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easier to manage the workloads under less bursty (i.e. smoother) conditions. In this paper, we examine the use
of a novel algorithm, the Bursty Packet Traffic Shaper (BPTraSha), for traffic shaping, which can smooth out
the traffic burstiness. Experimental results show that this approach allows significant traffic control by
smoothing the incoming traffic. BPTraSha can be implemented on the distribution router buffer so that the
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Abstract

The rapid development of network technologies has widened the scope of Internet applications and, in turn,
increased both Internet traffic and the need for its accurate measurement, modelling and control. Various
researchers have reported that traffic measurements demonstrate considerable burstiness on several time scales,
with properties of self-similarity. The self-similar nature of this data traffic may exhibit spikiness and burstiness
on large scales with such behaviour being caused by strong dependence characteristics in data: that is, large
values tend to come in clusters and clusters of clusters and so on. Several studies have shown that TCP, the
dominant network (Internet) transport protocol, contributes to the propagation of self-similarity. Bursty traffic
can affect the Quality of Service of all traffic on the network by introducing inconsistent latency. It is easier to
manage the workloads under less bursty (i.e. smoother) conditions. In this paper, we examine the use of a novel
algorithm, the Bursty Packet Traffic Shaper (BPTraSha), for traffic shaping, which can smooth out the traffic
burstiness. Experimental results show that this approach allows significant traffic control by smoothing the
incoming traffic. BPTraSha can be implemented on the distribution router buffer so that the traffic’s bursty
nature can be modified before it is transmitted over the core network. This paper continues the work of Rezaul
and Grout (2007a).

Keywords

Self-similarity, Long-range dependence, Auto-correlation function, Hurst parameter,
BPTraSha.

1. Introduction

A number of factors, such as a slow start phase of the congestion window, packet losses, ack-
compression of TCP traffic and multiplexing of packets at the bottleneck rate, can cause
either short- or long-term burstiness in the behaviour of TCP flow (Aggarwal et al., 2000).
Park et al. (1997) investigate how various versions of TCP congestion control affect network
performance when traffic is bursty. They shows a significant adverse impact on network
performance attributable to traffic self-similarity and, while throughput declines gradually as
self-similarity increases, queueing delay increases more drastically. Self-similarity is closely
related to the phenomenon of heavy-tailed distributions, where the tail index of the
distribution declines as a power law with small index (less than 2). TCP represents the
dominant transport protocol of the network (e.g. Internet), which contributes to the
propagation of self-similarity. It was shown by Veres et al. (2003) that TCP itself inherits
self-similarity when it is combined with self-similar background traffic in a bottleneck buffer
through the transform function of the linear system.

Guo et al. (2000) investigated the relationship between TCP’s congestion control mechanism
and traffic self-similarity under certain network conditions. They also demonstrated (Guo et
al., 2001) that, when a TCP connection is going through a highly-lossy channel - and the loss
condition is not affected by this single TCP connection’s behaviour, TCP starts to produce
packet trains that show pseudo-self-similarity, i.e., traffic is self-similar over a limited range
of time scales. In fact, when the loss rate is relatively high, TCP’s adaptive congestion
control mechanism generates traffic with heavy-tailed-off or idle periods (i.e. inter-arrival
time), which in turn introduces long-range dependence into the overall traffic. Sikdar and



Vastola (2001) analysed the traces of actual TCP transfers over the Internet and reported that
individual TCP flows, isolated from the aggregated flow on the link, also have a self-similar
nature. Also, the loss rate experienced by TCP flow is an important indicator of the degree of
self-similarity in the network traffic. A natural construction of the extremely bursty nature of
TCP traffic comes from timeouts (representing ‘silent’ periods) that lead to losses and,
consequently, losses increase the burstiness - and higher loss rates thus lead to a higher degree
of self-similarity, i.e. higher values of Hurst parameter (Sikdar and Vastola, 2001). It has
been shown (Peha, 1997) that, if packets were to arrive according to the well-behaved Poisson
process, simple retransmission mechanisms can make traffic appear self-similar over time
scales and be a possible source of long-range dependence. Retransmission mechanisms can
make a network congestible, because these mechanisms often cause network inefficiencies
which cause throughput to degrade specifically in periods when load is already high.

