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Virtual Backbone Configuration in Wireless Mesh Networks

Mike Morgan and Vic Grout

Centre for Applied Internet Research (CAIR), NEWI, Wrexham, United Kingdom
e-mail: mi.morgan|v.grout@newi.ac.uk

Abstract

This paper introduces methods for the minimisation of virtual backbone size in wireless mesh networks, subject
to practical constraints. The methods are centralised, which limits their usage to static applications. Four
algorithms are presented, one exact and three heuristic. The exact method guarantees to find an optimal solution
but runs in exponential time. Of the three heuristics, one is shown to match the performance of the optimal
algorithm for all problem instances tested. The problem is constrained to introduce potentially massive levels of
redundancy into the network topology, making the designs survivable.

Keywords
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1. Introduction

The use of mesh topologies is a well-known approach to network design for both telephone
trunk systems and Internet traffic. We introduce the technique by comparison to the point-to-
multipoint (PMP) or star topology, which is more commonly used in wireless applications.
Figure 1a shows a number of fixed locations which need to be connected wirelessly. In Figure
1b, we have a design connecting the locations in a PMP fashion. Three base stations are used,
indicated by the black squares. These may be interconnected using fibre optic or higher
capacity wireless links.

Figure 1a: Locations Figure 1b: PMP Design Figure 1c: Mesh Design

Figure 1c shows the mesh alternative. Here, the grey customer nodes are being used as
distribution nodes or relays, which collectively form a virtual backbone. The relay nodes
house multiple antennae and electronics for both transit traffic and drop-to-customer traffic,
which is more costly than the equipment required at terminal nodes. As a result of this, the
cost of installing a mesh network can grow more rapidly than for a PMP system, particularly
in the approach where relay equipment is installed at all customer nodes (Anderson, 2003).
However, this difficulty can be tackled by reducing the number of relays in the network. It is



clear from Figure 1c that not all nodes need have relay equipment installed. If the number of
relays in the virtual backbone can be minimised, so can the cost of implementation.

A further problem with mesh networks is that distribution nodes may not be under the control
of the network operator. If a customer disconnects his/her node, then other users may be
affected - clearly not the case with a PMP system. This forms part of the motivation behind
the approach whereby relay equipment is installed at every node, ignoring cost and
maximising network redundancy. However, an alternative is to constrain the design in such a
manner that redundant paths are maintained between distribution nodes and/or that terminal
nodes have backup relays. Hence it would be advantageous if we could minimise the number
of relays subject to connectivity constraints. A formal discussion follows in the next section.

2. Virtual Backbone Minimisation

We begin this section by outlining the unconstrained version of the problem, which is well
known.

2.1 The Minimum Connected Dominating Set Problem (MCDS)

Define a problem graph to be G = (V,E) where V is a set of vertices representing locations to
be connected and E is a set of edges representing potential wireless links between vertices in
V. Figure 2a gives an example.

Figure 2a: A Problem Graph Figure 2b: A Connected Dominating Set

Part of our objective is to find a set of vertices SV such that S forms a connected
component of G and each node in V-S has a neighbour in S. S represents the set of relays and
is said to be connected and dominating if it meets these criteria (Figure 2b). V-S is the set of
terminal nodes and is said to be dominated by S.

We wish to find a connected dominating set (CDS) of G with minimum size. The problem is
known to graph theorists as the minimum connected dominating set (MCDS) problem and is
NP-Complete (Garey and Johnson, 1979). Two heuristics for this problem are outlined by
Morgan and Grout (2006) and shown to outperform established methods significantly.

2.2 The Minimum k-Connected c-Dominating Set Problem

The problem with MCDS designs such as in Figure 2b is one of reliability. The failure of a
relay could not only leave terminals isolated, but also split the backbone into one or more
fragments. Alternative designs are proposed in Figures 3a and 3b to resolve these issues.



Figure 3a: 2-Connected Figure 3b: 2-Connected
Dominating Set 2-Dominating Set

A graph, or graph component is said to be k-connected if there are at least k vertex-
independent paths between all pairs of vertices, or equivalently if k or more vertex deletions
are required to disconnect it (Menger, 1927). In Figure 3a, the relay set S forms a 2-connected
component of G. This guarantees that the failure of a single relay cannot fragment the
backbone. Similarly, a set S is said to be c-dominating if each vertex in V-S has at least c
neighbours in S. In Figure 3a some of the terminals still only have one relay as a neighbour
and the failure of this relay could isolate the terminal. This situation is resolved with the 2-
dominating example in Figure 3b.

