
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

10-1-2006

Rule Dependencies in Access Control Lists
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

John McGinn
Glyndwr University, j.mcginn@glyndwr.ac.uk

John N. Davies
Glyndwr University, j.n.davies@glyndwr.ac.uk

Rich Picking
Glyndwr University, Wrexham, r.picking@glyndwr.ac.uk

Stuart Cunningham
Glyndwr University, s.cunningham@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., McGinn, J., Davies, J., Picking, R. & Cunningham, S. (2006) ‘Rule Dependencies in Access Control Lists’, [Paper presented
to the International Association for Development of the Information Society (IADIS) International Conference WWW/Internet 2006
(ICWI 2006), 5th-8th October 2006]. Murcia, Spain

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Rule Dependencies in Access Control Lists

Abstract
This paper considers the effects of dependencies between rules in Access Control Lists (ACLs). Dependent
rules may not be reordered in an ACL if the policies of the list are to be preserved. This is an obstacle to the
optimisation of rule order intended to reduce the time taken matching packets against rules. In this paper, the
concept of rule dependency is defined in relation to the problem of minimising processing latency. The
concepts of dependence and possible dependence are introduced and the relationship between them
considered. Two measures of dependency, the dependency index and the fragmented dependency index are
defined and formulated and an upper bound for each is derived. Examples of real-world ACLs are studied and
the implications for practical optimisation discussed.

Keywords
access control lists (ACLs), rule dependencies, optimisation, packet latency

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2006 iadis and authors. This is a reprint of a paper that was presented at the International
Association for Development of the Information Society (IADIS) International Conference WWW/Internet
2006 (ICWI 2006), on the 5th-8th October 2006 which was held in Murcia, Spain. It was also published in
the conference proceedings. The iadis website is available here http://www.iadis.org and details of the
conference are available at http://www.iadis.org/icwi2006/index.asp

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/77

http://www.iadisportal.org/
http://www.iadis.org/icwi2006/index.asp
http://epubs.glyndwr.ac.uk/cair/77?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F77&utm_medium=PDF&utm_campaign=PDFCoverPages

RULE DEPENDENCIES IN ACCESS CONTROL LISTS

Vic Grout, John McGinn, John Davies, Rich Picking and Stuart Cunningham
Centre for Applied Internet Research (CAIR), University of Wales, NEWI

Plas Coch Campus, Mold Road, Wrexham, LL11 2AW, UK

{v.grout|j.mcginn|j.n.davies|r.picking|s.cunningham}@newi.ac.uk

ABSTRACT

This paper considers the effects of dependencies between rules in Access Control Lists (ACLs). Dependent rules may

not be reordered in an ACL if the policies of the list are to be preserved. This is an obstacle to the optimisation of rule

order intended to reduce the time taken matching packets against rules. In this paper, the concept of rule dependency is

defined in relation to the problem of minimising processing latency. The concepts of dependence and possible

dependence are introduced and the relationship between them considered. Two measures of dependency, the dependency

index and the fragmented dependency index are defined and formulated and an upper bound for each is derived.

Examples of real-world ACLs are studied and the implications for practical optimisation discussed.

KEYWORDS

Access Control Lists (ACLs), Rule dependencies, Optimisation, Packet latency.

1. INTRODUCTION: ACCESS CONTROL LISTS

Access Control Lists (ACLs) play a major rôle in the process of passing or blocking traffic through certain

regions of a network. They can permit or deny traffic from or to given sources or destinations, or

discriminate on the basis of content or other characteristics. In addition, their ability to filter network traffic

makes ACLs suitable for a wider purpose; any in which there is a need to choose certain traffic, probably as

data packets, for a given policy. Network Address Translation (NAT), traffic shaping, various aspects of

Internet routing, and numerous other traffic policies all require packets to which the policy is to be applied to

be separated from those to which it is not. ACLs may vary considerably in size, structure and purpose but it

is not uncommon for each packet to be tested against several ACLs on its passage across a single internet

router and many more across a complete autonomous system or domain. It is therefore useful to optimise

ACLs for efficiency.

