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Computation of Electromagnetic Fields in Assemblages of Biological Cells
Using a Modified Finite-Difference Time-Domain Scheme

Abstract
When modeling objects that are small compared with the wavelength, e.g., biological cells at radio
frequencies, the standard finite-difference time-domain (FDTD) method requires extremely small time-step
sizes, which may lead to excessive computation times. The problem can be overcome by implementing a
quasi-static approximate version of FDTD based on transferring the working frequency to a higher frequency
and scaling back to the frequency of interest after the field has been computed. An approach to modeling and
analysis of biological cells, incorporating a generic lumped-element membrane model, is presented here. Since
the external medium of the biological cell is lossy material, a modified Berenger absorbing boundary
condition is used to truncate the computation grid. Linear assemblages of cells are investigated and then
Floquet periodic boundary conditions are imposed to imitate the effect of periodic replication of the
assemblages. Thus, the analysis of a large structure of cells is made more computationally efficient than the
modeling of the entire structure. The total fields of the simulated structures are shown to give reasonable and
stable results at 900,1800, and 2450 MHz. This method will facilitate deeper investigation of the phenomena
in the interaction between electromagnetic fields and biological systems.
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ABSTRACT: 

 

When modeling scattering objects that are small compared with the wavelength, the standard Finite-

Difference Time-domain (FDTD) method requires extremely small time-step sizes. This is especially 

so in modeling biological cells having sizes of the order of a few tens of micrometers. This can become 

impractical due to the very large computation times required. This problem can be overcome by 

implementing a quasi-static approximate version of FDTD, based on transferring the working 

frequency to a higher frequency, to reduce the number of time steps required. Then, the generated 

internal field at the higher frequency can be scaled back to the frequency of interest. This paper 

presents an approach to modeling and analysis of the Hodgkin and Huxley (HH) membrane model, 

represented as an electrical circuit on the surface of a biologically equivalent spherical and cubical cell: 

the cubical shape being investigated to facilitate packing. Since the external medium of the biological 

cell is lossy material, a modified Berenger perfectly matched layer absorbing boundary condition is 

used to truncate the computation grid, in order to reduce the reflections on the interface layers. Linear 

assemblages of such cells are investigated and then Floquet periodic boundary conditions are imposed 

over the border of the simulated structures to imitate the effect of periodic replication of the remaining 

cells. Thus, the analysis of a large structure of cells is made much simpler and more computationally 

efficient than the modeling of the entire structure. The total fields of the simulated structures have been 

shown to give reasonable and stable results at 900MHz, 1800MHz and 2450MHz. 

 

This tool will facilitate deeper investigation of the phenomena in the interaction between EM fields and 

biological systems at various levels of spatial definition.   

 



Key words:  Finite-Difference Time Domain (FDTD); quasi-static method; HH (Hodgkin and Huxley) 

membrane model; Floquet Periodic Boundary Conditions. 



1. INTRODUCTION 

 

Research into possible mechanisms of interaction of electromagnetic (EM) fields with biological 

tissues and cells in culture has motivated a growing need for accurate models describing the EM 

behavior of cells exposed to these fields.  Therefore, several numerical models have been created in 

order to study the interaction between EM fields and biological entities, at tissue level, cell level and 

ionic level. In this area, the most frequently used technique for computing the EM field is the finite-

difference time-domain (FDTD) method [1,2], due to its independence from the material parameters.  

 

The original Finite-Difference Time-Domain (FDTD) method requires extremely small time-step sizes 

when modeling electrically-small regions (much smaller than a wavelength): this is especially the case 

when modeling biological cells, since they have maximum dimensions of a few tens of micrometers. 

Thus, it can become impractical due to the unaffordable computation times required. This problem can 

be solved by implementing a quasi-static approximate version of FDTD. This approach is based on 

transferring the working frequency to a higher frequency, to reduce the number of time steps required. 

Then, the generated internal field at the higher frequency can be scaled back to the frequency of interest 

[3-6].  

 

Cells are surrounded by thin membranes, typically a few nanometres thick [7]. They are the major 

barrier in the cell, separating the inside of the cell from the exterior medium. It is this structure which 

allows cells to selectively interact with their environment. Therefore, the cell membrane has been 

identified as the primary target for the study of possible actions of EM fields on biological structures. 

