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A Simple Algorithm for Sidelobe Cancellation in a Partially Adaptive
Linear Array

Abstract
The far-field lobes of the edge elements of a uniformly excited linear array are nearly equal in width to the
sidelobes of the array itself, and hence the edge elements are ideal for cancellation of specific sidelobes of the
pattern. This supports the concept of partial adaptivity using only the edge elements. This technique is suitable
for real-time implementation because only the edge elements require direct control whereas the inner
elements are controlled by PROM’s. Other advantages are that the nulls produced specifically by control of
the edge elements are deep and wide. Also the main beam gain is not much affected by the sidelobe
cancellation.
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with the 0.1 mm claimed for our method. A further advantage of this 
technique is the fact that the basic observations, the taking of several 
photographs, requires relatively little time, so that the results will be 
reasonably free of thermal changes. Further, the observations can be 
made at a variety of antenna orientations, so that structural distortions 
could be observed. A drawback is the time required for the analysis: 
the photographs need to be digitized, and the data then processed 
before a set of panel adjustment instructions can be issued. A recent 
demonstration of the technique involving 110 points and six 
photographs required 50-min measuring time, and 2 0 4 1 1  reduction 
time. The number of points on a large radio telescope is more likely 
in the vicinity of 1OOO. Fraser [3] quotes 18 h for the time to scan the 
images of a 34-m antenna. 

Holography: This technique [3] has several advantages over the 
alternative schemes: it provides a true measure of the performance of 
the reflector/subreflector system, since it measures the phase 
variations across the outgoing wavefront. However, this method has a 
cost: high signal-to-noise is required, which in general translates to a 
requirement for long integrations and hence the operation may take 
several hours. Furthermore, interpretation in case of dual-reflector 
antennas is not straightforward. 

CONCLUSION 

In this communication we have described a survey method which 
has allowed us to adjust the reflector surface of large radio telescopes 
to high accuracy: we claim an achieved overall setting accuracy of 
better than 0.25 mm. 
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A Simple Algorithm for Sidelobe Cancellation in a 
Partially Adaptive Linear Array 

ISMAIL EL-AZHARY, MEMBER, IEEE, MOSTAFA S. AFIFI, SENIOR 
MEMBER, IEEE, AND PETER S .  EXCELL, SENIOR MEMBER, IEEE 

Abstract-The far-field lobes of the edge elements of a uniformly 
excited linear array are nearly equal in width to the sidelobes of the array 
itself, and hence the edge elements are ideal for cancellation of specific 
sidelobes of the pattern. This supports the concept of partial adaptivity 
using only the edge elements. This technique is suitable for real-time 
implementation because only the edge elements require direct control 
whereas the inner elements are controlled by PROM’s. Other advantages 
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are that the nulls produced specifically by control of the edge elements are 
deep and wide. Also the main beam gain is not much affected by the 
sidelobe cancellation. 

INTRODUCTION 

An important class of adaptive antennas is the class of sidelobe 
cancellers (with possible beam maximization requirement) that were 
among the first applications of adaptive arrays [ 11. Many approaches 
are possible, depending on the adaptivity algorithm utilized. Most of 
these algorithms are time-consuming and are difficult to implement in 
real-time because they involve complex iterations and matrix 
operations [2]-[5]. 

Sometimes only few elements of the array are controllable, e.g., 
the Howells sidelobe canceller [6] ,  and in this case the array is said to 
be partially adaptive. Full adaptivity (control of all elements) could be 
prohibitively expensive in many applications, especially when the 
array contains a large number of elements [7], and may raise 
reliability problems due to the large number of components required 
and the complexity of the controlling processor. 

In this communication, a simple algorithm for cancelling specific 
sidelobes, using edge elements alone, is presented. 

THE RELATION BETWEEN THE SIDELOBES AND THE PATTERN OF 
THE EDGE ELEMENTS 

Consider a linear array with N + 1 elements separated by equal 
intervals of size h. Assume a uniform excitation function such that 
w(n) = 1 for all elements. In this case, it is well known that the 
modulus of the array factor f,(O) is given by 

sin (F sin 0) 

Fig. 1 shows the pattern due to the edge elements alone (the solid 
curve) together with the pattern of a uniformly excited 11-element 
array (the dotted curve). It is clear that the pattern due to the edge 
elements, given by 

f = e j kh (N /2 )  sin 0 + e - j kh (N /Z )  sin 0 

= 2 cos [ sin 01 

forms a cosine pattern with almost the same sidelobe structure and 
periodicity as the sidelobes of the complete array pattern. 

