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Abstract

Software-defined networking (SDN) is a transformative approach for managing modern
network architectures, particularly in Internet-of-Things (IoT) applications. However, en-
suring the optimal SDN performance and security often needs a robust sensitivity analysis
(SA). To complement existing SA methods, this study proposes a new SA framework that
integrates design of experiments (DOE) and machine-learning (ML) techniques. Although
existing SA methods have been shown to be effective and scalable, most of these methods
have yet to hybridize anomaly detection and classification (ADC) and data augmentation
into a single, unified framework. To fill this gap, a targeted application of well-established
existing techniques is proposed. This is achieved by hybridizing these existing techniques
to undertake a more robust SA of a typified SDN-reliant IoT network. The proposed
hybrid framework combines Latin hypercube sampling (LHS)-based DOE and generative
adversarial network (GAN)-driven data augmentation to improve SA and support ADC
in SDN-reliant IoT networks. Hence, it is called DOE-GAN-SA. In DOE-GAN-SA, LHS
is used to ensure uniform parameter sampling, while GAN is used to generate synthetic
data to augment data derived from typified real-world SDN-reliant IoT network scenarios.
DOE-GAN-SA also employs a classification and regression tree (CART) to validate the
GAN-generated synthetic dataset. Through the proposed framework, ADC is implemented,
and an artificial neural network (ANN)-driven SA on an SDN-reliant [oT network is carried
out. The performance of the SDN-reliant IoT network is analyzed under two conditions:
namely, a normal operating scenario and a distributed-denial-of-service (DDoS) flooding
attack scenario, using throughput, jitter, and response time as performance metrics. To
statistically validate the experimental findings, hypothesis tests are conducted to confirm
the significance of all the inferences. The results demonstrate that integrating LHS and
GAN significantly enhances SA, enabling the identification of critical SDN parameters
affecting the modeled SDN-reliant IoT network performance. Additionally, ADC is also
better supported, achieving higher DDoS flooding attack detection accuracy through the
incorporation of synthetic network observations that emulate real-time traffic. Overall, this
work highlights the potential of hybridizing LHS-based DOE, GAN-driven data augmenta-
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tion, and ANN-assisted SA for robust network behavioral analysis and characterization in
a new hybrid framework.

Keywords: artificial neural network (ANN); design of experiments (DOE); generative
adversarial networks (GANSs); classification and regression tree (CART); Internet of Things
(IoT); machine learning (ML); Latin hypercube sampling (LHS); sensitivity analysis (SA);
software-defined networking (SDN)

1. Introduction

Recent projections have indicated that the number of connected devices globally will
reach several billions in the coming years, due to the proliferation of internet technologies,
such as the Internet of Things (IoT) and its associated systems and devices [1,2]. A parallel
trend is also noticeable in the growth of cloud technologies, including cloud-based software,
surveillance solutions, real-time network automation, and distributed connections [3]. In
relation to this, software-defined networking (SDN), which introduces a decoupling of con-
trol and data planes in IoT networks, has also become a prevalent technology, highlighting
the need for scalable and intelligent network management solutions [4]. Both past and
ongoing research point to SDN as a foundational component of IoT architectures [5-7]. One
early contribution in this area employed multilayer SDN controllers specifically designed
for heterogeneous vehicular IoT traffic, demonstrating end-to-end quality of service (QoS)
guarantees through network-calculus-based scheduling mechanisms [8].

SDN, which leverages the OpenFlow protocol, is a rapidly evolving technology that
significantly enhances network management, administration, and monitoring processes [4].
By enabling programmable interaction with data plane elements and providing network
administrators with a holistic view of the network through a controller, SDN positions the
controller as the network’s intelligence, which is responsible for managing devices in the
data plane via the application-programming interface (API) [4]. This capability has led to
the adoption of SDN-based frameworks in advanced IoT network topologies, including
fifth-generation (5G) and next-generation network architectures, such as sixth-generation
(6G) [9-11].

While the programmability, flexibility, and decentralized control of SDN are critical
to its effective implementation, these same features can introduce significant security
challenges [12]. IoT networks and other SDN-reliant systems are susceptible to a number
of security risks, such as an increased likelihood of distributed-denial-of-service (DDoS)
flooding attacks [13,14]. These inherent vulnerabilities associated with SDN highlight
the pressing need for advanced and intelligent security frameworks that are capable of
mitigating evolving threats, such as DDoS flooding attacks, while preserving the operational
benefits of SDN-based architectures in network environments, such as IoT systems.

DDoS flooding attacks are carefully planned assaults that use a network of hacked
devices, called botnets, to overwhelm a system. The goal is to clog up the network’s
bandwidth or shut down specific servers and devices, making them unusable for regular
users [15]. These attacks constitute a significant portion of the most dangerous malicious
traffic on the internet [16]. Typically, attackers deploy these botnets to execute these
operations covertly [17]. As a result, end users of the targeted network’s device nodes often
remain clueless that their devices and internet protocol (IP) addresses are being used to
perpetrate DDoS flooding attacks. IoT devices are especially vulnerable to coordinated
DDoS flooding attacks because of how they are built and the fact that the internet does not
enforce strict traffic control on individual devices [16]. This combination makes it easier
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for attackers to target and overwhelm IoT devices. This vulnerability is made even worse
by the rapid growth in the number of IoT devices out there, even though their security
is improving over time [18]. In the face of increasingly complex DDoS flooding attacks,
the critical need for innovative and proactive security techniques that can address the
particular vulnerabilities of IoT networks becomes imperative.

As IoT networks that utilize SDN architectures expand in complexity and scale, opti-
mizing their performance and security presents significant challenges that demand robust
and well-optimized network configurations [19]. Identifying critical network performance
metrics and assessing their influences on the overall network performance through sensi-
tivity analysis (SA) have consistently been put forward as pivotal tools for enhancing the
reliability of network configurations [20]. This is primarily because developing a reliable
IoT network model requires a comprehensive understanding of how variations in model
parameters influence the network’s behavior and the accuracy of its predictive outcomes.
SA plays critical roles in this process by systematically analyzing the importance of input
parameters, evaluating their contributions to the network model’s outputs, and quantifying
the impacts of individual inputs on the overall system performance [21].

SA techniques are commonly categorized based on their scope, as either local or
global, and their framework, as either deterministic or statistical [22,23]. As discussed
in [21,24,25], statistical frameworks for SA are generally derived from principles associated
with the design of experiments (DOE). These frameworks also classify SA methods into
local and global approaches, depending on the parameter space under consideration and
the specific objectives to be achieved [26]. SA, both local (LSA) and global (GSA), is
critical for understanding the influences of different parameters on the performance of
IoT networks that are SDN reliant [27]. Therefore, advancing the application of SA in
SDN-reliant IoT networks is vital for developing adaptive and data-driven models that
enhance predictive accuracy and system resilience.

The application of artificial intelligence (Al) techniques (machine-learning (ML) tech-
niques in particular) is growing significantly in numerous fields and disciplines, including
SA, within SDN [10,26]. In the context of the local SA (LSA), ML-based approaches often
rely on gradient-based methods to evaluate how specific parameters affect performance
metrics [28]. Techniques such as gradient-boosting machines (GBMs) and artificial neural
networks (ANNSs) or neural networks are widely used to approximate gradients efficiently
to support parameter tuning and optimization [28,29]. ANNSs, in particular, offer enhanced
capabilities to capture complex dependencies between parameters and performance for
ML-assisted LSA in SDN environments [30]. These capabilities not only facilitate the iden-
tification of critical parameters but also provide actionable insights for improving SDN
configurations for IoT networks.

For global SA (GSA), ML techniques, such as the Gaussian process [31], can play an
important role in improving traditional methods, such as Monte Carlo simulations [32].
By training ML models on subsets of data, predictions can be extended across a larger
parameter space, enabling a more comprehensive analysis [33]. Gaussian processes are
also effective for modeling the distribution of network performance metrics under varying
parametric conditions, providing a probabilistic framework that supports GSA [34]. Further-
more, Monte Carlo simulations, when combined with these ML models, provide a detailed
evaluation of how parameter variations affect the overall network performance [35]. ML
techniques, such as regression methods for surrogate modeling, further streamline GSA
by approximating the behaviors of complex network systems, reducing computational
costs, and improving scalability [26,35]. These ML-based approaches emphasize the po-
tential of ML-assisted SA methodologies to optimize SDN configurations for IoT network
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applications and improve their performance and reliability in increasingly complex IoT
network environments.

Practitioners often aim to enhance the effectiveness and efficiency of ML models by
regulating and optimizing key processes in SDN environments [36]. This practice inher-
ently aligns with the principles of DOE, a data-driven approach that plays a crucial role
in SA [25,37,38]. DOE provides a structured experimental framework that is essential for
addressing the complexities of both SA and ML challenges, particularly in the behavioral
analysis of IoT networks [39]. For instance, QoS is a vital metric in IoT networks [40]. DOE
can be used to systematically identify relationships between factors that influence QoS in
IoT networks, thus improving network performance while minimizing the need for exten-
sive experimental trials [25,41]. Furthermore, DOE can facilitate a targeted investigation
of cause-and-effect relationships in scenarios involving the application of ANNs and evo-
lutionary algorithms (EAs), both of which are commonly applied in IoT networks [42,43].
This structured approach reduces reliance on trial-and-error methods, saving time and
computational resources. Hence, the integration of DOE with ML clearly offers great
potential for enhancing model interpretability, reproducibility, and optimization efficiency
within complex network environments, such as IoT networks.

A popular example of DOE in practice is Latin hypercube sampling (LHS) [44,45].
LHS is a widely used technique for addressing complex and high-dimensional problems,
including ML-assisted global optimization of complex models [46,47]. LHS works by strati-
fying the sample space to ensure uniform sampling of each variable across its range, which
is particularly advantageous for simulation-based optimization tasks in computational
intelligence [46]. This approach significantly improves the convergence rates of ML models,
such as ANNs, making it a valuable tool in data-driven analytics [47]. By integrating DOE
methodologies, such as LHS, with ML for SA implementation, more robust insights can be
obtained about model behavior, enabling the development of more reliable and resilient
network systems. This is why extending the application of DOE within ML-assisted SA
frameworks remains a potential direction for research efforts aimed at optimizing the
performance and reliability of network systems, such as SDN-reliant IoT networks.