Since the thickness of the membrane is about 1000 times smaller than the biological cell, if the standard 

FDTD procedure were to be blindly applied to model detail in the membrane within a complete cell 

model, this would cause some millions of iterations to be required to complete one cycle of simulation. 

This again will cause excessive computation time. To overcome this drawback in standard FDTD, the 

lumped element finite different time domain (LE-FDTD) method [8-11] was implemented to model the 

behavior of the membrane, based on the Hodgkin-Huxley (HH) model [12-16] on the surface of the 

biological cell. 

 



This paper presents the new approach to modeling and analysis of the HH (Hodgkin and Huxley) 

membrane model which is represented as an electrical circuit on the surface of the biological equivalent 

spherical cells. For the sake of simplicity, the analyzed structure has been represented with spherical or 

cubical cells and Floquet periodic boundary conditions [17-20]  have been applied to the border of the 

analyzed structure in order to mimic the presence of the surrounding cells. Although cellular tissues are 

not perfectly periodic and living cells are not precisely spheres or cubes, this approximation allows a 

reasonable approximation to the modeling of biological tissue using only a small part of the structure, 

while alleviating the problem of the huge requirement of computer resources for the simulation of a 

complete body of tissue. Since the external medium of the biological tissue is lossy fluid, the modified 

Berenger perfectly matched layer (PML) absorbing boundary condition (ABC) [21-24] is used to 

truncate the computation grid, in order to reduce the reflections on the interface layers: this is more 

accurate than the Mur ABC [25, 26], used in other recent work [4].  

 

A further difficulty is the limited extent of studies on the dielectric properties of cell tissues [27]; thus, 

the complex permittivity of each cell tissue is not clearly established for radio frequencies. However, in 

this study, an analytical method for estimating the electrical properties of cell tissues in the RF band 

[28], will be adopted throughout the analysis. Earlier work only considered two media (water and 

membrane) [4], but the procedure adopted here enables the tissue model to consist of three media 

(lossy medium, membrane and cytoplasm). In addition, a mass of connected biological tissue is 

simulated by creating an equivalent stack of compacted cells (both spherical, with interstices, and fully-

compacted cubical).  The total electric fields along the central axes of rows of these spherical and 

cubical cellular structures will be investigated.  

 

2. SUMMARY OF METHOD 

2.1 Quasi-Static FDTD Scheme 

 

The interaction between animals and humans exposed to extremely low frequency electric fields was 

investigated by Kaune and Gillis [29]  and Guy et al. [30] in 1981 and 1982 respectively. Their 

research outcomes furnish valuable analytical and experimental verification of the concept of quasi-

static coupling at power-line frequencies. Later authors [5,6,31] implemented the same principles using 

finite difference time domain (FDTD) to study the numerical dosimetry of anatomically-based models. 



Recently, the same idea was further extended to modeling the interaction between electromagnetic (EM) 

fields and biological tissue at mobile communication frequencies, i.e. GSM900 and GSM1800 [4].  

 

In order to implement the quasi-static approximation to analyze scattering problems, the following two 

conditions have to be satisfied [29, 30]: 

 

1.  dmax < λ/10  (1a) 

 

         2.   |σ + jωε| >> ωεo (1b) 

 

where dmax is the maximum dimension of the structure under investigation,  λ is the wavelength, and σ 

and ε are the conductivity and permittivity of the analyzed structure respectively, ω is the radian 

frequency, and εo is the permittivity of free space. 

 

Under these conditions, electric fields outside the analyzed object do not depend significantly on the 

internal object properties, but only on the shape of the body, the components of the electric field 

tangential to the surface of the model and the internal fields being approximately zero compared to the 

applied field. For these conditions, the external field E at the object’s surface can be considered to be 

perpendicular to its surface.  

 

From the Maxwell equation div D = ρ, the boundary condition for the normal component of electric 

field at the surface of the region of interest is : 
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From equation (2), under the two conditions given in (1a,b), a scaling relationship between the fields at 

frequencies f and f’ can be derived as follows [5,30]:  
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Assuming that ωε (f) << σ (f) and ω'ε' (f ') << σ' (f'), then according to equation (3), a higher working 

frequency (f') which still falls within the quasi-static regime, can be chosen to excite the model, to 

reduce the computation time. Thus, the resultant internal fields, E', evaluated at that frequency can be 

transferred back to the desired low frequency with negligible error. Since the induced current densities 

and internal electric fields are proportional to the frequency, the magnetic fields hold a similar scaling 

relationship.  