With these definitions, we may now consider a more general form of the MCDS problem in
which S is required to be k-connected and c-dominating. The virtual backbone must not only
be connected, but must be able to survive at least k-1 node failures and terminals must have at
least c adjacent relays. The ability to specify the k-connectivity of the backbone is particularly
useful as networks may be designed to meet an estimated level of reliability with this
approach (Kershenbaum, 1993).

However, it should be understood that the values of k and c may be limited by the connectivity
of G. If G is only 2-connected as in our example above, it becomes impossible to find a 3-
connected 3-dominating set and unlikely that we will find a 3-connected 2-dominating one.
We may, of course, constrain our problem so that we maintain G’s level of connectivity if it is
low, thus avoiding any significant loss in backbone reliability compared to the solution where
all nodes are relays. In addition, it may be possible to increase connectivity by the introduction
of additional non-customer, or seed nodes.

2.3 Additional Path Constraints

Whilst we have dealt with the issue of multiple paths to some extent in the previous
subsection, it may be the case that certain vertex pairs have large quantities of high-priority
traffic destined for one another and consequently that more multiple paths are required
between them than between other nodes in the backbone. Alternatively, we may require that
one node requires a greater number of disjoint paths to the remaining portion of the backbone
(It may be an access point for an optical fibre network, for example). Examples are shown in
Figures 4a and 4b.

In Figure 4a, we require that 3 vertex-disjoint paths are available between the vertices marked
black. The result is that, although the failure of two nodes (or links) could fragment the
backbone, there will still be a line of communication between this pair. Naturally, if multiple
paths are required, it is essential that both nodes are relays. In Figure 4b, we have an example
of an access network, where the square symbol is a portal to an optical fibre network. We



maintain the constraint that there must be 2 vertex-disjoint paths from all relays to the portal.
The design is very similar to that in Figure 3a, with the alteration that the portal must be part
of the backbone.

Figure 4a: Multiple Paths Figure 4b: Access Network

2.4 Node Constraints

The last two constraints concern nodes which must or cannot be relays. In the previous
section, we find that specified access points and nodes with multiple path constraints must be
relays. In addition to this, there are circumstances where relay equipment may already be
installed at a location prior to design (in re-design problems, for example). Also, there may be
circumstances where a given node may not be able to house relay equipment. These two types
of constraint are simple to implement and may be specified as a design input. They will be
referred to as fixed and infeasible relay/node constraints respectively, throughout the
remainder of this text.

This section has extended the MCDS problem into a generalised, constrained form applicable
to virtual backbone configuration. We will refer to it as the Minimum Relay Problem (MRP).

3. Exact and Heuristic Algorithms for MRP

In this section we introduce four algorithms for MRP, one exact and three heuristic. We begin
with an exhaustive search technique which guarantees to find the optimum solution but runs
in exponential time.

3.1 MRP/ES: An Exhaustive Search Algorithm for MRP

We may guarantee to find an optimal solution to the MRP as follows: Consider a problem
graph G = (V, E) with n nodes and m edges. We may deduce that the number of possible MRP
solutions is O(2n) as each of the n nodes may be in one of two states: relay or terminal. The
presence of node constraints will reduce the search space to some degree.

For each of these possible solutions we need to evaluate whether or not all the problem
constraints are satisfied. The complexity of this process will depend on the type of constraints
present. A summary of complexities for each type of constraint is given in Table 1.

The c-domination constraint can be evaluated in two ways. Firstly, by scanning the edge lists
of all terminal nodes to check for a minimum of c relays or secondly, by scanning the edge
lists of all relays and incrementing a counter for each terminal found. The second method is
efficient for small relay sets but the first can bail out as soon as it finds a non-dominated



terminal, so could be quicker in the event that many infeasible solutions are being tested. In
either case the method has O(m) time complexity.