Generative adversarial networks (GANSs), a widely used class of ML frameworks,
have also become quite popular in recent years due to their ability to generate synthetic
data by learning the underlying distribution of real-world datasets [48]. Originally intro-
duced in [49], GANSs typically comprise two neural networks: a generator, which creates
synthetic data, and a discriminator, which aims to differentiate between generated and real
data [50]. These networks are trained simultaneously in a zero-sum game, where the gener-
ator continuously and iteratively refines its output to deceive the discriminator [51]. Due
to this continuous iterative process, the generator can create extremely realistic synthetic
data, making GANSs an effective tool for a variety of computing and networking applica-
tions [52,53]. The growing roles of GANs in optimizing the performance and addressing the
complexities of modern network systems [54] further emphasize their potential to support
ML-driven SA in SDN-reliant IoT networks.

This work introduces a new data-driven framework that hybridizes LHS-based DOE,
GAN-based synthetic data generation, and ANN-assisted SA to facilitate an enhanced
behavioral study (including anomaly detection and classification (ADC)) in SDN-reliant IoT
networks. Termed as DOE-GAN-SA, the proposed hybrid framework leverages simulated
network scenarios, LHS-driven augmentation of network performance data, GAN-enabled
synthetic data generation, and ANN-assisted SA to provide a comprehensive approach
to behavioral analysis (including ADC) within SDN-reliant IoT networks. DOE-GAN-
SA explores the harmonious co-working of LHS-based DOE, GAN-driven synthetic data
generation, and ANN-based supervised learning by focusing on their complementary roles
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to support ADC and SA in SDN-reliant IoT network environments. The key contributions
of this work include:

e Using LHS and GAN for data augmentation in SDN-reliant IoT networks;

e Showing the application of a newly augmented SDN-reliant IoT network dataset for
detecting and classifying DDoS flooding attacks;

e Improving the mitigation of DDoS flooding attacks through improved detection
accuracy and ANN-assisted SA;

*  Demonstrating DOE-GAN-SA as a new hybrid ADC and SA framework for SDN-
reliant IoT networks.

To the best of our knowledge, and based on the literature reviewed in Section 2, this
study is the first to introduce a hybrid approach combining DOE and ML techniques for the
specific purpose of conducting SA on network performance metrics within SDN-dependent
IoT networks. Although the individual methodologies employed are well-established
within their respective domains, this work represents the first documented integration of
these techniques for this targeted application. The structure of the remainder of this paper
is as follows: Section 2 reviews the recent literature relevant to the research conducted
to provide a foundation for the study. Section 3 outlines the SDN architecture and IoT
network topology utilized to simulate various network scenarios to establish the technical
context. The basic techniques guiding the formulation of the proposed DOE-GAN-SA
framework are introduced in Section 4, and the proposed DOE-GAN-SA framework is
detailed in Section 5, highlighting its components and functionalities. Section 6 describes the
experimental setup, presents the results, and discusses the findings, offering insights into
DOE-GAN-SA’s performance, scope, and recommended approach for its practical adoption.
Finally, Section 7 provides the concluding remarks, summarizing the key contributions and
potential directions for future work.

2. Related Work

SDN is a widely used approach for scaling heterogeneous loT deployments, primarily
due to its decoupling of control and data planes. However, much of the existing research
in this area still relies heavily on heuristic-based parameter tuning, often overlooking the
importance of feedback mechanisms that link anomaly detection with flow-rule adapta-
tion [55]. Early contributions, such as [8], demonstrated the feasibility of SDN for vehicular
IoT infrastructures via the multipurpose infrastructure for network applications (MINA)-
SDN controller, yet their study did not address the critical constraints related to sensor
energy consumption and embedded security mechanisms. Subsequent works, including
the survey by [56], emphasized the necessity of slice isolation and controller scalability in
supporting large-scale IoT deployments. Similarly, Ref. [5] introduced software-defined
APIs designed for smart city infrastructures to enable the shared use of gateways and cloud
services, accompanied by some quantitative analysis using a case study. More recently,
Ref. [6] showcased a multilevel architecture that effectively reduced packet loss in smart
home networks; however, several challenges persist. Further highlighting these challenges,
a comprehensive meta-analysis, conducted by [7] and spanning over 160 studies, identified
microservice-based controllers, flow table compression techniques, and energy-efficient
routing as pivotal components in the secure deployment of SDN-reliant IoT systems for
smart communities. Collectively, these studies highlight the importance of programma-
bility and slice isolation, among other design strategies, in supporting the development
of secure and scalable IoT infrastructures. Nonetheless, none of the reviewed approaches
adequately addresses data-scarce SA or integrates ADC mechanisms directly within SDN
architectures, an evident gap that the DOE-GAN-SA framework proposed in this work
seeks to bridge.
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While GANSs have found several applications across multiple disciplines [57], their
adoption for ADC and SA, particularly in SDN-reliant IoT networks, can be said to still
be in its early stages, arguably. Since the introduction of GANs in [49], numerous studies
have demonstrated their practicality in data augmentation. For instance, the work in [58]
investigated the use of GANSs to generate realistic network traffic data, enabling the simula-
tion of network behaviors under various conditions. However, this study, like other similar
recent works [59], did not specifically address ADC and SA, highlighting the untapped
prospect of GAN-based synthetic data generation in supporting robust ADC and SA within
SDN-reliant IoT network environments. Supporting this perspective is a recent study that
demonstrated the effectiveness of GANs in augmenting datasets necessary for analyzing
complex high-dimensional systems and improving classification performance [60]. Despite
these promising developments, the current literature indicates that the full potential of
GAN:Ss in the context of ADC and SA within SDN-reliant IoT networks still remains largely
unexplored, offering significant opportunities for further research. Hence, this current
work explores the integration of GANs into ADC and SA workflows with the aim of exploit-
ing their synthetic data generation capabilities for deeper insight into parameter-driven
behaviors within complex network environments.

SA in SDN-reliant networks, such as IoT networks, has traditionally relied on standard
techniques, like variance-based methods and Monte Carlo simulations [24,61]. These con-
ventional approaches, while effective for several applications, often require large datasets
and substantial computational resources [62], making them less practical for low-latency,
real-time, large-scale systems, such as IoT networks [63]. Variance-based SA methods,
for example, are very practical in measuring the contribution of each input factor to the
overall variance of the output, which helps to identify key influential parameters [30,64].
However, in scenarios that involve a large number of parameters or complex interaction
effects, they could become impractical due to increased computational demands and insta-
bility in estimations [65]. To address these challenges, researchers have explored alternative
techniques, such as sample-based estimations, that reduce computational overhead without
sacrificing analytical accuracy [66]. However, this is often at the cost of introducing new
design parameters [66].

Statistical sampling methods, such as LHS, are well-known for their efficiency in
parameter selection and analysis [67]. Unlike random sampling, LHS ensures a more
uniform coverage of the input space to improve robustness and minimize computational
costs [47]. Despite its advantages, LHS is not without its own limitations. One significant
drawback of LHS is its inability to thoroughly account for statistical relationships between
input variables [47,67], which can compromise SA accuracy in systems such as SDN-reliant
IoT networks, where inputs could be highly correlated [39]. Combining LHS with GAN
offers a promising solution to this limitation. GANSs are capable of generating synthetic
datasets that tend to preserve some statistical properties of real-world network data while
also reasonably covering the input space of real-world network traffic comprehensively
and robustly [68]. By combining LHS-based data and GAN-generated data into a unified
framework, harmonizing their advantages in data augmentation could be realized as carried
out in this work. This hybrid approach has the potential to improve SA in SDN-reliant IoT
networks, enabling more effective analyses of such complex and high-dimensional systems
while meeting the demands of real-time applications.

Although GANSs have demonstrated significant potential in synthetic data generation
across various applications [69], as established earlier, their application for SA in SDN-
reliant networks, such as IoT networks, remains underexplored. Much of the existing
research in this area has concentrated more on enhancing GAN architectures for data
generation or refining synthetic data generation techniques using GANs [69,70]. Therefore,
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there is a gap in studies that harness the complementary strengths of GANs and LHS to
perform SA in SDN-reliant IoT networks. Conventional SA frameworks, while effective
in many scenarios, are often purpose built and may not necessarily offer additional in-
sights into other operations, such as data augmentation and ADC, when implemented.
These limitations also emphasize the need for innovative approaches that can efficiently
address the complexities of modern network systems by providing more robust insights
while maintaining analytical precision and complementing existing SA methods. Hence,
exploring a hybrid SA framework that combines DOE and ML techniques, as typified in
this work, can potentially redefine the methodological landscape for analyzing intelligent,
large-scale network infrastructures in a resource-efficient and scalable manner.

Specifically, this work addresses the existing gaps discussed above by proposing the
DOE-GAN-5SA framework, which integrates LHS-based DOE with GAN-driven synthetic
data generation to enable efficient and scalable ADC and ANN-assisted SA in SDN envi-
ronments. GANs are leveraged to generate high-quality synthetic datasets that preserve
some properties of real-world network data while enhancing data diversity. This capability
is paired with the structured uniform sampling offered by LHS, which ensures compre-
hensive coverage of the input parameter space with reduced computational costs. By
combining these methodologies, the DOE-GAN-SA framework facilitates a more robust
and comprehensive approach to SA and ADC, enabling the precise identification of critical
parameters that impact the SDN performance. As a result, the DOE-GAN-SA framework
introduced in this study is expected to help create more efficient and reliable IoT network
setups by enhancing ADC and improving SA for SDN-reliant IoT networks.

3. SDN Architecture and IoT Network Topology

This section introduces the SDN architecture and IoT network topology employed in
this work. Additionally, it outlines the simulation of traffic scenarios conducted using the
SDN-reliant IoT network model and methodologies established in the authors’ earlier works
to make the study more self-contained [30,39,71]. The subsections cover the architecture
and topology setup of the modeled SDN-reliant IoT network, the network traffic simulation
approach, and the integration of insights from previous research to validate the SDN-reliant
IoT network model.

3.1. SDN Architecture

In contrast to conventional networking architectures, SDN architectures principally
work by employing a fundamental structure around the decoupling of the control and data
planes to enable a more centralized and intelligent management of network devices [72].
This architecture is critical for achieving programmability and dynamic network configura-
tion. As depicted in Figure 1, the SDN architecture typically consists of three distinct planes:
the application, control, and data planes, each serving specialized roles. The application
plane encompasses applications, such as intrusion detection systems, intrusion prevention
systems, and security-monitoring tools, which provide critical inputs for decision mak-
ing [73]. The control plane, dominated by the SDN controller, governs network operations
through security policies, routing strategies, databases, and rule placement algorithms [10].
Finally, the data plane comprises infrastructure devices responsible for executing network
operations based on predefined rules, actions, and counters [10].