 

2.2 Modified Berenger PML 

 

The Perfectly Matched Layer (PML), introduced by Berenger [21] in 1994, allowed boundary 

reflections below -80dB to be realised. PML is based on surrounding the FDTD problem space with a 

highly lossy and matched non-physical absorber. It has been found to be the most accurate technique of 

the ABCs available and has become standard in most current FDTD implementations [32]. For the case 

of PML layers with conductivities increasing geometrically, the geometric grading factor (g) can be 

modified in order to reduce the reflection on the interface layer when the problem space is entirely 

within a lossy-medium environment. An empirical expression from which g can be found, and which 

has been found to give good results [23, 24] is:  
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where ∆x is the spatial increment of the FDTD mesh, R(0) is the normal reflection coefficient, N is the 

number of the cells in the PML thickness, c is the velocity of EM waves in the environment concerned.  

 



2.3 Floquet Periodic Boundary Condition (PBC) 

 

Many structures of electromagnetic interest are electrically very large and hence pose great difficulties 

for computational simulation. One approach that can be used to reduce the size of the computational 

task is to exploit any periodicity in the structure, in one and more dimensions: this concept will be 

exploited here, assuming that a sample of tissue is formed from a periodic grid of biological cells. In 

order to perform EM analysis on these types of structure with reasonable computational time, the 

structures are assumed to be an infinite grid and the problem can then be reduced to a unit-cell analysis 

via use of the Floquet boundary condition to simulate the effect of the periodic replication.  

 

The finite-difference time-domain (FDTD) technique was applied to the basic structure due to its 

simplicity and flexibility. FDTD has already been successfully extended to incorporate the Floquet 

theorem for the case of normal [17, 33] and oblique incidence [34, 35]  for two- and three-dimensional 

problems. The techniques used to combine FDTD with the Floquet periodic boundary condition can be 

classified into two categories, i.e., direct field methods and field transformation methods. Direct field 

methods include Normal incidence, Sine-Cosine, Multiple Unit Cell and Angled Update Methods, 

while field transformation methods include Multi-Spatial Grid and Split-Field methods [2]. 

 

2.4 HH (Hodgkin and Huxley) Membrane Model 

 

Cells are surrounded by a thin membrane, which is the major barrier, separating the cell from its 

(normally) fluid environment. Since the cell needs to get nutrients in and waste out, the membrane must 

be able to accommodate this. Therefore, the membrane has to act as a selective barrier, allowing 

nutrients to pass in but keeping out many substances harmful to the cell, and acting as a dynamic 

barrier medium, constantly adapting to changing environmental conditions (e.g. different 

concentrations of ions). 

 

The dimensions of a biological cell are around a few tens of micrometers and the thicknesses of the 

membranes are in the scale of a few nanometers, strongly depending on the type of the tissue. 

Depending on the type of the cell, voltages in the range of 20-200mV can arise across the membrane. 

When the cell is in a resting state, the current across the membrane averages zero, but more generally it 



depends on the variation of the membrane voltage [12].  

 

Hodgkin and Huxley (HH) gave a general description of the time course of the current which flows 

through the membrane of the squid giant axon when the potential difference across the membrane was 

suddenly changed from its steady state. The results in [12] suggest that the behaviour of membrane 

may be represented by the electrical circuit shown in Fig. 1. Current can be carried through the 

membrane either by charging the membrane capacitance or by movement of ions through the nonlinear 

conductance in parallel with the membrane capacitance.  A set of equations governing the model is 

given in [4, 12]. 

 

 

3. IMPLEMENTATION AND VALIDATION 

3.1 HH model implementation 

 

To verify the correctness of the implementation of the HH model within the FDTD framework, the 

results of the analytically computed solution have been used for comparison. The HH model was 

implemented on a spherical structure with diameter 50 µm and discretised with 1 µm steps, in order to 

check for the expected polarization voltage of 60.27 mV on the membrane [*Ref*]. The HH model is 

included on the surface of the cell, while the regions internal and external to the sphere were considered 

as cytoplasm and lossy medium respectively. It should be noted that the LE-FDTD method has been 

successfully modified in order to allow arbitrary positioning of the lumped element inside the 

membrane’s cell, not necessarily aligned with the FDTD grid (see Fig.2), so that it represents the 

structure more exactly than simple FDTD. Fig. 3 depicts the expected polarization voltage of 60.27mV, 

appearing on the membrane of the spherical structure without any external excitation. 