AN ALGORITHM FOR CANCELLING SPECIFIC SIDELOBES 

A simple algorithm is now presented to cancel any selected 
sidelobe by making use of this property. 

Let there be an interfering signal coming from the direction Oinf. 
Instead of creating a null in this direction only, it is more convenient 
to cancel the whole sidelobe which contains the angle Oinf. A simple 
search algorithm can be used in determining which sidelobe contains 
the angle e,,,. 

In order to cancel the whole sidelobe, it is first necessary to 
determine the angle Om of its center. Then by adding a cancellation 
signal with conjugated phase shifts to the first and the last elements, 
respectively, a superimposed cosine pattern is created which can be 
shifted left or right in order that one of its peaks coincides with Om. 
Now, by scaling the amplitude of the cosine pattern by a factor C, 
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Fig. 1 .  The pattern due to the edge elements alone (solid curve), compared 
with the pattern of an equispaced 1 1-element uniformly excited linear array 
(dotted curve). 

say, so that it is equal in magnitude to and in antiphase with the array 
pattern at Om, the sidelobe in question will be cancelled. 

The arithmetic involved in the above procedure is straightforward, 
as follows 

1) The maxima of the sidelobes occur at angles Om, where 

(2m + 1) 
sin Om = ~ 

N+ 1 (3) 

where N + 1 is the total number of elements in the array, m = 1 ,2 ,  
. * a ,  N/2 is the index of the sidelobe to be cancelled. 

2) Knowing the angle Om and assuming a h/2 spacing between 
elements (i.e., kh = T )  and assuming an odd number of elements, 
the corresponding maxima f, can be computed from (1) 

(4) 
1 

Ifml= 
?r (2m+ 1) 

Isin [ 4 I 
3) Apply conjugated phase shifts 6 and -6  to the cancellation 

signal of amplitude C fed to the edge elements. The cancellation 
pattern is then given by 

1 2cos  L--(Zm+l)+6 N 
2 N + l  ( 5 )  

4) At Om, 

fc(em)= - f m -  (6) 

If the peak of the cosine pattern is registered with the peak of the 
sidelobe in question, the value of the cosine term in (5) is unity and 
therefore, 

ICl=l f4em)l /2= lfml/2 (7) 

and 

5) Knowing C and 6, the excitation of the edge elements that would 
produce a pattern whose mth sidelobe is cancelled, can be computed. 
The required excitation w,,(n)ej*" is simply the superposition of the 

DEGREES 

Fig. 2 .  The effect of cancelling the fourth sidelobe (solid curve) compared 
with the original pattern of the uniformly excited array (dotted curve). 

new cancellation signal and the original signal. 

I wnew(O)l=  I w n e w ( W 1  

= ((1 - ( -  l )mC cos Cz sin2 6}1/2 (9) 

and 

C sin 6 
l - ( - l ) m C c o s  6 & = arctan 

and 

d'O= -'#'N. (1 1) 

It is clear that interchanging the signs of r$N and +o results in 
cancelling the sidelobe at - Om. 

Fig. 2 shows the cancellation of the fourth sidelobe for a uniformly 
excited 1 1 -element array. 

CONCLUSION 

It is clear that the main lobe gain is not greatly affected since only 
two elements of the whole array are used. Additionally, the individual 
nulls produced are wide enough to accomodate frequency fluctua- 
tions, usually overcome in conventional techniques by placing two 
adjacent nulls in the radiation pattern [8]. 

The algorithm for sidelobe cancellation presented in this commun- 
ication required full control of both the amplitude and phase of the 
feeds to the edge elements. However, the most important advantage 
of the algorithm is that it is suitable for real-time implementation, 
since, knowing the excitation function and the number of elements of 
the array, the values of w,,, and C$ can be computed and stored in 
look-up tables and these values are less than half of the total number 
of elements of the array. This means, once the sidelobe to be 
cancelled is determined, its w,,, and C#J are issued immediately 
without delays due to matrix operations or iterations. For a 
nonsteerable array this gives a great reduction in the number of RF 
devices. For steerable arrays all elements must have active devices in 
the feeds, but the algorithm is simpler than that for full adaptivity 
because it involves direct control for the edge elements alone whereas 
the interior elements may be controlled indirectly using PROM's. 
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Note on Hybrid Finite Element Method for Solving 
Scattering Problems 

JIAN-MING JIN AND VALDIS V. LIEPA, MEMBER, IEEE 

Abstract-The hybrid finite element formulation is modified so that it 
results in a sparse banded symmetric matrix. This modification substan- 
tially improves the computational efficiency and enhances the Capability 
of the method, which is demonstrated by numerical examples. A 
comparison with other numerical techniques is presented. 