Constraint Complexity
c-domination O(m)

k-connectivity*
2

( ) | 3

( ) | 3

O m k

O k nm k

 
 

 
p multiple paths O(pm) per constraint
node constraints n/a

Table 1: Complexity of Constraint Evaluation
*Complexities for k-connectivity are based on methods used in this

paper – lower complexities can be obtained for k=3 and above using
more sophisticated techniques

For k = 1 and 2, O(m) algorithms may be used to test k–connectivity, namely breadth/depth
first search for k=1 and the lowpoint algorithm (Tarjan, 1972) for k=2. An O(m) algorithm for
3-connectivity does exist (Tarjan and Hopcroft, 1973), but its implementation is cumbersome.
Similarly, efficient but logically complex algorithms could be used for k>3 (Matula, 1987)
(Kanevsky and Ramachandran, 1991) but we have chosen to use the method proposed by
Kleitman (1969) on account of its simplicity. As this method involves the evaluation of
multiple vertex-disjoint paths, we will discuss path constraints before returning to it.

Path constraints may be evaluated using an adaptation of the Ford-Fulkerson algorithm (Ford
and Fulkerson, 1956). This runs in O(pm) time, where p is the number of vertex-disjoint paths
required. In the event that multiple paths are required to an access point, we will need to test
r-1 of these constraints, where r is the number of relays in the backbone. This increases the
complexity to O(pnm). Where k-connectivity ( 3k  ) is concerned, we use the following
theorem (Kleitman, 1969):

G = (V, E) is k-connected if for any node vV, there are k vertex-disjoint paths from v
to each other node and the graph G , formed by removing v and all its incident edges
from G is (k-1)-connected.

Thus k-connectivity can be tested with O(kn) disjoint path calculations and the complexity of
the entire process is O(k2nm). We must note that, with k-connectivity and multiple path
calculations, we are only interested in testing the subgraph of G induced by S. Therefore,
algorithms used for testing these constraints are generally more efficient in practice than these
complexities indicate, particularly when r is small.

We can deduce from Table 1 that the best complexity we could find for an evaluation of the
entire search space would be O(2nm) and that this would be somewhat dependent on the value
of k and the type of constraints present. Whilst we are aware of no technique that will improve
on this bound, we can order the search in such a manner as to significantly reduce runtimes for
the majority of cases. Figure 5 shows pseudocode for an algorithm that achieves this.

We define a candidate vector to be a boolean data structure containing a 1 for each relay node
and a 0 for each terminal node. Fixed relays are assigned 1 and infeasible relays the value 0
for all candidate vectors. A feasible candidate is one which satisfies the problem’s constraints.



procedure MRP/ES
begin

initialise i0
repeat

for all candidate vectors vc with i (feasible, non-fixed) relays
if vc is feasible

then return vc # vc is the optimum
i i+1

until (all feasible nodes are relays)
return  # no feasible solution exists

end
Figure 5: Pseudocode for MRP/ES

Using this method we save evaluating all solutions with more than ropt relays, where ropt is
number of non-fixed relays in the optimum solution. The only circumstance where we fail to
reduce the running time is one in which no feasible solution exists. The number of candidates
we need to evaluate is bounded above by:

 0

!
! !

optr

i

n
i n i


 (1)

Where nis the number of non-constrained nodes. To illustrate the extent of this reduction, we
will use a problem instance from the results section of this paper in which n=100 and ropt=7.
The search space size is 2n or 1267650600228229401496703205376, however a maximum of
only 17278988695 of these candidates need be evaluated to find the global optimum. Also,
the size of the relay component is never greater than 7 and therefore its number of edges
cannot exceed 42, greatly speeding up evaluation of the k-connectivity constraint.

Finally, we may decrease the search space further by considering the value of k and the
connectivity of G. For example, if we require 1-connectivity we may assume that all
separation vertices of G (vertices whose removal would disconnect the graph) must be relays.
Similarly, if 2-connectivity is required, all separation pairs of G must be relays. Likewise for
3-connectivity and separation triples etc. Constraining these nodes will improve the efficiency
of any of the algorithms introduced, but the effect is most significant with exhaustive search.