 



3.2 Quasi-static FDTD validation 

 

In this section, a simple example will be given to illustrate this method: the obtained results will be 

compared with the Mie series analytical solution [36, 37].  A two-layer sphere simulating a biological 

cell inside a lossy medium was considered, for which the assumed properties were as follows: 

cytoplasm (internal) εr = 48.699, σ = 1.412; membrane εr = 11.3, σ = 0.0; and lossy medium (external) 

εr = 70.87, σ = 2.781. The internal radius (internal region) was 25µm and the membrane thickness was 

set to 2µm. The operating frequency was 2.45 GHz, whereas the interim transformed frequency used in 

this example was 30 GHz. From equation (4), the optimum grading factor g is 6.07 for an FDTD cell 

size of 1µm. It should be noted that this model in the FDTD computation domain is excited by a 

standard plane wave of amplitude 1V/m, propagating in the z-direction and polarized in the x-direction. 

The field distributions along the two central axes of the layered cell are depicted in Fig.4 and Fig.5. As 

can be clearly seen, the numerical results are in good agreement with the analytical ones.  

 

4. SIMULATION AND RESULTS 

4.1 Connected Tissue Model Using Spherical Cells  

 

A stack of ten spherical cells was investigated, as shown in Fig.6 and Fig.7. The radius of the each cell 

was 10 µm. The model contains three media, cytoplasm, membrane and extracellular medium and the 

dielectric properties of these were obtained from [28], as tabulated in Table 1.  A plane wave of 100 

V/m, propagating in the z-direction and polarized in the x-direction was used as the excitation. Note 

that the incident plane wave excitation is applied on a plane lying between the PML region and the 

outer limit of the FDTD grid. In addition, in order to reduce high-frequency transients [38, 39]  and DC 

offsets [40, 41] sometimes associated with unramped sine wave excitations, the ramped sinusoidal 

source in equation (4) was adopted. In general, this can be done by multiplying the excitation source of 

100Vm with the f(t) functions given, varying for different ranges of t, as shown in equation (5) [40]. 
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Where Tr is the duration of the ramped cosine regime, which is about 3 source cycles.  

 

Fig.6 and Fig.7 illustrate the 2-D and 3-D view of the basic configuration of the structure analyzed. As 

shown in Fig.7, the PML was 6 FDTD cells wide, the grading factor for optimal ABC was 7.957 and 

the grid structure was effectively extended to infinity in the x- and y-directions, by imposing the 

Floquet boundary condition along the x and y axes. The Floquet periodic boundary condition (PBC) 

plays an important role to mimic the presence of an extended 3-dimensional structure of biological 

cells, simulating connected tissue. This can be easily imagined in two dimensions, as shown in Fig.6. 

The FDTD problem space was 220 x 20 x 20 FDTD cells of size 1µm while a discretization time step  

tδ  of 1.3 femtosecond was chosen to drive the FDTD computation to meet the requirements of the 

Courant stability criterion.  

 

Before implementing the HH model into the simulated structure, the effect of moving the Floquet PBCs 

gradually away from the simulated structure was studied. Fig. 8 and Fig.9 depict the field distribution 

through the centre of the simulated structure at 10GHz with varying locations of the PBC, where Ncell 

is the number of FDTD cells between the Floquet PBCs and the boundaries of the biological cells, in 

the x and y directions. Fig. 10 shows the field distribution on the xz-plane of the simulated structure for 

the case of Ncell = 10. When the PBCs are exactly adjacent to the simulated structure (Ncell = 0), the 

strongest coupling effect between cells can be obtained: the highest induced field on the membrane and 

lowest induced field in the cytoplasm of the cell can be observed. Conversely, when the PBCs are far 

away from the simulated structure (Ncell = 10), the lowest induced field on the membrane and highest 

induced field in the cytoplasm of the cell are observed. It should be noted that all the following analysis 

will be based on Ncell = 0, which is assumed to be the most appropriate model for the real living 

biological tissues or cells in this micro-dosimetry study.  