An ACL is an ordered list of rules. Each rule accepts or rejects a packet based on one or some of its

characteristics - its profile. Typically, a packet may be considered on the basis of its source and/or

destination address or traffic type, although other features, or flags, may be relevant (Cisco, 2000, Sedayao,

2001). Figure 1 gives an example of a typical ACL in the syntax of the Cisco Internetwork Operating System

(IOS) (JANet, 2005). The use of the terms permit and deny reflect the original role of ACLs in passing or

blocking traffic (although their use is now considerably more widespread). Each packet to be tested against

an ACL is compared with the first rule, then the second, and so on, until a rule matches its profile. The rule

is then permitted or denied accordingly and no more rules are considered. There is taken to be an implicit

‘deny all’ rule terminating each list to deal with packets not matched by any other rule. ACL optimisation

effectively means finding an ordering of its rules that minimises processing time and thus packet latency.

However, rule order can be critical in an ACL. To illustrate this, consider two rules as follows: rule 1

permits packets with characteristic A (source address, for example) and rule 2 denies packets with

characteristic B (destination address, say). A packet with a profile matching both characteristics (from A to B

in this case) will match both rules. The rules are dependent. Consequently, the order of rule 1 … rule 2 will

permit the A to B packet whereas the order rule 2 … rule 1 will deny it. In Figure 1, rules 8 and 9 are

dependent: an SMTP packet from the 192.168.2.0 network to the mail-server will match both. It is the

intention of the policy, in its given form, that such a packet should be blocked. However, promoting rule 9

above rule 8 would (incorrectly) pass it. Not all rules will be dependent in this way but those that are must

have their relative order in the list preserved if the ACL is to retain its intended purpose. Of course, this only

applies for rules of opposite types. Several ‘permit’ rules in a contiguous block, for example, can be freely

reordered among themselves. This paper considers the effect of dependent rules on the effectiveness of any

optimisation (latency minimisation) process.

 (1) access-list 173 permit icmp any any

 (2) access-list 173 permit tcp any any established

 (3) access-list 173 deny ip RANGE MASK any

 (4) access-list 173 deny ip 10.77.23.0 0.255.255.255 any

 (5) access-list 173 deny ip 172.16.2.0 0.15.255.255 any

 (6) access-list 173 deny ip 192.168.1.0 0.0.255.255 any

 (7) access-list 173 deny ip 169.254.1.0 0.0.255.255 any

 * (8) access-list 173 deny ip 192.168.2.0 0.0.0.255 any

 * (9) access-list 173 permit tcp any host MAILSERVER eq smtp

 (10) access-list 173 permit tcp any host NAMESERVER eq domain

 (11) access-list 173 permit udp any host NAMESERVER eq domain

 (12) access-list 173 permit udp any eq 53 host NAMESERVER gt 1024

 (13) access-list 173 permit tcp host MANAGER host SUN eq telnet

 (14) access-list 173 permit tcp host MANAGER host SERIAL0 eq telnet

 (15) access-list 173 permit tcp host MANAGER host ETHERNET0 eq telnet

 (16) access-list 173 permit udp host MANAGER host SERIAL0 eq snmp

 (17) access-list 173 permit tcp any host FTPSERVER eq ftp

 (18) access-list 173 permit tcp any eq ftp-data host FTPSERVER

 (19) access-list 173 permit tcp any eq ftp-data any gt 1024

 (20) access-list 173 permit tcp any host WWWSERVER eq www

 (21) access-list 173 permit tcp any host SWWWSERVER eq 443

 (22) access-list 173 permit udp EXT-NTPSERVER any eq 123

 (23) access-list 173 permit udp any range 6970 7170 any

 (24) access-list 173 deny ip any any

Figure 1. An Example of an Access Control List (ACL).