One of the major drawbacks of TCP/IP is the lack of true Quality of Service (QoS)
functionality. QoS in networks, in simple terms, is the ability to guarantee and limit
bandwidth appropriately for certain services and users. Traffic shaping is the term used for
any system by which traffic is constrained to a specific speed. Traffic shaping is an attempt to
control network traffic in order to optimize, attempt to optimize or guarantee performance,
low-latency and bandwidth. Traffic shaping deals with concepts of classification, queue
disciplines, enforcing policies, congestion management, QoS and fairness. Shaping is the
mechanism by which packets are delayed before transmission in an output queue to meet a
desired output rate. This is one of the most common requirements of users seeking bandwidth
control solutions. The basic principle of traffic shaping is based on the fact that the outgoing
traffic from the FireBrick or router is scheduled. (A FireBrick is a network appliance with a
rich feature set, including a stateful firewall, router, managed switch, traffic shaping,
tunneling, multilink handling, and much more.)

Each packet has a time stamp, stating when it is to be sent, and all traffic is normally sent in
order and not before its time. This method is used to deliberately slow responses from reject
and bounce filters, as well as for speed lanes. When sending a packet, its length is considered
and the transmission time added to time for the next packet to be sent. This ensures packets
can only actually leave at the designated rate and no faster. Shapers can smooth out bursty
traffic and attempt to limit or ration traffic to meet, but not exceed, a configured rate (e.g.
packets per second or bits/bytes per second). However, earlier research (Neidhardt and
Erramilli, 1996 and Vamvakos and Anantharam, 1998) reports that the strong robustness of
self-similarity properties that exist in traffic cannot be removed by shaping.

The rest of this paper is organised as follows. Section 2 highlights research related to shaping
traffic. Section 3 describes the definitions of self-similarity, long-range dependence and the
autocorrelation function. Section 4 introduces the algorithm BPTraSha and its purpose.
Section 5 discusses the performance and complexity of BPTraSha by experimental analysis.
Section 6 elaborates on how BPTraSha algorithm reduces the long-range dependence of
traffic. Finally we draw conclusions and suggest future work in section 7.

2. Related research

Several researchers have shown how to control the network in situations where the
distribution tail of the traffic flow process cannot be altered. Pruthi and Popescu (1997) claim
that, by incorporating shapers and policers at the edges of the networks, huge buffers are
needed that result in large delays and may thus be unacceptable in practice. Darlagiannis et



al. (2003) present a Burst Shaping Queueing (BSQ) algorithm, which can minimize the
burstiness of traffic on packet switched routers by interleaving packets that are going to
follow different links on next hops. Molnár and Vidács (1997) discuss issues of shaping and
simulated queueing performance of ATM traffic. In this work, a leaky bucket shaping
method is used and the shaping effect surprisingly results in higher values for the estimated
Hurst parameter (the degree of self-similarity) - that is, the estimated Hurst parameter is
increased due to shaping. It is also noted that the interpretation of the estimated Hurst
parameter is problematic in practice.

Xue and Yoo (2002) propose an optical packet assembly mechanism to function as a traffic
shaper and its impact on self-similar traffic characteristics at the edge router is investigated.
Simulation results demonstrate that the optical packet assembly mechanism can reduce traffic
correlation and the degree of self-similarity. Bushmitch et al. (2003), present three different
traffic shaping techniques: thinning, striping and shuffling, which can improve the queueing
characteristics of data by decreasing the short-term burstiness and diminishing short-term
correlations. However, none of these processes are shown to decrease the degree of Long-
Range Dependence (LRD) in data. Christensen and Ballingam (1997) propose a dual leaky
bucket technique for shaping the web traffic, reducing the intensity of the long duration traffic
bursts, which, in turn, reduces the Hurst parameter. The ‘leaky bucket’ procedure (Turner,
1986) is also employed in (Harmantzis et al., 2001) to examine the effectiveness of shaping in
the case of α-stable fractal traffic and it is found that shaping and policing mechanisms do not
eliminate self-similarity.