 



The simulations are performed at the transformed intermediate frequency of 10GHz and the overall 

model is then transformed to the intended lower frequencies: Table 2 reports the transformation factors 

at 900MHz, 1800MHz, 2000MHz and 2450MHz that were used in the analysis. These can be 

calculated by substituting the parameters from Table 1 into equation (3).  

 

Fig.11 illustrates the 10GHz field distribution on the xz-plane of the simulated structure. The 

distributions of the electric field through the centre of the simulated structure, along the incident wave 

propagation direction, at 900MHz, 1800MHz, 2000MHz and 2450MHz are given in Fig.12 and Fig.13, 

where Fig.13 is an enlarged version of Fig.12. From inspection of Fig.13, the field inside the cells is 

not constant and the induced field intensity is directly proportional to the frequency. In the other words, 

the higher the operating frequency that is used to excite the model, the higher the electric field intensity 

that will be induced within the analyzed structures.  

 

To complete the simulation, the HH models are embedded in the surface of the spherical cells, in a 

direction normal to the surface, to represent the membrane effect of the tissue model. Versions 

including this were studied at frequencies of 900MHz and 2450MHz. As can be seen in Fig. 14 and 

Fig.15, there is an explicit difference of approximately 15% in the field strength due to the contribution 

of the membrane effect from the HH model. In general, these variations were in well agreement with 

expectations [4, 12, 28].  

 

(**How was the HH model scaled in frequency?? This question was asked in Rome as well) 

 

4.2 Cubical Cells Model 

 

Since living cells, when compacted into connected tissue, are not perfect spheres, a cluster of cubical 

cells was chosen for study on the foundation of the previous spherical-cells analysis. Fig.16 depicts the 

proposed cluster of cubical cells in a three dimensional view of the FDTD computational domain. In 

order to compare the results obtained from the previous model to this analysis, the FDTD simulation 

was executed, keeping the same FDTD parameter values as in the previous configuration. The 2D view 

of the electric field inside the cubical-cell tissue is shown in Fig. 17. The field distributions along the 

propagation direction of the incident wave, through the centre of the simulated structure at various 



frequencies are illustrated in Fig.18 and Fig.19. Moreover, the contribution of the HH model to the 

cubical tissue model has also been investigated, as shown in Fig.20 and Fig.21. The effect of adding the 

HH model is about 15% difference in field, as can be seen from the figure. 

 

The peak field on the membrane of the cubical structure is observed to be about three times higher than 

in the cytoplasm which agrees well with the results from the structure based on spherical cells. 

However, the absolute field strength is approximately doubled in the spherical-cell case, presumably 

because of the curvature at the point studied: it is to be expected that much higher fields would be 

observed at the corners of the cubical cells, but it might be argued that, as a localised matter, these 

points do not correspond well with biological reality.  

 

 

5. CONCLUSION 

 

An approach to microdosimetric modeling of bioelectromagnetic interactions at the cellular level has 

been presented. This uses the FDTD method, combined with an arbitrarily-oriented implementation of 

the Hodgkin-Huxley cell-membrane model and the Floquet periodic boundary condition. By 

implementing a frequency-scaling approach, the number of FDTD time steps for such an electrically-

small structure can be reduced from several millions to a few tens of thousands. The reflection on the 

interface layers inside the FDTD computation domain has also been successfully reduced, even tough it 

is within lossy penetrable media, by using a modified version of Berenger’s PML absorbing boundary 

condition. The accuracy of the FDTD scaling approach was verified with idealized models of spherical 

cells in lossy media. The feasibility of the inclusion of the HH model inside the FDTD computation 

domain was demonstrated.  This leads to the conclusion that the application of the HH model allows 

cells of arbitrary geometries to be handled and demonstrates the viability of embedding other types of 

lumped-element model for membrane behavior.  

 

Use of the Floquet boundary condition enables a non-trivial region of connected biological tissue to be 

simulated. Such a tool will facilitate deeper investigation of the phenomena in the interaction between 

EM fields and biological systems at various levels of spatial definition.  The combination of quasi-

static FDTD with an arbitrarily-oriented lumped element membrane model, the modified Berenger 



ABC and the Floquet periodic boundary condition represents a significant advance in verisimilitude of 

biological cell modeling. 