2. ACL OPTIMISATION AND RULE DEPENDENCIES

Where appropriate in this paper, abbreviations are used as follows: ∃, ‘there is’ or ‘there exists’; ∀, ‘for

all’ or ‘for every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such that’. Using the notation of Grout and McGinn

(2005), define A* to be the set of all addresses available within a given system, define B* to be the set of all

protocols recognised by the system and define F* = {0, 1}
w
 to be the set of w flag vectors ({0, 1} w-tuples

acting on B*) valid for the system. For completeness only, X* represents the set of payloads.

A packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its constituents: Sak ∈ A*, the source address; Dak ∈ A*,

the destination address; bk ∈ B*, the protocol; fk ∈ F*, the flags vector and Xk ∈ X*, the payload. A rule, ri =

(ti, SAi, DAi, Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ A*: the source range, DAi ⊆ A*: the

destination range, Bi ⊆ B*: the protocol range, and a flags predicate, σi: F* a {true, false}. Only ti is a

required component in all syntaxes. If any other components are absent then SAi = A*, DAi = A*, Bi = B* or

σi ≡ true by default. A policy, Z = [r1, r2, ..., rn] is an (ordered) sequence of n rules to achieve some purpose.

The last rule in any policy implicitly denies all traffic; that is, tn = deny, SAn = A*, DAn = A*, Bn = B* and σn

≡ true. A packet, pk, matches a rule, ri (for which we write pk ∇ ri), if its addresses and protocols are within

the range of the rule and if its flags vector satisfies the rule’s flags predicate. That is,

 pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ (bk ∈ Bi) ∧ σi (fk), (1)

in which case the packet will be permitted or denied according to ti.

A dependency exists between two rules, ri and rj, if they are of opposite type and it is possible that there

exists a packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj)); that is ri and rj are dependent if

 (ti ≠ tj) ∧ ∃ pk → (Sak ∈ SAi ∩ SAj) ∧ (Dak ∈ DAi ∩ DAj) ∧ (bk ∈ Bi ∩ Bj) ∧ σi(fk) ∧ σj(fk). (2)

Eliminating the packet, pk, from this expression, allows a {0, 1} dependency matrix, D = (dij: 1≤ i,j ≤ n),

to be defined:

 dij ⇔ (ti ≠ tj) ∧ (SAi ∩ SAj ≠ ∅) ∧ (DAi ∩ DAj ≠ ∅) ∧ (Bi ∩ Bj ≠ ∅) ∧ (Σi ∩ Σj ≠ ∅), (3)

where Σi ⊆ F* is the subset of flag vectors satisfying σi. Two rules, ri and rj, are possibly dependent if they

are of opposite type (ti ≠ tj), giving a possible dependency matrix, P = (pij: 1≤ i,j ≤ n), defined as pij ⇔ (ti ≠

tj). If dij = 1 then the order of rules i and j must be preserved if the behaviour of the policy is to be

maintained. Detecting dependencies and anomalies, particularly in real-time on a production router is not

trivial, however (Hari et al., 2000, Al-Shaer and Hamed, 2004). If there is any uncertainty then it may be

necessary to apply the same restriction when pij = 1.

An access list, or simply list, L, implements a policy, Z = [r1, r2, ..., rn], if it is a permutation of the rules

of Z such that the order of dependencies is preserved. Let ri(L) be the rule at position i in L. A special case

of a list implementing a policy, Z, is the identity list, IZ = [r1, r2, ..., rn], for which ri(IZ) = ri ∀ i (1≤ i ≤ n). IZ

is usually the starting point for any ACL optimisation, particularly iterative search techniques.

The hit-rate, h(ri(L)), of rule ri in a list L, is the probability that a packet will match ri in L. Hit-rates can

be calculated dynamically using counters within the IOS or hardware (Cisco, 2002 & 2003). The latency,

λ(ri), of a rule ri is the time taken to (independently) process ri. This may be calculated from the length of a

rule, the nature of the protocols involved or taken from stored tables. In some systems, latencies may be

constant for all rules but this is not assumed in this paper. The cumulative latency, κ(ri(L)), of ri in a list L, is

the time taken to process ri and all rules preceding it in L.

