
and enabling better optimization strategies. By leveraging AI, 
network administrators can better understand the intricate 
dynamics of network parameters, leading to improved fine- 
tuning of specific components and more robust fault detection 
and resolution mechanisms in SDN environments. As SDN 
continues to evolve, AI-driven SA will become increasingly 
vital in ensuring network reliability, efficiency, and security. 
The ability to precisely analyze the impact of various 
parameters allows for proactive management and swift 
adaptation to changing network conditions. This not only 
enhances performance but also fortifies the network against 
potential vulnerabilities. 

The fusion of AI with SDN's flexible architecture promises 
to unlock new levels of operational excellence. Some of the 
recent works in this domain have been highlighted in this 
paper. Future research should focus on developing more 
sophisticated AI models and exploring their applications 
across diverse SDN environments. This will help fully realize 
the potential of AI driven SA. By advancing these 
technologies, more intelligent and adaptive network 
management solutions that will drive the next generation of 
SDN innovations can be anticipated. The ongoing evolution 
of AI and SDN holds tremendous promise for creating 
networks that are not only more efficient and reliable but also 
capable of meeting the complex demands of modern and 
future digital ecosystems such as 5G and 6G networks. 
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