 

(* ‘Numerical Noise’ sentence deleted – you can’t introduce a new issue in the Conclusions! Either 

discuss it in the main text or forget it) 
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Table 1. Electrical properties of the simulated media at relevant frequencies 

 900 MHz 1800MHz 2000MHz 2450MHz 10GHz 

iσ  72.2003 

 

71.956 

 

71.88 

 

71.6806 

 

63.5023 

 

iε  0.4168 

 

0.7656 

 

0.8742 

 

1.1590 

 

12.8384 

 

mε  1.6526 

 

1.5680 

 

1.5621 

 

1.5536 

 

1.5371 

 

mσ  0.0217 

 

0.0232 

 

0.0233 

 

0.0234 

 

0.0237 

 

eε  72.2003 

 

71.956 

 

71.88 

 

71.6806 63.5023 

 

eσ  1.3168 1.6656 1.7742 2.0590 13.7384 

     Where subscripts i, m, e represent cytoplasm, membrane and extracellular medium respectively. 

 

 

 

 

Table 2. Frequency scaling transformation factor from 10GHz to the mobile communication 

frequencies given 

Parameter 900MHz 1800MHz 2000MHz 2450MHz 

Cytoplasm 

Membrane 

Extracellular 

medium 

0.9296 

0.9 

0.8867 

0.9337 

0.97 

0.9226 

0.9344 

0.9756 

0.9254 

0.9360 

0.9838 

0.9301 

 

 

 

 

 

 



 

 
Fig.1: Equivalent electrical circuit for the cell’s membrane [4]. 

 

 

 
 

 

Fig.2: Modified LE-FDTD cell on normal FDTD cell grid [4]. 

 

 

 



 

 
                                    

Fig.3: Field distribution in and around a single isolated cell. 

 

 
 

Fig.4: Electric Field (Ex) distribution along principal axes of a double-layer sphere in lossy medium, 

excited by a plane wave of 1V/m at 2450GHz. 



 
 

Fig.5: Electric Field (Ez) distribution along the x-axis for double-layer sphere in lossy medium, excited 

by plane wave of 1V/m at 2450GHz. 

 

 
 

Fig.6: Two-dimensional view of the simulated periodic structure in the FDTD computational domain, 

extended by the Floquet boundary condition. 



 
Fig.7: Three-dimensional view of the basic simulated spherical structures in the FDTD computational 

domain. 

 

 
 

Fig.8:  Electric field distribution along z-axis, through the centre of the simulated structure, showing 

effect of different spacings to the Floquet boundary condition (Ncell is the number of FDTD cells from 

the biological cell wall to the boundary). 

 



 

 

 
 

Fig.9: Electric field distribution (Enlargement of Fig.8) 

 

 

 

 

Fig. 10: Modulus of the electric field on the xz-plane at intermediate frequency 10GHz, with 

Floquet boundary spaced 20 FDTD cells from the biological cell walls. 

 

 



 

 

Fig.11:  Modulus of the electric field on xz-plane at intermediate frequency 10GHz, with 

Floquet boundary adjacent to the biological cell walls. 

 

 

 
 

Fig.12: Electric field distribution along z axis, through the centre of the simulated structure in Fig. 11. 

 



 
 

Fig.13: Electric field distribution along z axis, through the centre of the simulated structure in Fig. 11 

(Enlargement) 

 

 
 

Fig.14: Electric field distribution along z-axis, through the centre of the simulated spherical structure in 

Fig 11, incorporating HH model and driven at 900MHz. 



 
 

Fig.15: As Fig. 14, driven at 2450MHz. 

 

 

 

Fig.16: Three-dimensional view of the simulated cubical structures in the FDTD 

computational domain. 

 



 

 

Electric Field intensity in dB scale 

 

Fig.17:  Modulus of the electric field on xz-plane at intermediate frequency 10GHz with 

Floquet boundary adjacent to the biological cell walls. 

 

 

 
 

Fig.18: Electric field distribution along z-axis, through the centre of the simulated cubical structure 

 

 

 



 
 

Fig.19: Electric field distribution along z-axis, through the centre of the simulated cubical structure 

(Enlargement of Fig.18) 

 

 
Fig.20: Electric field distribution along z-axis, through the centre of the simulated spherical structure in 

Fig. 17, incorporating HH model and driven at 900MHz. 

 



 

 

 
 

Fig.21: As Fig. 20, driven at 2450MHz. 
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