 ∑
=

=
i

i LrLr
1

))(())((
ϕ

ϕλκ . (4)

The expected latency, E(L), of a list L, is then given by

 ∑ ∑∑
= ==

==
n

i

i

ii

n

i

ii LrLrhLrLrhLE
1 11

))(())(())(())(()(
ϕ

λκ . (5)

Optimising an ACL requires us to find (or approximate) the list, L, implementing a policy, Z, that minimises

E(L), subject to the constraints of the dependency matrices, D or P. Grout and McGinn (2005) show the

problem to be NP-complete (Garey and Johnson, 1979).

P: Permit D: Deny X – No dependencies ? – Possible dependencies

RULE 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

& TYPE P P D D D D D D P P P P P P P P P P P P P P P D

1 P

2 P

3 D

4 D

5 D

6 D

7 D

8 D

9 P

10 P

11 P

12 P

13 P

14 P

15 P

16 P

17 P

18 P

19 P

20 P

21 P

22 P

23 P

24 D

Figure 2. Rule Dependencies.

X – No ? - Possible

dependencies dependencies

? – Possible

dependencies
X – No ?

dependencies

X

X ?

?

X

?

X – No dependencies ?

X ? – Possible dependencies

X

3. DEPENDENCY INDICES AND BOUNDS

Define the dependency index (DI) to be the ratio of dependent rule pairs to all rule pairs. Larger numbers

of rule dependencies (larger DIs) restrict ACL optimisation by making more potential rule reorderings (e.g.

swaps) illegal (Grout et al., 2006). For n rules, there are n
2
 potential dependencies. However, dependencies

are not possible between rules of the same type so, for a policy of x permits and y denys (n = x + y), the

number of possible dependencies is n
2
 – x

2
 – y

2
 with DI bounded above by (n

2
 – x

2
 – y

2
) / n

2
. Figure 2 shows

these relationships for the ACL in Figure 1 with n = 24, x = 17, y = 7 and DI ≤ (576 – 289 - 49) / 576 = 0.41.

Figure 3 shows how the limit for DI varies with x (and y), the minimum value of 0 occurring when x (or y) =

n and the maximum value of 0.5 when x = y = n/2.

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 9 11 13 15 17 19 21 23 25

Upper bound for DI

x: Number of Permits

x + y = n n = 24

n2 – x2 – y2

n2

Figure 3. A Bound for the Dependency Index (DI).

DI provides a measure of the (lack of) freedom to reorder rules in the optimisation process. However,

this assumes that all rule swaps (say) are considered within the optimisation algorithm (Bukhatwa and Patel,

2003, Bukhatwa, 2004, Grout and McGinn, 2005, for example). In the real-world, such an approach would

be too complex to be embedded in a router’s hardware or software and, typically, only adjacent swaps are

considered (Grout et al., 2005). If the search algorithm prohibits swaps between non-adjacent (permit or

deny) blocks then a different dependency index is required to be meaningful.

To this end, suppose an ACL, L, consists of bx blocks of permits, Xj (1≤ j ≤ bx) and by blocks of denys, Yk

(1≤ k ≤ by). Then

 ∑∑
==

+=+=
yx

b

k

k

b

j

j YXyxn
11

|||| , (6)

where |B| represents the number of rules in block B. If swaps are not permitted (or considered) between non-

contiguous blocks, then the number of infeasible or possibly dependent pairs is increased to

2

11

22 |||| k

b

k

b

j

j YXn
yx

∑∑
==

−− (7)

(again consider Figure 2) and the fragmented dependency index (FDI) bounded above by

 









−− ∑∑

==

2

11

22

2
||||

1
k

b

k

b

j

j YXn
n

yx

. (8)

