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Robustness of HEAF(2) for Estimating the Intensity of Long-Range
Dependent Network Traffic

Abstract
The intensity of Long-Range Dependence (LRD) for communications network traffic can be measured using
the Hurst parameter. LRD characteristics in computer networks, however, present a fundamentally different
set of problems in research towards the future of network design. There are various estimators of the Hurst
parameter, which differ in the reliability of their results. Getting robust and reliable estimators can help to
improve traffic characterization, performance modelling, planning and engineering of real networks. Earlier
research [1] introduced an estimator called the Hurst Exponent from the Autocorrelation Function (HEAF)
and it was shown why lag 2 in HEAF (i.e. HEAF (2)) is considered when estimating LRD of network traffic.
This paper considers the robustness of HEAF(2) when estimating the Hurst parameter of data traffic (e.g.
packet sequences) with outliers.
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     Abstract—The intensity of Long-Range Dependence 
(LRD) for communications network traffic can be measured 
using the Hurst parameter. LRD characteristics in 
computer networks, however, present a fundamentally 
different set of problems in research towards the future of 
network design.  There are various estimators of the Hurst 
parameter, which differ in the reliability of their results. 
Getting robust and reliable estimators can help to improve 
traffic characterization, performance modelling, planning 
and engineering of real networks.  Earlier research [1] 
introduced an estimator called the Hurst Exponent from the 
Autocorrelation Function (HEAF) and it was shown why lag 
2 in HEAF (i.e. HEAF (2)) is considered when estimating 
LRD of network traffic. This paper considers the robustness 
of HEAF(2) when estimating the Hurst parameter of data 
traffic (e.g. packet sequences) with outliers.  
 
     Index Terms—ACF, HEAF(2), LRD, Self-similarity. 
 

I. INTRODUCTION 

he Long-Range Dependence (LRD) property of 
traffic fluctuations has important implications on 

the performance, design and dimensioning of the network 
[2]. A simple, direct parameter characterizing the degree 
of long-range dependence is the Hurst parameter. The 
Hurst exponent (or Hurst parameter, H), which more than 
a half-century ago was proposed for analysis of long-term 
storage capacity of reservoirs [3], is nowadays used to 
measure the intensity of LRD in network traffic. A 
number of methods have been proposed to estimate the 
Hurst parameter. Some of the most popular include the 
aggregated variance time (V/T) [4], Rescaled-range (R/S) 
[2, 3], Higuchi method [5], wavelet-based method [6, 7] 
although there are many othrs. In all these methods, H is 
calculated by taking the slope from a log-log plot. So far 
the wavelet-based Hurst parameter has acquired 
popularity in estimating LRD traffic. However the study 
[8] explores the advantages and limitations of wavelet 
estimators and found that a traffic trace with a number of 
deterministic shifts in the mean rate results in steep 
wavelet spectrum which leads to overestimating the Hurst 
parameter. The intensity of long-range dependence is 
measured for file size or document size [9], packet counts 
(number of packets per unit time) [10, 11, 12], interarrival 
time [13, 14], frame size [15], connection size [16], 
packet length [17], number of bytes per unit time [2], Bit 
or byte rate [18] and so on. 
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This paper continues work on the new estimator 

introduced earlier which is named Hurst Exponent by 
Autocorrelation Function (HEAF) [1]. HEAF estimates H 
by a process which is simple, quick and reliable. In order 
to investigate the robustness of HEAF(2), two different 
types of simulation studies were performed. The first one 
is using fractional Gaussian noise (fGn) sequences 
generated by the Dietrich-Newsam algorithm [19, 20], 
which generates exact self-similar sequences. The second 
one is using a fractional autoregressive moving average 
(FARIMA) process [21, 22]. Stationarity is assumed for 
these kinds of classical models (FARIMA and fGN) 
because it is convenient from a theoretical point of view, 
especially to check the validity of any hypothesis. The 
sequences generated by these models show a bell-shaped 
(i.e. Gaussian) curve either exactly or with small 
variation.  However, our concern in this research is to 
determine whether, in the case that the underlying process 
is not FARIMA or fGN, HEAF(2) can still capture the 
long-range dependency of the traffic.  We investigate 
what role HEAF(2) can play to yield an estimate with a 
good degree of accuracy if the traffic is nonstationary.  
For instance, if the data traffic possesses outliers, we 
consider how to estimate H by eliminating these outliers 
to have satisfactory and reliable information. 