In the SDN architecture typified in Figure 1, the controller operates as the centralized
decision-making entity, bridging the application and data planes [4]. By leveraging inputs
from applications in the application plane, the controller determines appropriate actions for
the data plane [14]. Forwarding devices within the data plane, implemented in hardware
or software, execute these instructions by handling packet routing and forwarding based
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on established forwarding policies [14]. This arrangement, illustrated in Figure 1, allows
for efficient policy implementation and dynamic network adaptability. For this study, the
described SDN architecture forms the foundational framework, enabling the exploration of
SDN in enhancing IoT network security and operational efficiency.

- 4
Intrusion ' Applications
Detection E[ PP ]
System Intrusion - !
Prevention Application Plane v
Security System
Monitoring I I [Northbound Interface]
T 4
Security |} Routing ; Controller
Policy Policy i [ ]
"""""""""" Rule - v
Database i! pjacement Control Plane
Algorithm
9 ] [Southbound Interface]
1
T O A ! .
| Rules | i I[Infrastructure Dewces]
o jCounters | — 0 e e :
{Actions  fi___ v

Figure 1. Typical SDN architecture.

3.2. IoT Network Topology

IoT networks are characterized by their diverse topologies (mostly inherited from
traditional data and communication networks) that enable flexible arrangements and
interconnections of devices [74]. Among the common topologies employed are mesh, star,
tree, and point-to-point configurations, each offering specific advantages depending on
the application context [75]. Within IoT systems, the data center (DC) serves as the central
hub, which manages substantial traffic and ensures efficient data processing. For DC
architectures, the Fat-Tree and BCube topologies are widely utilized [76]. The Fat-Tree
topology shown in Figure 2, in particular, is favored in this study due to its scalability,
consistent bandwidth distribution, and cost-effective design [77].

By utilizing switches of uniform capacity, Fat-Tree networks support predictable
performance and enable line-speed transmission when packets are evenly distributed [78].
These characteristics provide an ideal foundation for IoT networks that require efficient and
scalable data management. IoT networks are generally multilayered [79] and highly reliant
on DCs that are also a part of the network infrastructure. This is especially true when taking
into account the data-processing, storage, and management (including traffic management)
levels in IoT networks [80]. The network topology used in this work, therefore, closely
resembles a typical IoT network as previously established [71]. Similar IoT architectures,
featuring tree topologies, hierarchical layouts, and multilayer network designs, have also
been reported in previous studies [6,7,56,81]. Therefore, the custom SDN architecture in
this work adopts an IoT network with a tree topology (see Figure 2), facilitating wide-area
network adaptability and scalability.

Using emulators or simulation techniques to analyze network behavior and character-
istics before deployment is a common practice in network management [6,82,83]. Among
these tools, Mininet is widely recognized in SDN research for its effectiveness [6,71,82,83].
Numerous studies have demonstrated that networks modeled within the Mininet envi-
ronment accurately represent real-world SDN scenarios [6,82,83]. The SDN-reliant IoT
network model adopted in this work was implemented using the Mininet emulator on a
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Switch

system featuring 32 GB of RAM and Kali Linux operating on an Intel Xeon E3-1220 CPU.
Floodlight controller [71] was hosted in VirtualBox, running on Ubuntu 18.10 LTS, while the
Mininet environment operated on Ubuntu 16.10 LTS. The experimental setup consisted of
10 OpenFlow switches and 16 interconnected hosts connected by 100 Mbps links. Though
relatively small, this network configuration reflects real-world scenarios [30,39,71], such
as enterprise or campus networks. By bridging the simplicity of a tree topology with
the advanced features of SDN, this study explores the sensitivity and vulnerabilities of
IoT networks under DDoS flooding attacks, highlighting the adaptability of tree and/or
Fat-Tree approaches in designing resilient network infrastructures. It should also be noted
that the network topology used in this work has also been adopted in the authors’ previous
works [30,39,71].

Control/
SDN Controller Management
Layer
Switch Switch -
L 2
Switch Switch {__ Network
6 Layer
Switch
10

Sensing

Host Host Host Host Host Host Host Host Host Host Host Host Host Host Host Host [ |ayer

1

2

3

4

5 6 7 8 9 i0 11 12 13 14 15 16

Figure 2. Illustration of the modeled SDN-reliant IoT network architecture (a typification).

3.3. Simulation of Traffic Scenarios in the SDN-Reliant IoT Network Model

To simulate non-malicious and malicious traffic in the SDN environment, the tools
iper f and ping were employed to generate legitimate network communication between
nodes, while the Low-Orbit Ion Cannon (LOIC) was utilized to execute DDoS flooding
attacks. The experiments involved six compromised hosts (hosts six to eight and ten to
twelve, see Figure 2) used to target the network server with sequential HTTP (hypertext
transfer protocol), TCP (transmission control protocol), and UDP (user datagram protocol)
DDoS flooding attacks, each lasting 15 min and resulting in a total attack duration of
45 min per experimental round. During these periods, critical system properties (through-
put (Tp), jitter (J;), and response time (R;)) were recorded every second for analysis to have
900 observations per DDoS flooding attack. These properties represent essential perfor-
mance metrics: T, quantifies the actual data transfer rate within the network, J; measures
the variation in packet transmission delays, and R; indicates the latency between task
initiation and completion [39]. The data were collected under both normal traffic conditions
(900 observations) and DDos flooding attack conditions (2700 observations), providing
comprehensive insights into network performance variations.
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3.4. Performance Metrics of the SDN-Reliant IoT Network Model

To specifically generate the dataset for the performance metrics of the SDN-reliant
IoT network model, a structured methodology was followed, starting with a confirmation
of the connectivity using the pingall command. Iperf was then used to create TCP and
UDP servers at different ports, allowing hosts to send traffic to measure baseline or normal
Ty, Jt, and R; metrics over a 15 min interval. Subsequently, LOIC was employed from
compromised hosts to launch successive HTTP, UDP, and TCP DDoS flooding attacks
to emulate the typical DDoS flooding attack strategy (Figure 3). During each attack, the
server’s performance metrics were recorded, and port numbers were dynamically adjusted
to ensure no interference between scenarios. The data, initially captured in .txt format,
were processed using Konstanz Information Miner (KNIME) to extract the target metrics
and eliminate duplicates to ensure a clean and structured dataset [39]. This dataset not
only included normal and anomalous traffic patterns but also addressed limitations of
existing SDN benchmarks by incorporating modern attack footprints and traffic variations
reflective of the IoT era [30,39,71,84]. The resulting dataset formed the basis for ML-based
ADC and SA, carried out in this study, to support a more robust behavioral analysis of
SDN-reliant IoT networks and the mitigation of modern DDoS flooding attacks using the
proposed DOE-GAN-SA framework. It should be noted that these simulation scenarios
have also been adopted in our previous works [30,39,71]. The statistical distributions of the
generated data for each of the SDN-reliant IoT network traffic scenarios are presented later
on in Section 6.

Malicious User

—— - —
———
-

~

Command
and Control

B | R Recruit, Exploit and Infect
Victim ——— Attack Commands

............ +  Attack Traffic

Figure 3. Typification of the DDoS attack strategy.
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4. Basic Techniques

To support the development of the proposed DOE-GAN-SA framework, several
fundamental techniques have been explored and adopted in this work. Even though these
techniques are well known and established in the literature, detailing them in this work,
with a strong focus on how they have been specifically applied, serves the primary purpose
of ensuring that this work is self-contained and complete for understanding. Hence, these
techniques are briefly discussed as follows.

4.1. Design of Experiments (DOE)

One popular strategy for building a surrogate model is to use a well-fitted DOE method
to sample the design space and then approximate the computationally costly model data.
In this way, any strategy that directs sample allocation in the design space to maximize
the amount of information obtained is generally referred to as a DOE method [25,85]. To
create the training data needed to construct the surrogate model, the computationally costly
models are assessed at these sampled points [25]. An efficient DOE approach makes sure
the samples are usually spread apart as much as possible to better capture global trends in
the design space because of the inherent tradeoff between the number of sample points and
the amount of information available from these points [25,85]. Classical factorial designs,
Hammersley sampling, LHS, and Quasi Monte Carlo sampling are among the available
DOE approaches [44,86].

Latin Hypercube Sampling (LHS)

For uniform sampling distributions, LHS is possibly the most popular DOE tech-
nique [44]. Numerous works in mathematics, engineering, and computational science have
adopted LHS [25,46,87]. LHS has also been demonstrated to offer superior qualities that
support effective filtering and significant variance reduction for numerous applications
in comparison to other DOE approaches [25,87,88]. To assign n samples, LHS separates
each sample’s range into 4 bins, resulting in a total of dn bins in the design space for the n
samples. Numerous LHS variations have been developed and/or proposed to minimize the
possibility of non-uniform distributions [89], improve space filling [90], optimize projective
properties [91], lessen spurious correlations [92], minimize least-square error, and maximize
entropy [93]. As a statistical method, LHS samples input variables efficiently, ensuring
that the entire range of each input parameter is represented. In the context of SDN-reliant
IoT networks, LHS can be used to generate representative samples of network parameters,
such as Ty, J;, and Ry, indicative of bandwidth, latency, and packet loss, respectively, which
are then used for SA, as typified in the proposed DOE-GAN-SA framework. By efficiently
covering the input space, LHS reduces the number of simulations required to assess the
effects of input parameters on the network’s performance [94]. Since LHS is a well-known
technique [44,95,96], its full algorithmic details are not provided herein. However, the
essential steps in the implementation of LHS, in the context of this work, are described
as follows:

e Step 1: Suppose there are n input parameters (X1, X, . .., X;;), each with a specified
range ([a;,b;]), wherei = 1,2, ..., n. In this work, this will be the set of any of the SDN
performance metrics being considered, i.e., any of T, J;, and R; and their ranges for a
given network scenario. LHS then works by generating k sample points, with each
input parameter divided into k equally probable intervals. It should be noted that k is
typically specified by the user, as discussed later;

*  Step 2: For each input parameter (X;), the range is divided into k equally spaced
intervals. For example, if the range of X is [ay,b1], it is divided into intervals
11 + (j—1)A, a1 + jA], where j = 1,...,kand A = bl%’” This step is very es-
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sential because it ensures that the samples are distributed uniformly across their
respective ranges;

¢  Step 3: A value from each interval is randomly selected for each input parameter (X;).
This ensures that all the parts of the parameter space are represented. The resulting
sample points for each parameter are then arranged in a Latin hypercube structure.
The Latin hypercube structure allows for a more even and representative sampling in
comparison to that of conventional random sampling, hence, the name LHS;

*  Step 4: The sampled values for each parameter are shuffled to form k distinct sample
points, with each sample point having one value from each parameter’s range.