I. INTRODUCTION 

The hybrid finite element method (HFEM) was first introduced by 
Silvester and Hsieh [l] and McDonald and Wexler [2] in the early 
1970’s, and has been further improved and applied to solving various 
two-dimensional unbounded field problems, e.g., [3]-[9]. The 
method expresses the exterior fields using an eigenfunction series or 
an integral involving a Green’s function. Such expressions are 
imposed on the variational equation or, more conveniently, on the 
matrix equation derived using the finite element method for the 
interior fields. As a result, HFEM produces a system matrix having a 
nonuniform block submatrix structure. Such a matrix, as pointed out 
by Mei and Morgan [lo], [ll],  is not easily adaptable to banded 
matrix algorithms, and hence is numerically inefficient to solve using 
direct or iterative methods. As a consequence, HFEM in such a form 
is less efficient than the unimoment method [lo]-[12] and its 
modification-the so-called hybrid finite element-extended boundary 
condition method (hybrid FEM-EBCM) [13], mainly because the 
unimoment method and the hybrid FEM-EBCM can take advantage 
of generating numerical basis functions by solving sparse or 
uniformly banded matrices. 

In this communication, the HFEM formulation is modified in such 
a way that it also results in a sparse or uniformly banded matrix, 
rather than a partly full and partly sparse nonuniform matrix. The 
particular formulation used is that first proposed by McDonald and 
Wexler [2] and thereafter improved and used by others [SI-[9]. The 
modification is accomplished by changing the sequence of matrix 
substitutions, a procedure that has been discussed by McDonald and 
Wexler [6] for general HFEM formulations. The implementation is 
straightforward, but it substantially improves the computational 
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efficiency and enchances the capability of the method. In the 
following we consider the technique applied to electromagnetic 
scattering, present sample computations, and compare with other 
methods. 

II. FORMULATION 

Consider a two-dimensional scattering problem illustrated in Fig. 
1 ,  where the contour I’ encloses the scatterer, and the contour rA  is 
an artificial boundary enclosing r. The details of the HFEM analysis 
of this problem can be found in [9]; however, for brevity, the notation 
used here is somewhat different. Application of the finite element 
analysis to the region enclosed by rA results in the matrix equation 

where the subscript A denotes the nodes on rA,  Zthe nodes interior to 
F A ,  and {+} is the discretized unknown field vector. There are no 
nodes between ra and I’. Equation (1) is referred to as the finite 
element equation. 

} and (41) .  
Such an equation can be obtained by using a surface integral equation 
involving the free-space Green’s function, which in discretized form 
is written as 

To solve ( l ) ,  another equation is needed to relate 

rPAAl{4A}+[PAII{4I}={4AnC} (2) 

where {+:} is the known incident field vector on boundary F A .  
Equation (2) is referred to as the equivalent boundary constraint on 

The solution for { 4 A }  and {41}  can then be found by jointly 
solving (1) and (2). There are two approaches. The first, which is the 
one commonly used, imposes (2) on (1) and gives the final system 
equation 

tK;,l{4I} = { $ I }  (3) 

w;,1= WII1 - [KIAItPAAI- I [Pa119 { $ I  1 = - [KIAItPAAI- ’ {4? 1. 

where 

In this approach, two matrices have to be solved: one is complex and 
full matrix [PAA] having size of NA x NA , and the other is a partly 
full and partly sparse complex matrix [K;,] having size of NI x NI,  
where NA is the total number of nodes on rA  and NI is the total 
number of nodes interior to T A .  Usually, NI is much larger than NA , 
and hence the size of the scatterer to be treated by HFEM is mostly 
limited by the magnitude of NI. 

The second approach, which we present here, substitutes (1) into 
(2) and gives the equation 

where 

Mathematically, this second approach is equivalent to the first one; 
however, computationally it is much more efficient. Here, one also 
needs to solve two matrices: one is a complex and full matrix [ P i A ] ,  
but now the other is a symmetric and sparse matrix [ICII], which 
becomes real-valued for lossless scatterers and can be narrowly 
banded if one numbers the nodes properly. A more obvious 
comparison is given in Table I. The difference between the first 
approach and the second approach is in the properties of the matrices 
[K;,] and [KII].  Solving a symmetric, sparse or uniformly banded 
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