The paper is organised as follows. Section II describes 
the definitions of self-similarity, long-range dependence 
and autocorrelation function. Section III introduces the 
HEAF estimator. Section IV describes about the robust 
versions of autocorrelation function. Finally the results 
are presented in section V. 
 

II. SELF-SIMILARITY , LONG-RANGE DEPENDENCE 
AND AUTOCORRELATION FUNCTION 

In general two or more objects having the same 
characteristics are called self-similarity. A phenomenon 
that is self-similar looks the same or behaves the same 
when viewed at different degrees of magnification or 
different scales on a dimension and bursty over all time 
scales. Self-similarity is the property of a series of data 
points to retain a pattern or appearance regardless of the 
level of granularity used and is the result of long-range 
dependence in the data series. If a self-similar process is 
bursty at a wide range of timescales, it may exhibit long-
range- dependence. In general lagged autocorrelations are 
used in time series analysis for empirical stationary tests.  
Self-similarity manifests itself as long-range dependence 
(i.e., long memory) in the time series of arrivals. The 
evidence of very slow, linear decay in the sample lag 
autocorrelation finction (ACF) indicates the nonstationary 
behaviour [23]. The research [24] show that Internet 
traffic is nonstationary.  

Long-range-dependence means that all the values at 
any time are correlated in a positive and non-negligible 
way with values at all future instants. For a continuous 
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time process ( ){ }0, ≥= ttYY  is self-similar if it satisfies 
the following condition [25]:  

 ( ) ( ) 10,0, <<>∀−= HandataYHa
d

tY   
where H is the index of self-similarity, called Hurst 
parameter and the equality is in the sense of finite-
dimensional distributions. 

The stationary process X is said to be a long-range 
dependent process if its autocorrelation function (ACF) is 
non-summable [26] meaning that ∞=∑

∞

∞−=k kρ   

The details of how ACF decays with k  are of interest 
because the behaviour of the tail of ACF completely 
determines its summability. According to [3], X is said to 
exhibit long-range dependence if  

∞→
−−

kas
H

ktLk ,
)22(

)(~ρ                (2.1) 

where 1
2

1
<< H and (.)L  slowly varies at infinity, i.e., 

,1
)(

)(
lim =

∞→ tL

xtL

t
for all 0>x  

Equation (2.1) implies that the LRD is characterized by 
an autocorrelation function that decays hyperbolically 
rather than exponentially fast.  

 

III. HEAF: A ‘HURST EXPONENT BY 
AUTOCORRELATION FUNCTION’ ESTIMATOR  

A new estimator has been introduced [1] by extending 
the approach of Kettani and Gubner [27]. As in [27], for a 
given observed data iX  (i.e. nXX ,,.........1 ), the sample 

autocorrelation function can be calculated by the 
following method: 

Let ∑
=

=
n

i iX
n

n 1

1
µ̂    (3.1) 

and ( ) ( ) ( )nkiX
kn

i niX
n

kn µµγ ˆ
1

ˆ
1

ˆ −+∑
−

=
−=  , (3.2) 

where k=0,1, 2, ….., n,    

with ( )0ˆ2ˆ nn γσ = .   (3.3) 

Then the sample autocorrelations of lag k  are given by 

( )
2ˆ

ˆ
ˆ

n

kn
k

σ

γ
ρ =     (3.4) 

(Equations (3.1), (3.2), (3.3) and (3.4) denote the sample 
mean, the sample covariance, the sample variance and the 
sample autocorrelation, respectively). A second-order 
stationary process is said to be exactly second-order self-
similar with Hurst exponent 12/1 << H if 

]2)1(222)1([5.0 HkHkHkk −+−+=ρ   (3.5) 

From equation (3.5), Kettani and Gubner suggest a 
moment estimator of H . They consider the case where k 
=1 and replace 1ρ  by its sample estimate 1ρ̂ , as defined 
in equation (3.4). This gives an estimate for H of the form 

)1ˆ1(log
2log2

1

2

1ˆ ρ++= e
e

H   (3.6) 

Clearly, this estimate is straightforward to evaluate, 
requiring no iterative calculations. For more details of the 
properties of this estimator, see Kettani and Gubner [27]. 