It should be noted that regardless of the value of k that the user specifies, the sample
size affects the results of techniques like LHS, which seek to distribute samples uniformly
across the range of feature values [96]. In this work, the sample space has been divided
into bins, and new samples have been drawn at a predetermined bin fraction, 30 bins
to be specific, as recommended by [95]. This procedure is implemented to ensure that
LHS effectively covers the space of the SDN performance metrics across various scenarios
within the SDN-reliant IoT network, thereby maximizing insight into parameter trends.
The primary objective of this approach is to progressively expand the sample size while
maintaining consistent marginal distributions of the SDN performance metrics [95].

4.2. Machine Learning (ML)

ML is a key component of contemporary IoT systems, providing data-driven methods
for automated analysis and decision making [97,98]. ML usually provides systems with
the ability to learn and enhance from experience automatically without being specifically
programmed. To intelligently and robustly analyze data and develop the corresponding
real-world data-driven paradigms, ML is essential. ML techniques can be generally cat-
egorized into four broad archetypes: supervised, unsupervised, semi-supervised, and
reinforcement learning techniques [99]. Among these ML techniques, supervised learning
techniques stand out for their abilities to model complex relationships between input fea-
tures and desired outcomes using labeled data. This makes them particularly well suited
for the proposed DOE-GAN-SA framework, which requires precise prediction, to support
ADC and SA in the typified SDN-reliant IoT network considered in this work [99]. The main
supervised learning techniques that underpin the proposed DOE-GAN-SA framework are
neural networks (ANN and GAN to be precise) and the classification and regression tree
(CART). These supervised learning techniques are discussed as follows.

4.2.1. Neural Networks

Neural networks (NNs) can be viewed as computational frameworks designed to
simulate learning and data processing, inspired by the structure of the human brain, where
interconnected nodes or neurons function collaboratively to process inputs and generate
outputs [100]. Generally referred to as universal approximators, NNs play a crucial role in
the characterization of complex systems, such as IoT networks, by enabling the analysis
and optimization of system responses based on learned patterns and knowledge [101].
Their abilities to model and process information mirror biological neural systems, sup-
porting advancements in network analysis and system optimization. Further exploration
of NNs encompasses specific applications and architectures, including ANNSs for struc-
tured data processing and GANSs for generating and enhancing data representations, as
discussed below.
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Artificial Neural Networks (ANNs)

ANNSs have been used to address several real-world problems, such as classification,
prediction, optimization, and pattern recognition, including distinguishing traffic in in-
trusion detection and prevention systems (IDPSs) [102]. The efficiency and effectiveness
of ANN’s generally depend on data improvement, prior information, data representation,
and feedback [103-106]. By adjusting the connection weights through training algorithms,
like backpropagation, the performance of ANNSs can be optimized to make them more
suited for target applications [107]. Other algorithms exist for training neural networks,
each differing in speed, precision, and memory requirements [108,109].

To develop a robust ANN model that fits the given data (see Section 3.3), any of
the learning strategies can be merged or altered. In this work, the Levenberg—Marquardt
training algorithm, widely regarded as one of the most efficient for ANNs [110], has been
employed. The Levenberg-Marquardt training algorithm works by combining gradient
descent and the Gauss-Newton method, addressing their limitations [110,111]. The pri-
mary drawback of the Levenberg-Marquardt training algorithm is its computational cost,
stemming from the inversion of the Hessian matrix and storage requirements for the Ja-
cobian matrix, which depend on the number of patterns, outputs, and weights [111]. For
large-sized networks, this can become prohibitively expensive. However, considering our
dataset of a few thousand instances or observations, having three inputs and one output,
under two hundred fifty epochs on average, the Levenberg-Marquardt training algorithm
offered a balance of speed, stable convergence, and manageable memory consumption for
all the ANN models built, making it well suited for this work (see Section 6.2). Since ANNs
are a well-known technique [30,100], their full algorithmic details are not provided herein.
However, the essential steps in the ANN implementation in the proposed DOE-GAN-SA
framework are described as follows:

e  Step 1: Initialize the weights (W(!)) and biases (b(!)) randomly or using a predefined
scheme for all the layers (I), where the activation or the neuron’s output (4) is fed to
the next layer;

*  Step 2: For each layer (I), compute the weighted sum of the inputs as follows:

7z = w) A0=1) 4 (1) 1)
Apply an activation function (¢) to get
AW = g(z1) 2)

e  Step 3: Calculate the loss function (£) to measure the error between the predicted
output (Y) and the actual target (Y) as follows:

L= (v, Y0y 3)

SN
™=

Il
—_

1

where ¢ represents a chosen loss function, such as the mean-squared error (MSE) or
cross-entropy loss;

e Step 4: Compute the gradients of the loss for parameters using the chain rule
as follows:

9L s A0-1T 9L — 50 (4)

oW Y0

where 6() is the error term as follows:

5(1) _ (W(l+1)T§(1+1)) @U'/(Z(l)) (5)
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e  Step 5: Update the weights and biases using the Levenberg-Marquardt algorithm
as follows: o o
O =—wl _ = p) = p) _ g ==
W 14 “aw(l)’ b b “abU) (6)

where « is the learning rate.

Generative Adversarial Networks (GANSs)

GAN s, introduced by [49], are a class of generative models that operate through an
adversarial learning process. They consist of two NNs: a generator (G), which creates
synthetic data intended to mimic real-world samples, and a discriminator (D), which
evaluates the data and distinguishes between real and generated samples [49]. These two
NNs are trained simultaneously in a dynamic competition, where the generator improves its
ability to produce realistic data, while the discriminator becomes more adept at identifying
differences. This adversarial interplay drives both neural networks to reach a state where
the generator’s outputs are virtually indistinguishable from real data, making GANs
particularly effective for modeling complex and high-dimensional data distributions [49,70].
GAN:Ss are particularly relevant to this work because of their proven abilities to generate
high-fidelity synthetic data that can capture intricate patterns and structures in various data
types, including images, text, and time series [49,70]. More specifically, their adaptability
makes them versatile tools for several applications requiring synthetic data [112,113].

Aside from GANS, several deep learning architectures have been explored for data
generation, classification, and modeling. Convolutional neural networks (CNNs) excel at
extracting visual features but are less effective for sequential network traffic [114]. Recurrent
neural networks (RNNs) and their variants, such as long short-term memory (LSTM) and
gated recurrent unit (GRU) networks, are better suited for time-series data [115]. However,
GANSs outperform them in generating high-quality synthetic data [116]. Due to their
adversarial training process, GANs are highly effective in synthesizing realistic network
traffic [49]. Unlike conventional methods for synthetic data generation, they also excel
in scenarios involving challenging data landscapes, providing a robust mechanism for
modeling and synthesizing realistic datasets [49,113]. These attributes justify their adoption
for data augmentation in the proposed DOE-GAN-SA framework.

In the context of SDN-reliant IoT networks, GANs can be used to generate synthetic
network traffic data that mimic the characteristics of real traffic. These data can then be used
to explore how different input parameters affect the network’s performance without the
need for extensive and computationally expensive real-world simulations. The generated
data can serve as input for SA to support a more scalable and cost-effective way to explore
the parameter space [117]. This approach allows for a more flexible exploration of the
network parameter space [118]. To do this, the generator (G(z)) takes a random noise
vector (z), sampled from a noise distribution (p;(z)), and generates synthetic data (G(z))
that resemble the real network traffic data. The discriminator (D(x)) then takes either real
data (x) from the distribution (p 4., (x)) or synthetic data (G(z)) and outputs the probability
that the input is real data rather than synthetic data. Since GANs are a well-known
technique [49,70,119], their full algorithmic details are not provided herein. However, the
essential steps in the GAN architecture featured in the proposed DOE-GAN-SA framework
are further (briefly) described as follows:

*  Step 1: Initialize the parameters 6, and 6; of G(z) and D(x), respectively;
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e Step 2: For each training step, sample real data (x ~ p,s,(x)) and noise (z ~ p(z)).
Update ; by maximizing the likelihood that it correctly classifies real and synthetic
data as follows:

max By, ([0 D(x)] + Bz, () log (1~ D(G(2))] @)

e  Step 3: Update 6, to minimize the ability of D(x) to distinguish real from synthetic
data as follows:
minE, . .)llog(1 ~ D(G(2)))] ®
8
e Step 4: Alternate between training G(z) and D(x) until G(z) produces data indistin-
guishable from real data.

The min—max game between G(z) and D(x) can be summarized using the objective
function as follows:

minmax V(D, ) = E,.,, (1 0§ D(¥)] + E..,, . llog(1 - DG ©)

4.2.2. Classification and Regression Tree (CART)

CART is a vital supervised learning technique employed within the proposed DOE-
GAN-SA framework, mainly due to its robust and interpretable decision-making capabili-
ties. Unlike other classification methods, CART is renowned for its simplicity, efficiency,
and ability to handle both categorical and continuous data that are commonplace in com-
plex SDN-reliant network scenarios [71]. Its relevance is further highlighted by its inclusion
in the top 10 data-mining algorithms [120] and its demonstrated high level of accuracy
in predictive tasks within SDN-reliant network scenarios [71]. CART constructs decision
trees (DTs) by recursively partitioning the input feature space to maximize information
gain at each split. This technique is non-parametric, meaning it makes no assumptions
about the data distribution, which enhances its applicability across diverse datasets. For a
set of input attributes (X = {x1,x,...,x4}), the CART algorithm selects the optimal split
at each node by evaluating the impurity reduction using a metric such as Gini’s diversity
index [121]. Then, the following essential steps are carried out for CART implementation
in the proposed DOE-GAN-SA framework (since CART is a well-known technique [71,122]
its full algorithmic details are not provided herein):
¢  Step 1: Determine the impurity of each node (I) by applying Gini’s diversity index

as follows:
N

gdi=1-Y (pn)? (10)

n=1
where the number of classes is N, and pj, is the proportion of observations in class #;
¢  Step 2: Evaluate all the possible splits and select the one that maximizes the impurity
gain as follows:

I = p(T) - (p(ﬂ) n p<rR>) a1

where T is the set of observations at the current node, and T}, and Ty are the subsets
resulting from the split;

*  Step 3: Continue splitting recursively until a stopping criterion is met, such as reaching
a maximum depth or a minimum number of samples per leaf;

*  Step 4: Prune the tree (if enabled) to reduce overfitting and improve the generalization.