For the example in Figures 1 and 2, bx = by = 2, |X1| = 2, |Y1| = 6, |X2| = 15 and |Y2| = 1 giving FDI ≤ (576

– 4 – 36 – 225 – 1) / 576 = 0.54. In general, FDI is minimised when bx = 1 and by = 0 (|X1| = n) or bx = 0

and by = 1 (|Y1| = n) and maximised by alternating single permits and denys (bx = by = n/2, |Xj| = |Yk| = 1 ∀

1 ≤ j,k ≤ bx,by) giving a bound of (n
2
 – n) / n

2
, which tends to 1 as n increases – the worst case. Figure 4

illustrates the general bound for equally sized permit/deny blocks, |Xj| = |Yk| = n / (bx + by) ∀ 1 ≤ j ≤ bx ∧ 1

≤ k ≤ by.

0

0.2

0.4

0.6

0.8

1

1.2

1 3 5 7 9 11 13 15 17 19 21 231 2 3 4 6 8 12 24

Upper bound for FDI 









−− ∑∑

==

yx
b

k

k

b

j

j YXn
n 1

2

1

22

2
||||

1

bx + by

|Xj| = |Yk| = n / (bx + by)

∀ 1 ≤ j ≤ bx and 1 ≤ k ≤ by

Figure 4. Typical Bound for the Fragmented Dependency Index (FDI).

4. ANALYSIS AND RESULTS

This section uses the DI and FDI of real-world ACLs to discuss the suitability of simple optimisation

techniques. Grout et al. (2006) propose the following three-part heuristic, called δ-OPT, for simple,

embedded minimisation of expected latency:

 Step 1: Initialisation (following manual ACL configuration)

 for i := 1 to n do

 hi := 1 \ hit rates equal at start

 Step 2: Promotion (on a packet matching rule i)

 h(ri) := 2h(ri) \ exponentially increase matched hit-rate

 if (di-1 i=0) and (h(ri)λ(ri-1) > h(ri-1)λ(ri)) then \ (or pi-1 i = 0) …

 Swap(ri-1, ri) \ promote if E(L) reduced

 Step 3: Reduction (periodically to prevent overflow)

 for i := 1 to n do

 h(ri) := h(ri) / max j h(rj)

Derivation and details are to be found in the original paper. There is some processing cost associated with

implementing this algorithm. However, depending upon the nature of the traffic and dependency indices of

the rules, this simple optimisation can be shown to be worthwhile (i.e. to reduce overall expected latency) for

ACLs above a certain length (number of rules, n). Table 1 summarises these results as the minimum number

of rules for the saving in ACL latency to outweigh the latency from the algorithm. S is the stability of the

traffic flow, essentially a probability that a given packet is similar to the previous one in that it matches the

same rule in the ACL, L. δ-OPT performs better for more stable traffic. However, only for values of DI

approaching 1 is optimisation worthless.

Table 1. Minimum value of n for δ-OPT to reduce E(L)

 DI = 0.00 0.25 0.50 0.75 1.00

S = 0.00 19 21 23 33 ∞

 0.25 16 19 21 29 ∞

 0.50 13 15 19 26 ∞

 0.75 9 10 13 21 ∞

 1.00 8 9 12 17 ∞

As an example, on the basis of these results and the calculations from Section 3, δ-OPT can be seen to

have a positive benefit for the ACL in Figure 1 for all traffic flows, S. (DI = 0.41 and FDI = 0.54, n = 24

and, from Table 1, taking an index of 0.5, optimisation will be worthwhile for ACLs larger than 23 rules,

even for the worst case, S = 0.) This analysis is now applied to a number of real-world ACLs. Table 2

summarises the characteristics of several ACLs taken from a variety of production applications. (No attempt

has been made to remove redundancies/inconsistencies, etc. from these ACLs: they are taken directly from

source.) ACLs B, C and D are taken from college/university LANs, F, G and H from company networks and

A and E from SOHO environments connecting to the Internet via an ISP. ACLs I, J and K are derived from

templates for various standard security configurations. In each case, the upper bound is calculated for the

two dependency indices. These values are plotted in Figure 5 for comparison.