An alternative estimator of H is proposed based upon 
equation (3.5), by considering the cases where k>1. Note 
that the sample equivalent of equation (3.5) can be 
expressed as  

   
.0}

2
)1(

2
2

2
)1{(5.0ˆ)(

=−+−

+−=

H
k

H
k

H
kkHf ρ

 (3.7) 

Thus, for a given observed kρ̂ , k>1, a suitable numerical 

procedure can be used to solve this equation, and find an 
estimate of H. This is denoted as a HEAF(k) estimate of 
H. 
To solve equation (3.7) for H the well-known Newton-
Raphson (N-R) method is used. This requires the 
derivative of f(H). Here note that k  ? 1,  
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  (3.8)  

Hence, the algorithm to estimate HEAF(k), for any lag k, 
consists of the following steps: 
1. Compute the sample autocorrelations for lag k  of a 

given data set by equation (3.4). (Note that iX  can 

be denoted as the number of bits, bytes, packets or bit 

rates observed during the i th interval. If iX  is a 

Gaussian process, it is known as fractional Gaussian 
noise). 

2. Make an initial guess of H, e.g. H1 = 0.6, then 
calculate H2, H3, H4,….., successively using 

)(/)(1 rHfrHfrHrH ′−=+ , until convergence, to 

find the estimate Ĥ  for the given lag k . An initial 
consideration is of the case where k = 2 in equation 
(3.2); i.e. HEAF(2) is considered first. 

One of the major advantages of the HEAF estimator is 
speed, as the NR-method converges very quickly to a 
root. There is no general convergence criterion for NR. 
Its convergence depends on the nature of the function and 
on the accuracy of the initial guess. Fortunately the form 
of the function (i.e., equation (3.7)) appears to converge 
quickly (within at most four iterations) for any initial 
guess in the range of interest, namely H in (0.2, 1). If an 
iteration value, Hr is such that ( ) 0≅′ rHf , then one can 
face “division by zero” or a near-zero number. This will 
give a large magnitude for the next value, Hr+1 which in 
turn stops the iteration. This problem can be resolved by 
increasing the tolerance parameter in the N-R program. A 
HEAF(k), for k = 2, …,11, have been considered and no 
difficulty in finding the root in (0.5, 1) have been 
encountered. 

IV.  ROBUST AUTOCORRELATION FUNCT ION 

The forecasting of network traffic and Quality of 
Service (QoS) can be affected by the additive outliers. 
The sample ACF that was used in HEAF (2) is sometimes 
controversy. In this research we test the performance of 
HEAF (2) by using three robust ACF such as Trimmed 
ACF [28], variance-ratio of differences and sums which 
is known as D/S variance estimator [29, 30], weighted 
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sample autocorrelation function (shorten as WACF) [31]. 
Polasek [32] showed in his paper how to eliminate these 
additive outliers by different robust acf. According to his 
findings the sample acf (i.e. moment based) was 
surprisingly ranked as 2 after TACF for eliminating 
additive outliers. Due to space limitation we only present 
the results from Trimmed ACF.  

The Trimmed ACF can be calculated by the following 
procedure: 
Let )()2()1( ........ nzzz ≤≤≤  be the ordered 

observations of the given time series z1, z2, …., and zn. 
Chan and Wei [28] introduced the α -trimmed sample 
autocorrelation function (shorten as TACF) defined by 

)0(ˆ
)(ˆ

)(ˆ
T

T
T

k
k

γ
γ

ρ =
 

where 

∑
∑

+= −

+= −− −−
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L gntgt

t ,1

,0 )1()()(α

 
 
where ][ ng α=  is the integer part of  nα  and 

05.00 ≤≤ α . Chan and Wei showed that TACF is, in 
general, very successful in removing the adverse effect of 
outliers on the estimation of ACF. The parameter called, 
automatic alpha can be estimated by trimmean filter 
(TMF) [33, 34].  
 

The procedure for estimating alpha by TMF is as 
follows: 
1. Sort the data in ascending order. 
2. Calculate the parameter Q according to the equation 
below 
 

%)]50(%)50(
%)]20(%)20([

LU
LU

Q
−
−

=
 

 
- where U(x%) is the average of the upper x% of the 
ordered sample and L(x%) is the average of the lower x% 
of the ordered sample. 
- Q is a measure of the departure of the distribution 
contained in the sample from a normal distribution. 
- Trim off each tail of the ordered distribution according 
to the value of the trimmean parameter alpha. 
 




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



≥

<<
−

+

≤

=

0.205.0

0.275.1
25.0

)75.1(
*01.004.0

75.104.0

)(

Q

Q
Q

Q

Qα  

Note that the alpha parameter given in [33, 34] is 
modified here for estimating a good degree of accuracy 
when considering network traffic data. The TMF assumes 
the distribution to be symmetric, but not necessarily 
Gaussian. For a pure Gaussian distribution of data, 4 
percent of the data is trimmed from each tail of the 
original sorted distribution. For a given segment of time, 
a maximum of 5 percent of the data is trimmed off each 
tail. 
 