It should be emphasized that ML techniques generally achieve superior performance
after their hyperparameters have been properly optimized [71]. This is because the relia-
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bility of ML models is inherently tied to the quality of the data and methodologies used
during training, and spurious correlations that are interpretable by human analysts after
evaluation are often inevitable [71]. In reality, a solution between high precision (positive
predictive value (PPV)) and high recall (sensitivity or true positive rate (TPR)) is typically
unavoidable, as achieving optimality in both metrics simultaneously is rarely feasible [123].
Hyperparameter tuning is one approach to optimize (i.e., maximize) either the precision
or recall in the validation set (the set of observations used for hyperparameter optimiza-
tion) [123]. However, this process falls outside the scope of the current study. Consequently,
this paper does not investigate hyperparameter optimization. Instead, all ML the tech-
niques employed within the DOE-GAN-SA framework utilize default hyperparameter
settings from MATLAB R2023b (Matrix Laboratory) and the Scikit-learn library [124,125].
It is presumed that the default configurations in MATLAB and the Scikit-learn library are
unlikely to be modified by the majority of network engineers, particularly those without
substantial expertise in ML. The default values for a few of the critical hyperparameters are
provided in Table 1.

Table 1. Table of hyperparameters.

Method Default Hyperparameter Setting
ANN Number of Hidden Layers = 10
GAN Learning Rate =2 x 10~*
CART Maximum Number of Splits = 100

5. The Proposed DOE-GAN-SA Framework

The flow diagram for the proposed DOE-GAN-SA framework is shown in Figure 4,
and the principal steps in the framework are discussed as follows:

e Step 1: Collect the simulated metric data describing the behavior and/or performance
of the SDN-reliant IoT network (see Section 3). In this case, the dataset (Io0Tpg) formed
from collecting T, J;, and R; metrics for all the scenarios in the SDN-reliant IoT
network can be described as follows:

IoTpg = {Tp, Ji, R¢} V IoT Network Scenarios (12)

*  Step 2: Use the collected data from Step 1 (i.e., IoTpp) to implement LHS-based DOE
(see Section 4.1) and GAN-based synthetic data generation (see Section “Generative
Adversarial Networks (GANSs)”) concurrently and enlarge the parameter space by
N € [1, ..., R] samples for each network scenario to mimic on-the-fly Ty, Jt, and R;
metrics for the SDN-reliant IoT network. The new datasets from the LHS-based DOE
and GAN-based synthetic data generation (i.e., [oT;gs and [oT 4, respectively) can
be described as follows:

IoT ys = {T,EHS, JHS, REHS1 W I0T Network Scenarios (13)

IoTgan = {TEAN, JEAN | REANT V 0T Network Scenarios (14)

In this Step, N is set at 900 to match the number of observations per scenario for all
the SDN-reliant IoT network scenarios considered (see Section 3.3);
. Step 3: Validate the new LHS and GAN metrics (i.e., TIEHS, ]tLHS, and RtLHS and

GAN 71GAN GAN
Tp , JPAN, and Ry

in Equations (13) and (14), respectively) from Step 2 for
each of the considered SDN-reliant IoT network scenarios (i.e., normal, HTTP DDoS

flooding attack, TCP DDoS flooding attack, and UDP DDoS flooding attack operating
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conditions) using descriptive statistics and by building and comparing classification
models using the standard scores (Z-scores) for [Ty, Ji, Ril, [T;H°, JFHS, RpHS],
and [TPGAN , JEAN, REAN], respectively, and a suitable supervised learning technique
(CART in this particular instance—see Section 4.2.2).

The standardization procedure in this step is carried out as suggested in [39,71,126],

and it can be described as follows:

Z; = (Xla;yl) V IoT Network Scenarios (15)
1

where Z; is the Z-score of the ith observation for any metric (X; € {IoTpp, loTr s, and
IoT; an}) having a mean and a standard deviation of y; and o;, respectively;
Step 4: Shulffle the validated LHS and GAN metrics from Step 3 and combine them
with the simulated data of metrics from Step 1 (i.e., [T); TFEHS ; TEAN 1, s ]tLHS ;
]tGAN ], and [Ry; RtLHS ; RtGAN ]) for each of the SDN-reliant IoT network scenarios
considered (i.e., normal, HTTP DDoS flooding attack, TCP DDoS flooding attack, and
UDP DDoS flooding attack operating conditions) to have an augmented dataset for

the network metrics, described as follows:

IoTpuc = {T;YC, JAYC, RAYC} V 10T Network Scenarios (16)

Step 5: Normalize the combined metrics from Step 4 using min—max normalization.
The min-max or linear transformation normalization in this step is carried out as
suggested in [30,126,127], and it can be described as follows:

10T ;i — IoT™"

IOTZ"L;’(’;,» = AUG AUG” v/ 16T Network Scenarios (17)
IOTmﬂX . — IOTlel ;
AUG AUG

where [0T, i is the ith observation in the augmented SDN-reliant IoT network
dataset (IoT41;G), whose minimum and maximum values are IOTZ;m cand T OTZZXG,-,
respectively, and Io Tj’q"&’gi is the normalized value defined as Io ngg,- € [0,1].

In this step, min—-max normalization is preferred to ensure that each metric in [T’fuc,
i t’WG, Rf‘UG] contributes a similar relative numerical weight, reducing data redun-
dancy and ensuring that all the target input values have an amicable metric scale prior
to the implementation of ML-driven SA. The formed normalized augmented dataset

can be described mathematically as follows:

ToThom = {TAUC  JAUC " RAUGY v 16T Network Scenarios (18)

Pnorm trorm Fnorm

Step 6: Generate response variables for every observation in [oT}{;% by deriving
a weighted cost function (CY), as recommended in [30]. Specifically, Cfé; for the ith
observation in [oT){}% can be derived as follows:

Cp = [(abs(T{UCH _ pAUGH o RAUGH] 5 4 (19)

Pnorm tnorm tnorm

where w is set at 1, 2, 3, and 4 when the SDN-reliant IoT network is operating normally,
under a TCP DDoS flooding attack, under a UDP DDoS flooding attack, and under an
HTTP DDosS flooding attack, respectively, as recommended in [30];

Step 7: Build ANN models (see Section “Artificial Neural Networks (ANNs)”) using
[oT){}¢ as the explanatory variables and CY as the corresponding response variables
V IoT network scenarios. Then, compute the MSE values for the respective ANN
models and store them in MSE,,o;;
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*  Step 8: Generate noisy variants of [oT7; by introducing an additive white Gaussian
noise (AWGN) severally to TAUG JAUG and RAUG as carried out in [30]. The new

Prorm” T tnorm

noisy datasets can be described mathematically as follows.

L _ (TAUG JAUG RAUG cw ,
IoT ;e = 1T, Proisy” Jtrr s Rty CF } V 10T Network Scenarios (20)
o TAUG TAUG RAUG
t
0T e = {Tpoms by * Rivorm 7 CF¥} V IoT Network Scenarios (21)
71079
IoThi o = {TAUG, JAUG RAUG cwyy 0T Network Scenarios (22)
G an’m tnnrm ?1(]75/ F

*  Step 9: Evaluate the same ANN models as in Step 7 using the datasets described in
Equations (20) (21), and (22), respectively. Then, compute the MSE values and store
them in MSE”.  MSE) . and MSEX , respectively;

noisy’ noisy’ noisy’

¢  Step 10: Compare the MSE values from Steps 7 and 9 using descriptive statistics and

hypothesis testing (specifically, the Wilcoxon test [128]) to ascertain and statistically

validate the sensitivities of T}, J;, and Ry in [T];“UG, JAUG, and RAUC], respectively.
The comparisons are mathematically described as follows:

MSE, orm and MSE Ty ; V IoT Network Scenarios

noisy’

SA; { MSEorm and MSE) . . ¥ 1oT Network Scenarios (23)

noisy’

MSE, prm and MSER: . IoT Network Scenarios

noisy’

where SA1 denotes the SA inferences drawn from the comparisons in Equation (23).

Data Extraction
{Tp.Ju Re}: 10Tpg [ Shuffle and Combine ] Build ANN Models Usln.g

{I0oTpp; 10T ys; 10Tgan}: 10T gyc {IoT;3/¢™; C¥}; Compute their MSE
| Values: MSE,, 5;-m

Synthetic Data
Generation:
{IoT ps ; 10T gan} 5 . A

- Min-Max[Normalization » Generate Noisy Variants of IoT}{/¢™
by Introducing AWGN
to IoTd" :

of IoT 4y¢: IoTRY "

noisy

Validation of noisy m)lsy
{IOTAUG I"T{wa IoT 446 }

{IoTps ; I0Tgan}
Using Descriptive Statistics and

Compute the Weighted
Supervised Learning (Build and

Compare CART Models Using

Cost Function for

the Z-scores) ToTyg": CF Simulate Previously Built ANN Models
for { IoT IoT T0oT gan} { noisy Tlnmsy m)lsy}
i LHS ey Using IOTAUG 0T ¢ 5 10T ¢
Compute New MSE Values:
Ry
Compare MSE, -, and N {MSEmnsy MSEnatsy' MSEnmsy}

natsy noisy ; noisy

{MSE MSE't . MSE®t. } -

Using Descriptive Statistics and
Wilcoxon Test Y,

Figure 4. Flow diagram of the proposed DOE-GAN-SA framework.

In Step 3, the preferred method is standardization (Z-score normalization) over min-
max normalization. This is because classifiers used to solve classification problems are as-
sumed to have a distribution that is normal or close to it [129]. As discussed in Section 4.2.2,
the classifier used to implement Step 3 is the CART method, due to its popularity and
demonstrated ability to perform better than other popular classifiers in predicting SDN-
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reliant network scenarios [71,120]. To assess the predictive accuracy of the fitted CART
models in Step 3 and mitigate the risk of overfitting, a cross-validation approach has been
employed. The selection of this validation method is informed by the dataset size, which
comprises around 11,000 observations. In line with established practices for addressing
classification challenges, a fivefold nested cross-validation framework has been uniformly
applied across all the classifiers and experiments [71,130]. This approach aligns with widely
recognized methodologies for enhancing model generalization and reliability [71,130].

In Steps 7 and 9, an ANN is preferred because of its robustness and popularity as a
universal approximation function [131], and AWGN is used to alter the states of T/AUC

Pnorm’

];:Ulfmc, and R;?IULVIS severally in Step 8, as recommended in [30] for the ML-driven SA of
SDN parameters. It should also be noted that the quantity of processing elements within
each layer, as well as the overall number of layers, significantly impacts the training
process of the ANN models built in Step 7. In other words, an insufficient number of
processing elements may hinder the learning process, while an excessive number can result
in overfitting to the training dataset [105,132]. For this study, the dataset was partitioned in
accordance with methodologies suggested in prior research [30,133]. Specifically, 7560 data
samples, representing 70% of the total dataset, were allocated for training. The remaining
data were equally divided, with 1620 data samples (15%) designated for validation and
an additional 1620 data samples (15%) reserved for testing purposes. This partitioning
strategy ensures a balanced approach to model development and evaluation.