Table 2. Permit/deny block structure for various real-world ACLs with corresponding dependency indices

ACL n x y bx by Xj Yk DI * FDI*

A 16 10 6 2 3 6, 4 2, 3, 1 0.47 0.74

B 53 20 33 4 4 10, 7, 2, 1 14, 12, 5, 2 0.47 0.81

C 55 10 45 2 3 5, 5 27, 17, 1 0.30 0.65

D 144 27 117 6 7 4, 7, 6, 6, 3, 1 18, 32, 12, 6, 25, 21, 3 0.30 0.87

E 19 7 12 1 2 7 6, 6 0.47 0.66

F 93 22 71 3 4 13, 8, 1 41, 17, 12, 1 0.36 0.73

G 111 29 82 1 2 29, 80, 2 0.39 0.41

H 62 4 58 2 3 2, 2 22, 32, 4 0.12 0.60

I 172 54 118 2 3 31, 23 77,40,1 0.43 0.70

J 68 19 49 4 5 1, 1, 15, 2 16, 8, 12, 10, 3 0.40 0.83

K 63 22 41 2 3 18, 14 18, 13, 10 0.45 0.76
* upper bound

On the basis of the derived dependency indices in Table 2, and the limits given in Table 1, Table 3

summarises the effectiveness of the δ-OPT heuristic for each of the ACLs, A, B, …, K. In each case, and

separately for each of DI and FDI, the algorithm is marked as worthwhile or otherwise depending on whether

its cost in terms of implementation is exceeded by the gain in expected latency.

Table 3 suggests that, at least for the ACLs tested, the choice of DI or FDI bound for assessing the

viability of the δ-OPT algorithm for different lists may not be as important as might be thought. Only in 3 of

the 55 ACL/traffic combinations does it affect the effectiveness of the algorithm. Whether or not this is true

generally does not affect this paper’s outcomes. The point is that these bounds can be used in this manner to

assess algorithmic performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A B C D E F G H I J K

Upper bound for FDI

Upper bound for DI

Figure 5. Comparing Bounds for DI and FDI for real-world ACLs.

Table 3. Effectiveness of δ-OPT for real-world ACLs

ACL S = 0.00 0.25 0.50 0.75 1.00

A DI* / FDI* … 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

B 1 / 0 1 / 0 1 / 1 1 / 1 1 / 1

C 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

D 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

E 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

F 0 / 0 0 / 0 0 / 0 0 / 0 0 / 0

G 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

H 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

I 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

J 1 / 0 1 / 1 1 / 1 1 / 1 1 / 1

K 1 / 1 1 / 1 1 / 1 1 / 1 1 / 1

 * 1: worthwhile 0: not worthwhile

5. CONCLUSIONS

We deal initially with the limitations of this work. Firstly, no attempt has been made to tighten the

(upper) bounds on DI and FDI. It is unlikely to be possible to achieve this formally and to compare rules in a

pairwise manner is far from trivial individually and is extremely complex for an entire ACL (Hari et al.,

2000, Al-Shaer and Hamed, 2004). An empirical study of the relationship between actual DI and FDI values

and their theoretical bounds for real-world ACLs is beyond a paper of this length but is left open as an

avenue for future research. Secondly, comparative results are only given for the δ-OPT heuristic. This is

partly because this is the only ACL optimisation process sufficiently efficient to be embedded in router

hardware (Grout et al., 2006) and partly because only for δ-OPT are the limit values in Table 1 available.

However, extending the analysis to other forms of optimisation (Cisco, 2002, 2003 & 2004, Bukhatwa and

Patel, 2003, Bukhatwa, 2005, Grout and McGinn, 2005, for example), whilst not providing efficient

solutions, may serve to aid the analysis of the relationship between DI and FDI and their bounds and their

different behaviour for ACLs with varying (e.g. block) structures. Thirdly, while the significance of different

traffic characteristics is recognised (by the stability factor, S), this cannot be pursued to the fullest extent

here.