V. RESULTS AND DISCUSSION 

In [1, 35, 36], the results show that HEAF(2) is an 
estimator of H with relatively good bias and mse, when 
estimating fractional Gaussian noise or FARIMA 
processes. Because of its simplicity and reliability it is 
believed that HEAF (2) can be used for real time network 
traffic control. Of course, a real process will be unlikely 
to be exactly an fGn process or even FARIMA process. 
Indeed, a real process may suffer from a ‘noise’, 
discrepant values or other outliers. This section presents 
the robustness of the proposed estimator, HEAF(2),  
against departures from ideal assumptions. 

In order to test the robustness of HEAF (2) we 
generate some noisy sequences by mixing with the data 
sequences generated by FARIMA (0, d, 0) and fGn 
processes for a particular Hurst parameter (H). Obviously 
H will be changed when making noisy data, meaning that 
the process (FARIMA or fGN) no longer exists as it holds 
additive outliers. Figure 1 shows a pictorial view of noisy 
data to be analysed in order to explore the robustness of 
the HEAF(2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  1. Pictorial view of noisy samples (i.e. data with additive 
outliers) 
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Fig.  2. Top left figure - Data generated by FARIMA (0,d, 0) process 
for H =0.6 (H measured by HEAF (2) = 0.585), N = 16384. Top right 
figure – generated Noisy sample (measured H = 0.8993). Bottom figure 
- H = 0.576 (after elimination of the outliers) where alpha = 0.048 
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Fig.  3.  Top left figure - Data generated by fGN process for H =0.6 
(H measured by HEAF (2) = 0.795), N = 16384. Top right figure – 
generated Noisy sample (measured H = 0.556). Bottom figure - H = 
0.77 (after elimination of the outliers) where alpha = 0.048 

 
In Figure 2, the top left figure shows a histogram of 

FARIMA (0, d, 0) process with H = 0.6. The estimated H 
by HEAF(2) is 0.585. The top right figure represents a 
histogram for a noisy samples generated by mixing with 
FARIMA (0,d, 0) process for H = 0.6 having the sample 
length, N = 16384. The histogram at the bottom of Figure 
2 is plotted after elimination of the outlie rs shown in the 
top right figure. The estimated H for noisy samples (top 
right figure) and samples after elimination are 0.8993 and 

0.576 respectively. The outliers from noisy samples are 
eliminated by automatic alpha and then the alpha value is 
used in TACF which in turn applied in HEAF(2). 
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Fig.  4.  Top left figure - Data generated by FARIMA (0,d, 0) 
process for H =0.7 (H measured by HEAF (2) = 0.683), N = 16384. Top 
right figure – generated Noisy sample (measured H = 0.573). Bottom 
figure - H = 0.65 (after elimination of the outliers) where alpha = 0.041 
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Fig.  5.  Top left figure - Data generated by FARIMA (0,d, 0) 
process for H =0.9 (H measured by HEAF (2) = 0.858), N = 16384. Top 
right figure – generated Noisy sample (measured H = 0.701). Bottom 
figure - H = 0.857 (after elimination of the outliers) where alpha = 0.045 

 
In Figure 6, uniform random numbers are chosen to 

generate FARIMA (0,d,0) sequences for various Hurst 
parameters. Due to uniform random function used in the 
process, FARIMA (0,d,0) generates only positive 
sequences, which can imitate real Internet packet 
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sequences. It is clear from the results presented in this 
research that additive outliers can be removed by 
applying robust ACF and after elimination of these 
outliers from different case study, it is evident that 
HEAF(2) yields a reliable value of H. 
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Fig.  6.  Left figure - FARIMA (0,d,0) for H = 0.6 ( measured H by 
HEAF(2) = 0.579), N = 8192. Right figure – FARIMA (0, d, 0) for H = 
0.8 (measured H by HEAF(2) = 0.774), N = 8192. 
 

VI. CONCLUSION 

It is possible to end up with wrong conclusions and 
wrong models when measuring the intensity of the LRD 
with unreliable estimators. In this research we have 
shown that the plausible H for given data can be 
overestimated or underestimated due to additive outliers 
possessing in the data. These outliers can be removed by 
applying robust ACF in HEAF(2) and in this case 
HEAF(2) yields a consistent and reliable results. Because 
of the simplicity, robustness and reliability, we believe 
that HEAF(2) can be used to estimate the intensity of 
LRD in real time network traffic. 
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