Unless otherwise noted, all the experiments carried out in this work to implement
the DOE-GAN-SA framework outlined above were conducted on a workstation equipped
with an Intel 6-core i7-8700 3.20 GHz CPU and 32.0 GB of RAM. All the independent
experimental runs are repeated 50 times to achieve a sufficiently large sample size (50 in
this instance) that allows a z-statistic to be utilized to determine the probability values for
all the hypothesis tests performed [71,127]. For the synthetic data generated, i.e., IoT; ys
and IoT; 4N, the median of the 50 instances of generating them is employed to minimize
the potential impact of extreme values and take into account the stochasticity of the LHS
and GAN procedures [44,49].

6. Experimental Results and Discussion

Before employing IoT; ys and IoTg 4y for the ML-driven SA carried out in this work,
they are first validated to ascertain their representativeness of the modeled SDN-reliant IoT
network with respect to the performance metrics and the network scenarios considered.
The validation procedure and subsequent ML-driven SA implementation are detailed as
follows, in line with the proposed DOE-GAN-SA framework (see Section 5).

6.1. Validation of Generated Synthetic Data

To carefully validate the generated synthetic datasets (IoTy s and IoTg4n), a system-
atic comparison with the originally simulated dataset (IoTpp) is conducted using both
descriptive statistics and supervised learning techniques. The statistical characteristics of
IoTpp, I0T1 s, and IoTg s are detailed in Tables 2-5, and their distributions are visually
represented in Figures 5-8. A thorough analysis of these tables and figures reveals that both

10T s and IoTg N successfully generate synthetic instances of Ty, J;, and R; (i.e., T{;Hs,

I [LH 5, RtLH 5, T;f AN 7 tGAN ,and RtGAN ), which can be utilized to augment the original metrics
for emulating real-time traffic scenarios within the modeled SDN-reliant IoT network. To
ensure a robust comparison, the median values from 50 generated instances of IoT} js and
IoT an have been employed rather than individual generated instances for reasons stated
earlier. Despite this methodological choice, both 10T} s and IoTg an exhibit a high degree

of similarity to IoTpp in terms of statistical attributes and overall trends. Furthermore,
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across all the analyzed network scenarios, the descriptive statistics and distributions of
IoT1 s, IoTgan, and IoTpp maintain strong alignment, as evidenced by the observations
in Tables 2-5 and Figures 5-8.

Table 2. Descriptive statistics of all the metrics over 900 observations (normal network scenario).

Metric Minimum Maximum Mean Median Standard Deviation
Tp 95.1000 95.9000 95.6332 95.6000 0.1402
T, LHS 95.5206 95.7434 95.6332 95.6338 0.0270
T, GAN 95.5960 95.7011 95.6253 95.6066 0.0347
Je 0.0040 0.4930 0.2271 0.1940 0.0943
JLHS 0.1528 0.2888 0.2264 0.2256 0.0212
J:GAN 0.1604 0.2715 0.1898 0.2237 0.0153
Ry 0.0320 2.1200 0.2114 0.1980 0.1286
R LHS 0.1165 0.6057 0.2116 0.1918 0.0650
RCAN 0.1252 0.2497 0.1905 0.1900 0.0189

Table 3. Descriptive statistics for all the metrics over 900 observations (TCP DDoS flooding attack
network scenario).

Metric Minimum Maximum Mean Median  Standard Deviation
T 0.0000 95.9000 0.5441 0.0238 7.0999
TPEPHS 0.0000 27.5431 0.5332 0.0150 3.0105
T, GAN —0.0822 0.0884 0.0028 0.0019 0.0252
Jt 0.0040 0.4930 0.2271 0.1940 0.0943
JeLHS 0.1604 0.2878 0.2274 0.2264 0.0207
JiGAN 0.1579 0.2750 0.1963 0.1946 0.0164
R; 0.2650 678.0000  302.2676  299.0000 110.6598
R S 29487 4133743 302.6604  308.0122 69.2561
R CAN 2751999 364.6439  304.1860  303.4058 11.935

Table 4. Descriptive statistics for all the metrics over 900 observations (UDP DDoS flooding attack
network scenario).

Metric Minimum Maximum Mean Median Standard Deviation
T 95.1000 95.9000 95.6332 95.6000 0.1402
TPEPHS 95.5138 95.7334 95.6331 95.6341 0.0258
T, 6AN 95.5955 95.7007 95.6118 95.6033 0.0249
Je 9.1610 18.4280 10.5100 10.1725 1.0496
JLHS 9.9098 12.2078 10.5090 10.4302 0.3390
J:GAN 10.0758 10.2915 10.1737 10.1733 0.0305
R¢ 0.1980 82.1000 26.3097 24.8000 7.3245
R(LHS 23.9558 62.7044 26.3115 24.7773 5.5788
RCAN 24.3073 25.5330 24.8590 24.8620 0.2098

Based on the results presented in Tables 2-5 and Figure 5, several conclusions can be
drawn regarding the behaviors of T, TﬁHS ,and TE AN: (1) A DDoS flooding attack on the
SDN-reliant IoT network significantly affects or alters T, TﬁH 5, and TIS;AN . (2) When the
SDN is subjected to a UDP DDoS flooding attack, there is no substantial change observed
in the distributions of T, TFQHS, and T,(,;AN . (3) In contrast, exposure to TCP and HTTP
TI%H S,

DDoS flooding attacks results in noticeable shifts in the distributions of T, and

T,?AN , with the majority of the values clustered around 0. This differs from the typical

range of approximately 95 to 96 observed under normal conditions or during UDP DDoS
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, and illustrated

flooding attacks. From a practical standpoint, the metrics T, Tj;"

TGAN (
p

in Figure 5 and reported in Tables 2-5) appear to be more vulnerable to TCP and HTTP

flooding attacks. This susceptibility is attributed to the operational characteristics of these

attacks, which involve saturating the target server with excessive connection requests or

numerous browser-based HTTP requests. These actions deplete network resources and

ultimately lead to denial-of-service conditions for legitimate traffic [39,134,135].

Table 5. Descriptive statistics for all the metrics over 900 observations (HTTP DDoS flooding attack
network scenario).

Metric Minimum Maximum Mean Median Standard Deviation
Tp 0.0000 95.9000 0.7429 0.0000 8.3955
TpLHS 0.0000 35.7642 0.8434 2.685 x 107° 4.6874
TPGAN —0.1042 0.0704 —0.0087 —0.0078 0.0283
Jt 0.0040 0.4930 0.2271 0.1940 0.0943
JEHS 0.1617 0.3030 0.2259 0.2253 0.0214
J:GAN 0.1621 0.2572 0.1957 0.1931 0.0169
R¢ 0.0200 1637.0000 49.1262 23.7000 90.9398
R¢LHS 0.0200 180.8001 48.8627 36.3924 42.0700
RCAN 10.2506 44.7136 24.0585 23.7436 5.0824
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Figure 5. Box plots showing the distributions of the original and synthetic throughput metrics for all
the scenarios in the modeled SDN-reliant IoT network.



Information 2025, 16, 783

22 of 38

Based on the results presented in Tables 2-5 and Figure 6, several conclusions can
be drawn regarding the behaviors of J;, tLHS, and ]tGAN : (1) A DDoS flooding attack on
the SDN-reliant IoT network impacts or alters the values of J;, JF1°, and J¢4N. (2) The
distributions of J;, JF°, and J¢AN remain largely unchanged when the SDN is subjected to
HTTP or TCP DDoS flooding attacks. (3) When exposed to a UDP DDoS flooding attack, the

tLHS’ and ]tGAN

distributions of J;, exhibit significant variation, with most values clustering
around 10. In contrast, under normal operating conditions or during TCP and HTTP DDoS
flooding attacks, the values are typically distributed within the range from approximately 0
to 0.3. J; is highly influenced by the timing and sequence of packet arrivals. High J; values
occur when packets arrive out of order or in bursts separated by irregular gaps. From a

practical standpoint, Figure 6 and Tables 2-5 indicate that];, tLH 5 and ]tGAN

are particularly
susceptible to UDP DDoS flooding attacks. This vulnerability arises from the operational
nature of such attacks, which do not require a handshake process to flood the target server

with unsolicited UDP traffic, bypassing any initial consent from the server [39,136].
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Figure 6. Box plots showing the distributions of the original and synthetic jitter metrics for all the
scenarios in the modeled SDN-reliant IoT network.

Based on the results presented in Tables 2-5 and Figure 7, several conclusions can
be drawn regarding the behaviors of R, RF15, and RE4N: (1) A DDoS flooding attack on
the SDN-reliant IoT network has measurable impacts on R;, RF#5, and REAN. (2) Under
TCP, UDP, and HTTP DDoS flooding attacks, the distributions of Ry, RtLHS, and RtGAN
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exhibit significant variation. (3) The majority of the values fall within the ranges from
approximately 0 to 500 for TCP DDoS flooding attacks, approximately 10 to 50 for UDP
DDoS flooding attacks, and approximately 0 to 200 for HTTP DDoS flooding attacks. These
distributions differ markedly from the typical range of approximately 0 to 0.5 observed
under normal operating conditions. From a practical standpoint, Figure 7 and Tables 2-5
indicate that R;, RtLHS, and RtGAN are susceptible to all the investigated DDoS flooding
attacks, owing to the inherent operational characteristics of these attacks, as previously
discussed [39,134-136]. Consequently, R; is a critical network-monitoring metric, with
the potential to be significantly degraded by DDoS flooding attacks. This is particularly
relevant in applications that rely on acknowledgment-based communication before the
transmission of subsequent packets. Under such conditions, the unified communication
systems within SDN-reliant IoT networks may experience substantial disruption.
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Figure 7. Box plots showing the distributions of the original and synthetic response time metrics for
all the scenarios in the modeled SDN-reliant IoT network.

A closer examination of Tables 2-5 highlights that the mean and median values for
the corresponding metrics in IoT} s, [oTgan, and IoTpp remain largely consistent (have
minimal or acceptable deviations), with the exception of specific large deviations observed
in the HTTP DDoS flooding attack scenario. These discrepancies can be attributed to the
inherent distributional properties of T, and R; under the HTTP DDoS flooding attack, where
noticeable outliers are present (see Figures 5 and 7). Similarly, Figures 5-8 demonstrate
that under normal network conditions, the distributions of IoT; s, [0Tgan, and IoTpp
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are in strong agreement, while in most DDoS flooding attack scenarios, their distributions
exhibit reasonable conformity. Additionally, similar to IoTpp, both IoT; s and IoTgan
effectively distinguish between normal and DDoS flooding attack scenarios, as observed in
Figures 5-8. This attribute is particularly advantageous for the implementation of ADC,

which is further explored in Section 6.1.