There are a number of satisfactory outcomes, however. Firstly, the matching of packets and rules and the

optimisation of rule order within ACLs is formalised to enable the relationship between ACL structure and

rule dependency to be analysed. The optimisation objectives of minimising expected latency are hindered by

excessive dependence between rules and may render certain ACLs, or types of ACLs inappropriate for

optimisation. This can be measured, in principle, by the DI and FDI dependency indices and, in practice,

approximated by their bounds. A simple formula is given for each bound that can be calculated easily for

any ACL. A number of tests on real world ACLs then demonstrate how these bounds, in conjunction with

empirical testing and simulation (Grout et al., 2006), show how ACLs may be classified conveniently as

appropriate or inappropriate for optimisation.

REFERENCES

Al-Shaer, E. and Hamed, H., 2004. Modeling and Management of Firewall Policies, IEEE Transactions on Network

and Service Management, Vol. 1-1, April 2004.

Bukhatwa, F. and Patel, A., 2003. Effects of Ordered Access Lists in Firewalls, Proceedings of IADIS WWW/Internet

International Conference (W3I 2003), Algarve, Portugal, 5th-8th November 2003, pp257-264.

Bukhatwa, F., 2004. High Cost Elimination Method for Best Class Permutation in Access Lists, Proceedings of IADIS

WWW/Internet International Conference (W3I 2004), Madrid, Spain, 6th-9th October 2004, pp287-294.

Cisco, 2000. Access Control Lists, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/software/ios113ed/113ed_cr/secur_c/scprt3/scacls.htm).

Cisco, 2002. ACL Optimizer and Hits Optimizer, Cisco Systems, USA,

(www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/cw2000/fam_prod/acl_mgr/aclm_1_x/1_5/u_guide/ac1js.pdf).

Cisco, 2003 ACL Manager, Cisco Systems, USA,

(http://www.cisco.com/en/US/partner/products/sw/cscowork/ps402/products_user_guide

_book09186a00801f42b9.html).

Cisco, 2004. Turbo Access Control Lists, Cisco Systems, USA,

(http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s6/turboacl.htm).

Garey, M.R. and Johnson, D.S., 1979. Computers and Intractability: A guide to the theory of NP-completeness,

W.H. Freeman, New York.

Grout, V. and McGinn, J., 2005. Optimisation of Policy-Based Routing Using Access Control Lists, IFIP/IEEE

Symposium on Integrated Network Management, Nice, France, 16th-19th May 2005

(full version available at http://www.newi.ac.uk/groutv/papers/acls.pdf).

Grout, V., McGinn, J. and Davies, J., 2005. Reducing Processing Latency in Network Packet Filters, Proceedings of the

5th International Network Conference (INC 2005), Samos, Greece, pp. 3-10.

Grout, V., Davies, J. and McGinn, J., 2006. An Argument for Simple Embedded ACL Optimisation, Computer

Communications (to appear – available from http://www.newi.ac.uk/groutv/Papers/aAfSEAO.pdf).

Hari, B., Suri, S. and Parulkar, G., 2000. Detecting and Resolving Packet Filter Conflicts, Proceedings of the 19th Joint

Conference of the IEEE Computer and Communications Societies (INFOCOM00), pp1203-1212.

JANet, 2005. JANET-CERT Example Router Configuration,

(http://www.ja.net/CERT/JANET- CERT/prevention/template.html).

Sedayao, J., 2001. Cisco IOS Access Lists, O’Reilly, USA.

	Glyndŵr University
	Glyndŵr University Research Online
	10-1-2006

	Rule Dependencies in Access Control Lists
	Vic Grout
	John McGinn
	John N. Davies
	Rich Picking
	Stuart Cunningham
	Recommended Citation

	Rule Dependencies in Access Control Lists
	Abstract
	Keywords
	Disciplines
	Comments