3. Self-similarity, long-range dependence and the autocorrelation function

It is especially important to understand the link between self-similarity and long-range
dependence of network traffic and performance of the networks because such characterization
can be potentially applied for control purposes such as traffic shaping, load balancing, etc. In
general two or more objects having the same characteristics are called self-similar. A
phenomenon that is self-similar looks the same or behaves the same when viewed at different
degrees of magnification or on different scales on a dimension and is bursty over all time
scales. Self-similarity is the property of a series of data points to retain a pattern or
appearance regardless of the level of granularity used and is the result of long-range
dependence in the data series. If a self-similar process is bursty on a wide range of
timescales, it may exhibit long-range dependence. In general, lagged autocorrelations are
used in time series analysis for empirical stationary tests. Self-similarity manifests itself as
long-range dependence (i.e., long memory) in the time series of arrivals. The evidence of
very slow, linear decay in the sample lag autocorrelation function (ACF) indicates the
nonstationary behaviour (Brocklebank and Dickey, 1986). Long-range-dependence means
that all the values at any time are correlated in a positive and non-negligible way with values
at all future instants. A continuous time process,  0,  ttYY , is self-similar if it satisfies
the condition (Willinger et al., 1998) that

  10,0,  HandataYHa
d

tY (3.1)

where H is the index of self-similarity, called the Hurst parameter, and the equality is in the
sense of finite-dimensional distributions. The stationary process X is said to be a long-range
dependent process if its autocorrelation function (ACF) is non-summable (Cox, 1984),

meaning that 


k k . The details of how the ACF decays with k are of interest



because the behaviour of the tail of the ACF completely determines its summability.
According to (Leland et al., 1994), X is said to exhibit long-range dependence if
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Equation (3.2) implies that the LRD is characterized by an autocorrelation function that
decays hyperbolically rather than exponentially fast. LRD processes are characterised by a
slowly decaying covariance function that is not summable. When network performance is
affected by LRD, the data are correlated over an unlimited range of time lags and this
property results in a scale invariance phenomenon. Then no characteristic time scale can be
identified in the process: they are all equivalent for describing its statistics, i.e., the part
resembles the whole and vice versa.

4. BPTraSha: an algorithm for controlling bursty traffic

T = timestamp
B = Packet size in bytes
TT = transmission time
bps = Bit per second
Delt = Delay in second
Tmod = Modified time
Tmod_cng = change in modified time
bps_mod = Modified bit per second
Ld = Longest delay
Sd = Shortest delay
S = sample count (e.g. number of packet sequences)
C = link speed

1. Capture B for corresponding T (i.e. T and B)
2. Count S
3. For k = 0 to (S-1)

a) if (k = 0)
bps[k] = B[k] *8 / (T[k]+TT[k])

where TT[k] = B[k] *8 / C
else bps[k] = B[k]*8 / (T[k]-T[k-1]+TT[k-1])

b) if (k = 0)
Delt[k] = 0
Tmod[k] = T[k]

else
i) Delt[k] = T[k]-(Tmod[k-1]+TT[k-1])
ii) if (Delt[k] >= 0)

Tmod[k] = T[k]
else

Tmod[k] = T[k]-Delt[k]
4. For k = 0 to (S-2)

i) if (k = 0)
Tmod_cng[k] = Tmod[k]

else
Tmod_cng[k] = Tmod[k+1]-Tmod[k]

ii) set bps_mod[k] = B[k]*8 / Tmod_cng[k]
iii) if (Delt[k] <0)

find out Ld // Longest delay
find out Sd // Shortest delay

5. Exit
Figure 1: The algorithm, BPTraSha



Let us assume that client networks, C1, C2, C3,….., Cn, are connected to the main router of an
Internet service provider (ISP). The packet sequences (i.e. packet size in bytes) from
different sources are queued at the router buffer. The packet sequences arrive at the router
buffer with a timestamp in seconds (or milliseconds). Therefore, we have a packet size in
bytes for the corresponding timestamp. For the experimental analysis, we used Lawrence
Berkeley Laboratory (LBL) TCP data which are publicly available from ITA (2002). The
bursty nature of packet sequences arriving at the router will be shaped at the fixed rate by the
shaper algorithm BPTraSha. Here we mean the link speed as the desired fixed rate (i.e.
capacity, C) at which the packets would be transmitted. In other words, bursty traffic in the
input will be regulated at the fixed rate before they pass through the network. The algorithm
is described in Figure 1. Table 1 illustrates a sample of trace files that the BPTraSha
algorithm uses. The algorithm is implemented both in Java and Matlab programming
language.