10 - UDP)| Scenarios
L9 Normal
2 TCP
B uDP
B ; ~TCP| nr7P
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Y HTTP
0%
R %Ga‘f"g‘\o

Figure 8. Parallel coordinates of the simulated, LHS-based, and GAN-generated T}, Ry, and J; metrics
for all the network scenarios.

Comparisons and Hypothesis Testing for the Validation of Generated Datasets

In cases where discrepancies are observed between the generated datasets (IoTy s
and [oT; 4n) and IoTpp, it is important to consider the collective behavior of 10Ty ;rg and
IoTG An. When combined, these synthetic datasets are expected to effectively capture the
distributional patterns present in IoTpp better, demonstrating their complementary nature
and making them particularly valuable in augmenting IoTpp to enhance its utility for
the predictive modeling of diverse scenarios on SDN-reliant IoT networks. To verify this,
supervised learning is employed to compare how well SDN-reliant IoT network scenarios
can be classified considering IoTpp and the combination of IoT; s and IoTg 4n. The super-
vised learning technique employed is CART for reasons stated earlier (see Section 4.2.2).
The implementation framework and settings used have also been earlier provided in
Section 4.2.2. To compare how [oTpp and the combination of IoT; ;s and IoTgan perform
for the predictive modeling of the SDN-reliant IoT network scenarios with a strong focus on
ADC, 50 CART models are built using IoTpp and the combination of I0T} s and IoTgan,
respectively, and the descriptive statistics of the predictive accuracy (P4) and F1l-score
are compared.

The P, value of a classifier is generally defined as the ratio of correctly classified
observations to the total number of observations classified. The P4 values of the CART
models constructed using IoTpp and the combination of IoT} ys and [oT 4n are deduced
from each of their confusion matrices. Figure 9 displays the confusion matrices for typical
CART models among the 50 models built using the two datasets (i.e., [oTpp and the
combination of IoT; ys and IoTgAN), respectively. From a given confusion matrix, the P4
value of the CART classifier can be evaluated as follows [71,123]:

- TP+ TN
"~ TP+TN+FP+FN

Py (24)

where TP is a true positive (i.e., observations classified as O* that are actually O*), TN
is a true negative (i.e., observations classified as not O* and are not O*), FP is a false
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positive (i.e., observations classified as O* but are not O*), and FN is a false negative (i.e.,
observations classified as not O* but are actually O*).

The descriptive statistics of P4 over the 50 independent statistical runs, in which
a CART model was constructed each time using IoTpp and the combination of IoT} s
and IoT; N, are reported in Table 6. Consistent with the observations from the typical
confusion matrices shown in Figure 9, these results indicate that P4 is consistently high
for both IoTpp and the combination of [0T} s and loTg 4N, suggesting that both datasets
are suitable for CART-based ADC for the modeled SDN-reliant IoT network, even in the
worst-case scenarios. Furthermore, the P4 value achieved using the combination of [0T} ys
and IoTg 4y is slightly higher than that obtained using IoTpp, hinting that the synthetic
dataset may possess features that enhance its ability to distinguish between the scenarios in
the modeled SDN-reliant IoT network compared to IoTpg, likely due to its larger number
of observations. Additionally, the very low standard deviations observed for both datasets
further confirm their suitability for CART-based ADC, considering the SDN-reliant IoT
network scenarios investigated.

HTTP | 877 23 HTTP| 1798 2
g 0
& Normal | 1 899 & Normal 1800
O O
) o
= TICP| 27 2 871 = TCP| 3 1797
— [
UDP 900 UDP 1800
HTTP Normal TCP UDP HTTP Normal TCP  UDP
Predicted Class Predicted Class
(a) IoTpg. (b) Combination of [0T; ys and IoTgan-
Figure 9. Typical confusion matrices for the CART models built.
Table 6. Descriptive statistics of Po over 50 independent runs.
Dataset Worst Best Mean Median Standard Deviation
IoTpB 0.9836 0.9897 0.9871 0.9872 0.0012
IoT1 s and IoTgan 0.9983 0.9999 0.9993 0.9993 3.1348 x 104

Since all the CART models provide confidence scores (i.e., posterior probabilities)
for their predictions, their receiver-operating characteristic (ROC) curves and areas under
the ROC curves (AUCs) can also be used to analyze the summaries of their individual
P, values [71,123]. Figure 10 shows the ROC curves for typical CART models among
the 50 models built using the two datasets (i.e., IoTpp and the combination of IoT} s and
IoTG AN), respectively. When the confidence scores of a classification model (the CART
model in this case) are discretized, the sensitivity (also known as recall or true positive
rate (TPR)) and the false positive rate (FPR) are combined to create the P4 summary for a
specific ROC curve. The observations in the dataset are then classified using these discrete
scores as prediction thresholds.
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For a typical ROC curve, TPR, FPR, PPV, and the resulting F1-score can be estimated

as follows [71,123]:
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Figure 10. Typical ROC curves for the CART models built.

The descriptive statistics of the Fl1-scores over the 50 independent runs, in which a
CART model was constructed each time using IoTpp and the combination of IoT} s and
IoTg AN, are reported in Table 7. Consistent with the observations from the typical ROC
curves shown in Figure 10, these results indicate that the F1-scores are consistently high
for both IoTpp and the combination of [0T; s and [oTg AN, suggesting that both datasets
are suitable for CART-based ADC for the modeled SDN-reliant IoT network, even in the
worst-case scenarios. Furthermore, the Fl-score achieved using the combination of 10T} g
and IoTg 4y is slightly higher than that obtained using IoTpg, hinting that the synthetic
dataset may possess features that enhance its ability to distinguish between the scenarios in
the modeled SDN-reliant IoT network compared to IoTpp, likely due to its larger number
of observations. Additionally, the very low standard deviations observed for both datasets
further confirm their suitability for CART-based ADC, considering the SDN-reliant IoT
network scenarios investigated.

Table 7. Descriptive statistics of F1 over 50 independent runs.

Dataset

Worst Best

Mean

Median Standard Deviation

IOTDB
IoT1 s and ToTgan

0.9994 0.9994
1.0000 1.0000

0.9994
1.0000

0.9994 0.0000
1.0000 0.0000

To statistically verify that the CART models built using the combination of IoT} s
and IoT 4 are slightly more robust for ADC for the modeled SDN-reliant IoT network
in comparison to the CART models built using IoTpg, a hypothesis test (the Wilcoxon
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test [128]) is carried out. To carry out the test, the results for the P4 and F1-scores obtained
using the two types of datasets (i.e., IoTpp and the combination of IoT; s and IoTgAN)
over 50 independent statistical runs are used as the data samples. In this instance, the null
hypothesis is that the data samples of loTpp and the combination of IoT; s and IoTgan
have equal medians at the 5% significance level (i.e., the 95% confidence level) against the
alternative that they do not. The null hypothesis is rejected if there is substantial evidence
against it, as indicated by the two-sided probability value (p-value) of the hypothesis test
(i.e., the Wilcoxon rank-sum test) being less than or equal to 0.05.

From Table 8, it can be seen that the slight improvement in the P4 and F1-scores of
the CART models built using the combination of IoT; s and IoTgan over the P4 and
F1-scores of the CART models built using IoTpp is statistically significant, with p-values of
6.0493 x 10718 and 2.9193 x 10~%, respectively. Overall, the findings from the validation
procedure and comparisons suggest that synthetic data from the combination of IoT} ijs and
IoTg N closely reflect the modeled SDN-reliant IoT network’s characteristics, both under
normal operating conditions and in the presence of DDoS flooding attacks. Particularly,
their combined use presents a promising approach to enrich existing datasets and improve
the fidelity of SDN-reliant IoT network simulations. In the next section, a robust ML-driven
SA is carried out using a combination of the original simulated dataset (IoTpp) and the
validated synthetic data set (the combination of IoT; s and IoTgAn), i-e., [0TAyc-

Table 8. Hypothesis test: [oTpp vs. the combination of IoT; s and IoTgaN-

Metric p-Value
Py 6.0493 x 10~ 18
F1 29193 x 1022

6.2. ML-Driven SA

The ML-driven SA component of the proposed DOE-GAN-SA framework is imple-
mented as described in Section 5. Figure 11 illustrates the trend of C¥’ (see Equation (11))
across all the scenarios in the modeled SDN-reliant IoT network, considering I on“{}’g (see
Equation (18)). From Figure 11, it can be observed that using C¥ as the response or target
variable for the ANN models to be built enables, relatively, an additional layer of distinc-
tion between different scenarios in the modeled SDN-reliant IoT network. Specifically,
CY approaches or remains close to null when the network operates normally, while it
exhibits higher values when the network is subjected to DDoS flooding attacks. The same
structure, comprising three input nodes, ten hidden layers, and one output node, as shown
in Figure 12, is used for all the ANN models built. Using IoT}{;¢, a total of 50 ANN models
were built over 50 independent statistical runs. The training details, including the MSE
trend, error histogram, gradient plot, and regression plots of a typical ANN model trained
with [0T){}, are presented in Figures 13, 14, 15, and 16, respectively.

From Figures 13 and 14, it can be observed that the training of the ANN models was
not computationally expensive, as they typically converged to low MSE values in fewer
than 250 epochs. The performances of the ANN models can also be considered as generally
good, given their typically low error rates and high correlation coefficients according to
Figures 15 and 16. As described in Section 5, to evaluate the sensitivity of the performance
metrics of the modeled SDN-reliant IoT network (i.e., Ty, R¢, and J;), the ANN models
built using [oT7;% were re-simulated severally over 50 independent statistical runs using

noisy noisy noisy

IoT 16 » IoTi{UG, and [0T ,; , respectively. The descriptive statistics of the MSE values
for all the datasets used in simulating the ANN models are reported in Table 9.
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Figure 12. Layout of all the ANN models built.
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Figure 13. Typical convergence trend of the MSE values for the ANN models built using IoT}{} (the
best validation performance is 4.2194 x 10~ at epoch 240).
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Figure 14. Typical gradient information trend for the ANN models built using [oT}7;¢.
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Figure 15. Typical error histogram (with 20 bins) for the ANN models built using Io T4}

Table 9. Descriptive statistics of the MSE values of the ANN models built over 50 independent runs.