Although we have increased the efficiency of the search process immensely, the exhaustive
search algorithm is still only appropriate for small, dense problem instances. Some of the
examples cited in the results section of this paper took up to several days to solve. Runtimes
are also unpredictable as the value of ropt is not known at the outset, although upper bounds
can be placed on ropt using the heuristics outlined in the following subsections.

3.2 MRP/Drop and MRP/GRASP: Construction Heuristics for MRP

The first heuristic in this section is a greedy algorithm called MRP/Drop. The second is a
semi-greedy adaptation of MRP/Drop employing the GRASP metaheuristic and is
consequently named MRP/GRASP. A description of MRP/Drop is given in Figure 6.

We define the relay-degree of a node to be the number of relays adjacent to it. MRP/Drop
starts with a full set of relays, so far as constraints will allow and repeatedly tries to drop the
relay with smallest relay-degree. If the resulting vector is feasible, the relay remains dropped.



Otherwise it is reinstated and marked un-droppable. Fixed relays are marked un-droppable at
the outset. If there are several relays with equal-smallest relay-degree, u is chosen at random
from among them. The algorithm terminates when all the original relays have either become
terminals or have been marked.

procedure MRP/Drop
begin

initialise candidate vector vc so that all feasible nodes are relays
mark all fixed relays
repeat

select a non-marked relay u from vc with minimum relay-degree
make u a terminal
if vc is infeasible

then make u a relay again and mark it
until (all relays are marked)

end
Figure 6: Pseudocode for MRP/Drop

The complexity of this algorithm will be defined in terms of the number of candidates which
need to be tested, understanding that the complexity of each test depends upon the type of
constraints present. MRP/Drop evaluates a maximum ncandidates, massively reducing the
time complexity from (1). However, there is no guarantee that we will find the optimum
solution and greedy algorithms are generally outperformed by more sophisticated heuristics.

procedure MRP/GRASP
begin

initialise candidate vector vbest so that all feasible nodes are relays
repeat

initialise candidate vector vc so that all feasible nodes are relays
mark all fixed relays
repeat

randomly select a non-marked relay u from vc

(such that u’s relay-degree is within t of minimum)
make u a terminal
if vc is infeasible

then make u a relay again and mark it
until (all relays are marked)
if vc contains fewer relays than vbest

then vbest  vc

until (no improvement found in vbest for Imax iterations)
end

Figure 7: Pseudocode for MRP/GRASP

Fortunately, it is very easy to modify this algorithm into a Greedy Random Adaptive Search
Procedure (GRASP). Recall that in MRP/Drop, we choose u at random from relays with
minimum relay-degree. To convert to a GRASP algorithm, we specify a threshold (t) so that u
is now chosen at random from relays with relay-degree within t of the minimum value. The
procedure is then repeated until no improvement has been found in the last Imax iterations.
Pseudocode for MRP/GRASP is found in Figure 7.

Further improvements can be made in efficiency if we consider that evaluation of k-
connectivity and multiple path constraints grows more time consuming with increasing r.
Therefore, beginning with all feasible nodes as relays may slow the algorithm considerably.
An alternative is to begin with a smaller, feasible solution. Figure 8 shows a randomised



algorithm which creates smaller feasible solutions in most cases and may be used as an
alternative means of initialising vc for both MRP/Drop and MRP/GRASP. We start with a
small probability prel of a non-constrained node becoming a relay and increase it by pinc until
we get a feasible solution, thus avoiding constraint evaluations where r is excessively large
during the drop process.

procedure RandomInitialise
begin

initialise prel, pinc and vc

repeat
for all non-constrained nodes u in G

if random[0,1)< prel

then make u a relay in vc

else make u a terminal vc

prel  prel + pinc

until (vc is feasible or prel>1)
end

Figure 8: Pseudocode for MRP/RandomInitialise

The GRASP algorithm gives improvements over Drop but can become time consuming with
complex constraints. It is also commonly accepted that construction methods like MRP/Drop
and MRP/GRASP do not perform particularly well without a local search procedure to
improve on candidate solutions. Therefore, it behoves us to present such a method in the next
subsection.