Length of samples Timestamp
(T i)

Packet size in
byte (Bi)

1 0.008185 41
2 0.010445 42
3 0.023775 42
4 0.026558 41
5 0.029002 82
6 0.032439 55
7 0.049618 41
8 0.052431 42
9 0.056457 42
10 0.057815 454
11 0.072126 40
12 0.098415 95
13 0.104465 55
14 0.122345 40
15 0.12449 40
16 0.125228 41
17 0.138935 41
18 0.13995 104
19 0.14093 41
20 0.146912 72
׃
׃ ׃ ׃

N Tn Bn

Table 1: Sample of a trace file

The performance of the algorithm is depicted in Figures 2 to 10. These show how the bursty
nature of the traffic is smoothed out by the algorithm. The length of packet sequences used
for these experiments is N =65,536. We used various types of TCP data for the experiment,
but due to space limitations we provide here results from using LBL-TCP3-packet, LBL-
TCP4-packet and LBL-TCP5-packet data. The link capacities (i.e. desired rates) applied here
are C = 5 Mbps, C = 10 Mbps and C =15 Mbps. Figure 11 illustrates the expected longest
delay observed for different link speeds with the variation of length of packet sequences. It is
clear from the Figures that higher capacity yields less delay and thereby provides better
quality of service. Figure 12 shows the expected shortest and longest delay for different link
speeds while the length of sequences is varied. The shortest delay is found to be from



0.000001 seconds to 0.000004 seconds. The longest delay is observed to be from 0.00056
seconds to 0.15927 seconds depending on the link speed (C) and length (N) of the packet
sequences. The higher the link speed the shorter the observed delay.
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Figure 2: LBL-tcp3-pkt, C = 5 Mbps,
N = 65536
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Figure 3: LBL-tcp3-pkt, C = 10 Mbps,
N = 65536
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Figure 4: LBL-tcp3-pkt, C = 15 Mbps,
N = 65536
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Figure 5: LBL-pkt-4_tcp, C = 5 Mbps,
N = 65536
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Figure 6 : LBL-pkt-4_tcp, C = 10 Mbps,
N = 65536
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Figure 7: LBL-pkt-4_tcp, C = 15 Mbps,
N = 65536
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Figure 8: LBL-pkt-5_tcp, C = 5 Mbps,
N = 65536
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Figure 9: LBL-pkt-5_tcp, C = 10 Mbps,
N = 65536
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Figure 10: LBL-pkt-5_tcp, C = 15 Mbps, N = 65536
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Figure 11: Performance of BPTraSha algorithm: Observation of longest delay.
Variation of link speed with different length of packet sequences.



0 1 2 3 4 5 6 7

x 10
4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Length of packet sequence

d
el

a
y

(s
e

c)

Delay observation ( link speed = 1Mbps)

shortest delay
longest delay

0 1 2 3 4 5 6 7

x 10
4

0

0.005

0.01

0.015

0.02

0.025

0.03

Length of packet sequence

d
el

a
y

(s
e

c)

Delay observation ( link speed = 2 Mbps)

shortest delay
longest delay

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7
x 10

-3

Length of packet sequence

de
la

y
(s

ec
)

Delay observation ( link speed = 5 Mbps)

shortest delay
longest delay

0 1 2 3 4 5 6 7

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
x 10

-3

Length of packet sequence

de
la

y
(s

ec
)

Delay observation ( link speed = 10 Mbps)

shortest delay
longest delay

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6
x 10

-4

Lengthof packet sequence

d
el

a
y

(s
e

c)

Delay observation ( link speed = 15 Mbps)

shortest delay
longest delay

Figure 12: Performance of BPTraSha algorithm: Observation of shortest and longest
delay, for different length of packet sequences.