Dataset Worst Best Mean Median Standard Deviation
LoT,71¢ (MSEnorm) 0.0041 1.0274 x 107° 9.1407 x 10* 3.5181 x 10~* 0.0012
IOT?:;Z (MSEnOZSy) 0.0302 0.0108 0.0200 0.0193 0.0520
IoTAnLD;Z (MSE{jmsy) 0.8255 0.0146 0.1211 0.0854 0.1326
IoTAnuDZy (MSEfoflSy) 22.3078 0.0109 6.9898 6.0691 5.0983




Information 2025, 16, 783

30 of 38

1]
"?Q Training: R=0.99968 = Validation: R=0.99981
-
% B * 6 O Data
oy .
= s Fit
+ 5 1 5 .......... Y=T
= +
° 3
= 3 =3
- 3
n 2 ~ 2
t Iil @
= —t .
=3 3
50 a nf
O 0 2 4 6 8 0 2 4 6
Target Target
17
= Test: R=0.99967 @ All: R=0.85447
X =]
6 <6
o <
N5 +
&= vt
B4 S 4
1.
o ©
® 3 =
&= -
- 2 n 2
] 1
< 5
= =
S0 30
U 2 4 6 O o 2 4 6
Target Target

Figure 16. Typical regression plots for the ANN models built using [oT}{}{:-

From Table 9, the following observations can be made: (1) The MSE values of the ANN
models are generally sensitive to changes in Tj, Rt, and J; when comparing MSEj,o,; with

MSE™  MSER.  and MSE/

noisy” noisy” noisy’ respectively. (2) On average, R; appears to be the most

sensitive, with a mean MSE value of 6.9898 for MS Eﬁ o sy while T), is the least sensitive, with
a mean MSE value of 0.0200 for MSEZSiSy.

change in MSE;o;, with a minimum MSE value of 0.0108 for MSEZZisy
a minimum MSE value of 0.0109 for MSEX!

noisy
minimum MSE value of 0.0146 for MSE{foisy.
most disruption to MSE,orm, with a maximum MSE value of 22.3078 for MSE 5 o sy
Tp

noisy*
of the robustness and consistency, T, appears to have induced the most consistent changes
in MSE, o, with a standard deviation of 0.0520 for MS E:Z isy’
inconsistent changes, with a standard deviation of 5.0983 for MS E,If; sy’ These observations,
which indicate that T, Ry, and J; are all sensitive, with R; being more sensitive compared to

(3) In the best-case scenario, T, induced the least
(similar to R;, with
), whereas J; induced the most change, with a
(4) In the worst-case scenario, R; caused the
while T,

caused the least disruption, with a maximum MSE value of 0.0302 for MSE (5) In terms

whereas R; induced the most

Ty and J;, are consistent with findings in the literature [39], thereby validating the approach.

Hypothesis Testing for Sensitivity Analysis

Similar to the hypothesis test reported earlier in Section 6.1, a hypothesis test (the
Wilcoxon test [128]) is also conducted to statistically verify whether MSE,,;; is impacted

noisy Rnaisy

. . . . . . T,
by changes in T, R¢, and J; when their respective noisy variants (i.e., [oT A”UG  AoT 446
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noisy
and Io Tl{uc) are used to evalu?te the ANN models built using I0T}{}{%. To perform the test,
the results for MSE,.orm, MSEnZisy, MSE’Iféisy, and MSE;Ltoisy'
statistical runs, are used as the data samples. The null hypothesis in this case is that the data

samples of MSE,;y;; and those of MSET” MSER: ,and MSE

noisy’ noisy noisy
a 5% significance level (i.e., a 95% confidence level) against the alternative hypothesis that

obtained over 50 independent
have equal medians at

they do not. As previously mentioned, there is strong evidence against the null hypothesis
if the two-sided probability value (p-value) of the hypothesis test (Wilcoxon rank-sum test)
is less than or equal to 0.05, leading to the rejection of the hypothesis.

From Table 10, it can be observed that MSEZZiSy, MSEffotisy, and MSE{joisy are all
statistically significantly different from MSE,o;;, with a p-value of 7.0661 x 10~18. This
further reinforces the notion that T, R, and J; are sensitive performance metrics for the

modeled SDN-reliant IoT network.

Table 10. Hypothesis test: [0T}9;% (MSEnorm) vs. other datasets.

Dataset p-Value

Tnoisy T T
IoT ;g (MSE,gq,) 7.0661 x 10

ansy R 718
[0T . (MSE,5;,) 7.0661 x 10

noisy

[T (MSE!'. )

noisy

7.0661 x 10718

6.3. Comparisons with Other Methods

Due to the scope of this study and time limitations, a comprehensive comparative
analysis between the proposed DOE-GAN-SA framework and alternative approaches has
not been conducted. However, considering the successful implementation of the DOE-
GAN-5SA framework demonstrated in this work, alongside the reported effectiveness of
alternative methodologies in the literature [66,137-139], meaningful insights can be drawn
from the comparisons presented in Table 11. As noted in Table 11, the proposed framework
not only aligns with existing methods but also offers distinct advantages. Specifically,
its purpose-built hybridization of DOE and ML techniques improves the applicability of
hybrid approaches in understanding the behaviors of SDN-reliant IoT networks. Rather
than serving as a direct replacement, the DOE-GAN-SA framework complements existing
methods by addressing specific challenges and facilitating a more robust adoption of
ML-based solutions.

Table 11. Comparative assessment.

Method ADC Data Augmentation  Efficiency SA Scalability =~ References
Monte Carlo N/A N/A High Yes Yes [137,139]
Variance-based N/A N/A High Yes Yes [66,138]
This work Yes Yes High Yes Yes N/A

6.4. Recommended Approach for Future Practical Implementation

Although the experiments carried out in this work have been primarily conducted
within emulated network environments, the proposed DOE-GAN-SA framework is ex-
plicitly designed to generalize to real-world SDN-reliant IoT network scenarios. For a
future practical implementation, a representative architectural configuration can be used to
demonstrate how key network parameters, specifically, the throughput, jitter, and response
time, can be dynamically monitored and incorporated into the DOE-GAN-SA framework
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for advanced behavioral modeling and performance evaluation of SDN-reliant IoT net-
works. This approach aligns with practical implementations, notably, the study presented
in [140], which describes a cost-effective IoT-SDN testbed constructed using Raspberry Pi
devices configured as OpenFlow switches. The testbed integrates SDN controllers, such
as Floodlight, to dynamically manage flow entries, mirroring the architecture employed
in the DOE-GAN-SA framework. The emulated environment in DOE-GAN-SA utilizes a
tree-based topology in Mininet and employs Floodlight to simulate SDN control operations
with tools, such as iper f and LOIC, used to evaluate performance under DDoS flooding
attack conditions. The study in [140] confirms the feasibility of real-time metric collection,
including throughput, jitter, and bandwidth utilization, thereby reinforcing the applicability
of SDN-based traffic control strategies in IoT systems.

The modular IoT-SDN testbed presented in [140] enables the collection of time-series
data for key performance indicators (KPIs) under diverse network conditions, with specific
emphasis on throughput and jitter metrics, i.e., Ty and J;. The hierarchical network design
implemented in the testbed adopts a tree-based topology, closely resembling the Fat-Tree
topology used in DOE-GAN-SA, which is selected for its scalability and deterministic
behavior in packet forwarding. These shared structural and analytical design elements
underscore the alignment with contemporary engineering strategies aimed at enhancing
the resilience and performance of SDN-reliant IoT networks. The study in [140] also
identifies throughput as a critical metric reflecting the rate of successful data transmission
across the network. Evaluations conducted on the SDN-based testbed demonstrate that
centralized flow control improves bandwidth utilization in various traffic configurations.
A parallel approach is adopted in the DOE-GAN-SA framework, wherein throughput
is systematically recorded under both normal and adversarial (DDoS flooding attack)
conditions. The degradation in throughput under attack scenarios serves as a sensitive
indicator for performance deterioration and contributes to the SA.

Jitter, representing the variability in packet inter-arrival times, is another core metric
evaluated in [140]. The testbed monitors jitter in real time to assess QoS levels in latency-
sensitive applications, with low and consistent jitter values corresponding to stable network
performance. A comparable methodology is employed in the DOE-GAN-SA framework,
where jitter is analyzed across normal and attack conditions, further demonstrating the
framework’s robustness in detecting service anomalies. Both implementations rely on
programmable, OpenFlow-enabled switches governed by a centralized SDN controller,
allowing for adaptive routing and holistic monitoring. While the DOE-GAN-SA framework
emphasizes data augmentation through LHS and GANs to enhance dataset diversity and
model generalization, the testbed developed in [140] adopts an empirical strategy by col-
lecting extensive, real-time data from live network interactions. The IoT-based SDN testbed
in [140], provides a practical validation environment that mirrors the structural, functional,
and analytical components of the DOE-GAN-SA framework. Both approaches highlight
the significance of performance metrics, such as throughput and jitter, as primary indica-
tors of network health. Although the DOE-GAN-SA approach introduces methodological
innovations through the integration of DOE and ML techniques, the experimental insights
from the referenced testbed establish a solid foundation for real-world applicability.

7. Conclusions

This study presented the DOE-GAN-SA framework, a novel methodology integrating
DOE and ML techniques to enhance the behavioral analysis and characterization of SDN-
reliant IoT networks. Specifically, it focused on data augmentation, ADC, and SA. Through
the complementary use of LHS, GAN, CART, and ANN, DOE-GAN-SA enables a more
comprehensive and systematic exploration of SDN-reliant IoT network behavior under
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various operational conditions. The structured workflow of the DOE-GAN-SA framework
begins with network scenario simulation, followed by LHS and GAN-driven synthetic data
generation, statistical validation, CART-based ADC, and ANN-based SA. This hybridized
approach enhanced conventional SA techniques by unifying DOE and ML techniques
within a single framework, effectively implementing data augmentation, ADC, and SA.
DOE-GAN-5A's reliability was further reinforced through the validation of synthetic data
using descriptive statistics and supervised learning, confirming its suitability for the behav-
ioral analysis of SDN-reliant IoT networks. Additionally, hypothesis testing was employed
to statistically validate key experimental findings, ensuring the robustness of analytical
outcomes. Empirical results demonstrated that DOE-GAN-SA improved ADC performance
and enhanced SA for the SDN-reliant IoT network modeled in this study. Future work
will focus on extending DOE-GAN-SA to assess the impacts of DDoS flooding attacks and
other network anomalies, comparing its performance against those of alternative methods
to further validate its effectiveness for SDN-reliant IoT networks.
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