3.3 MRP/SA: A Simulated Annealing Algorithm for MRP

Simulated Annealing (Aarts and Korst, 1989) is a stochastic variant on local search which has
proved successful for the unconstrained MCDS problem (Morgan and Grout, 2006).
Pseudocode for a generic simulated annealing algorithm is given in Figure 9.

procedure simulated annealing
begin

initialize temperature T
initialise vc

repeat
repeat

select a new candidate vn in the neighbourhood of vc

if eval(vn)<eval(vc)
then vc vn

else if random[0,1) <
( ) ( )c neval v eval v

Te


then vc vn

until (termination-condtion)
T T

until (halting-criterion)
end

Figure 9: Pseudocode for a Generic SA Algorithm

The algorithm starts with a candidate vector vc and makes some small alteration to it to create
a new vector vn: a process often referred to as a transition or move. This new vector is said to
be in the search neighbourhood of vc. If vn is found to be an improvement on vc by the
evaluation function eval(), then vc is replaced by vn. If vn is not found to be an improvement
there is still a possibility it will replace vc. However, the probability of a non-improving



solution being accepted is reduced periodically by reducing the temperature variable T. Here,
T is multiplied by a value (0 1)   each time the termination condition is met.

A simple evaluation function for MRP would return r for feasible solutions and infinity
otherwise. However, we have improved upon this using the intuition that two solutions with
the same r may not be equally desirable and that the solution whose relays have the greatest
total degree ought to be preferred. The greater degree solution can be considered to cover the
nodes more thoroughly and give us a better chance of dropping a relay without violating a
constraint. So the evaluation function returns 2mr-C for feasible solutions where C is the total
degree of the relays (the value of C cannot exceed 2m: the total degree of the problem graph –
hence the multiplying factor). Infinity is returned for infeasible solutions.

The search neighbourhood is made up of solutions obtainable by adding and/or dropping 1
node to/from the relay set. Alterations are selected at random, whereby a probability pmove is
defined to be the probability of not adding and not dropping each time. Note that a move in
which a terminal is added and no relay dropped cannot improve eval(vn) over eval(vc) but we
can exploit SA’s probabilistic acceptance of non-improving solutions to increase r temporarily
when such a move is performed. This helps to diversify the search.

In the interests of efficiency we have organised moves so that relay nodes are dropped in an
outer loop and added in an inner one. This is because multiple path constraints can be
evaluated incrementally on adding, reducing the complexity of moves in the inner loop. To
cover the event that a non-dropping move is selected, we maintain data for the candidate
before the relay was dropped as well as after and add to the appropriate vector (Figure 11).

Incremental evaluation of multiple path constraints works on the basis that we cannot reduce
the number of vertex-disjoint paths between a node pair by more than 1 if only 1 node has
been removed. Suppose p paths are required between two relays A and B. On dropping a relay
C from the relay component we then run the modified Ford-Fulkerson algorithm using A as
the source and B as the destination, to see if the constraint has been violated. If it hasn’t, we
certainly won’t violate it when we add a node back later, so no checking is necessary in the
inner loop of our algorithm. If it has, we know that one or more minimum vertex-cuts of size
p-1 have been created between A and B. the algorithm will also have return the set X of nodes
on A’s side of the first such cut. We may now mark the constraint as violated and run the
algorithm again using B as the source and A as the destination. Naturally we will get the same
answer, but we will also obtain the set X’ of nodes on B’s side of the last minimum cut. On
adding a new relay D, we may conclude that the constraint is satisfied if and only if D has one
or more neighbours in X and one or more neighbours in X’ – or in other words if D creates a
new path between the two sets. The process in the inner loop requires ( )O  time per path
constraint where  is the highest degree of all nodes in G. Figure 10 gives an illustration
where p=3. Most importantly, this process is used to speed up k-connectivity tests where k>2.