5. Complexity of the algorithm, BPTraSha

To explore the complexity of BPTraSha, we chose six workstations with different
specifications which are represented in Table 2. We investigated several lengths of packet
sequences such as N = 1,000, N = 2,000, N = 3,000, N = 5,000, N = 10,000, N = 15,000, N =
20,000, N = 25,000, N = 30,000, N = 35,000, N = 40,000, N = 45,000, N = 50,000, N =



55,000, N = 60,000 and N = 65,000. In our research, we mainly concentrate on the time
complexity of the algorithm.
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Figure 13 depicts the observed elapsed (execute) times for different lengths of packet
sequences for different PCs. It is obvious that PC5 yields better performance as it possesses
higher specifications. Figure 14 shows a percentage of affected packets due to delay for
different length of packet sequences. Here, higher capacity (C) signifies better performance
due to less affected packets. But the elapsed time for executing the algorithm does not
significantly vary for different link speeds with the variation of length of packet sequences,
which can be observed in Figure 15.
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Figure 14: Affected packets due to delay for different length of packet sequences
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Figure 15: Elapsed time for different length of packet sequences with the variation of
link speed.

Work station Specification
PC1 Intel Pentium (R) 4, CPU 2.4 GHz, 512 MB of RAM
PC2 Intel Pentium (R) 4, CPU 3.0 GHz, 0.99 GB of RAM
PC3 Intel Pentium (R) 4, CPU 3.0 GHz, 504 MB of RAM
PC4 Intel Pentium (R) 3, CPU 866 MHz, 384 MB of RAM
PC5 Intel Centrino Duo Core, CPU T2250 @ 1.73 GHz, 1024 MB of RAM
PC6 Intel Pentium (R) 4, CPU 1.80 GHz, 256 MB of RAM

Table 2: Workstations with different specification

6. Checking LRD by BPTraSha algorithm
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Figure 16: Autocorrelation function plot before and after shaping the traffic.
LBL-TCP3-packet, C = 10 Mbps. Before shaping, H = 0.66 and after

shaping, H = 0.64.



The autocorrelation function is a very useful tool in traffic engineering problems, especially
when measuring the duration of existing traffic in the network. Figure 16 illustrates the ACF
plot before and after shaping LBL-TCP3-packet traffic with link speed (C) at 10 Mbs. Note
that the degree of LRD (i.e. the Hurst parameter) changes from 0.68 to 0.66 due to shaping
the traffic. A similar scenario is observed for LBL-TCP4-packet and LBL-TCP5-packet
traffic as shown in Figures 17 and 18.
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Figure 17: Autocorrelation function plot before and after shaping the traffic.
LBL-TCP4-packet, C = 10 Mbps. Before shaping, H = 0.68 and after

shaping, H = 0.66.
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Figure 18: Autocorrelation function plot before and after shaping the traffic.
LBL-TCP5-packet, C = 10 Mbps. Before shaping, H = 0.7968 and after

shaping, H = 0.7905.

Figure 19 depicts the variation of the degree of LRD with different link speeds (C) while
shaping the traffic. Before shaping, the estimates are H = 0.66, H = 0.68 and H = 0.7968 for
LBL-TCP3-packet, LBL-TCP4-packet and LBL-TCP5-packet respectively. Clearly the Hurst
parameter (H) decreases with increasing link speed (C), meaning that the long-range
dependent traffic can be reduced by the BPTraSha algorithm. Note that at a certain limit (C
= 40, 45 and 50 Mbps) the Hurst parameter remains unchanged, that is, no reduction of LRD



is possible anymore. The Hurst parameter is estimated here by HEAF(2) (Rezaul et al., 2006
and Rezaul and Grout, 2007b).
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Figure 19: Variation of the degree of LRD with different link speed (C). Before shaping,
the estimated H = 0.66, H = 0.68 and H = 0.7968 for LBL-TCP3-packet, LBL-

TCP4-packet and LBL-TCP5-packet respectively.

7. Conclusions and Future Work

In this research, we discuss a novel algorithm, BPTraSha, to control the bursty nature of
network traffic. Experimental results show that the BPTraSha algorithm is capable of
smoothing out the bursty nature of traffic packets received at the router buffer before they are
transmitted to the core network (Internet). Also, it is clear from Figure 19, that LRD can be
reduced by BPTraSha with increasing link speeds. As the main function of BPTraSha is to
shape bursty packet traffic, it can contribute to reducing the network load and lead to the
improvement of QoS in future Internet performance. Future work will include an evaluation
of the applicability of the BPTraSha algorithm to real-time implementation at the FireBrick or
router.
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