Figure 10: Incremental Evaluation of Path Constraints



For each relay dropped, we produce a candidate list of terminal nodes to add to the relay set.
When a relay has been dropped, the domination of its terminal neighbours is reduced. So the
candidate list is made up of the nodes which dominate most of these terminals, these can be
easily found as we know they will be 2-hop neighbours of the dropped relay. If we cannot find
enough eligible two-hop neighbours, the remaining portion of the list is filled with random
terminal selections from G. The process requires 2( )O  time. Pseudocode for the MRP/SA
algorithm is given in Figure 11.

procedure MRP/SA
begin

initialize temperature T, vc, vbest

repeat
for all relays i

drop i from vc to obtain cv
generate candidate list
for all terminals j in candidate list

randomly select type of move (add/drop/swap)
if add

then add j to vc to obtain vn

else if drop
then vn cv

else if swap
then add j to cvto obtain vn

if eval(vn)<eval(vc)
then vc vn

else if random[0,1) <
( ) ( )c neval v eval v

Te


then vc vn

if eval(vc)<eval(vbest)
then vc vbest

T T
until (halting-criterion)

end
Figure 11: Pseudocode for MRP/SA

The halting criterion used is that there must have been no change in eval(vc) over one iteration
of the outer loop. In addition, we specify a minimum number of iterations Imin to prevent
premature convergence of the algorithm.

4. Results

Problem instances were generated by the specification of three graph parameters. These were
the number of nodes n, the maximum transmission distance MTD (0 1)MTD  and a line-of-
sight probability LOS (0 1)LOS  . The nodes were placed randomly on a unit square. Edges
were created between nodes if the distance between them was less than MTD and LOS was
greater than a random value between 0 and 1. Two probabilities pfixed and pinf were defined so
that each node had a pfixed chance of being a fixed relay and a pinf chance of being an infeasible
one. Multiple paths were also selected at random, but in this case the number of constraints
npath was specified precisely, with source and destination vertices being chosen at random for
each of the npath constraints. The number of paths p also had to be specified and for the
purpose of these tests was kept constant for all constrained pairs. Parameters used for



MRP/SA were T=100, =0.97, pmove=0.3, Imin=40 and a candidate list length of 20. For
MRP/GRASP, t=3 and Imax=n/4. MRP/RandomInitialise was used for both MRP/GRASP and
MRP/Drop, with prel=0.001 and pinc=0.003.

4.1 Comparison Between Exhaustive Search and Simulated Annealing

First of all we turn to those instances for which the optimum solution is known. Unfortunately
there are few of these as the MRP/ES algorithm runs very slowly. The results we have are also
restricted to values of k<3, c=1 and no further constraints defined (except that fixed relay
constraints were used to eliminate separation vertices as discussed in section 3.1). The SA
results were compared with MRP/Drop which was used to initialise vc for SA throughout this
section. Tables 2 and 3 give a summary of results for k=1 and k=2. Observe that MRP/SA
finds the optimum solution for all instances.

n MTD LOS MRP/ES MRP/SA MRP/Drop
100 0.5 0.5 7 7 9
90 0.6 0.5 4 4 6
80 0.6 0.6 4 4 6
80 0.6 0.5 5 5 8
80 0.5 0.5 6 6 8
70 0.5 0.5 6 6 8
60 0.6 0.5 5 5 7
60 0.5 0.5 5 5 7
60 0.5 0.4 7 7 8
50 0.5 0.4 8 8 9
50 0.4 0.4 11 11 13
40 0.4 0.4 7 7 7
35 0.4 0.4 9 9 9
30 0.4 0.6 8 8 9
30 0.4 0.5 9 9 10
30 0.4 0.4 8 8 9
25 0.4 0.6 8 8 8

Mean Excess 0% 20.5%

Table 2: Optimality Tests for k=1

n MTD LOS MRP/ES MRP/SA MRP/Drop
50 0.5 0.4 8 8 9
45 0.5 0.4 8 8 11
40 0.5 0.4 5 5 5
35 0.5 0.4 7 7 10
50 0.5 0.5 6 6 6
40 0.5 0.5 7 7 7

Mean Excess 0% 17.1%

Table 3: Optimality Tests for k=2

4.2 Comparisons between MRP/SA, MRP/Drop and MRP/GRASP

In the absence of a known optimum for more complex instances, we look for a relative
improvement in CDS size for SA and GRASP over the greedy MRP/Drop. We express these
as percentages in the tables that follow. Table 4 shows some results for 2-connected
backbones with n in the range 200 1000n  .



MEAN CDS SIZES MEAN RUNTIMES (s) Improvement (%)
n Drop SA GRASP Drop SA GRASP SA GRASP

200 43.7 32.85 38.15 0.23 3.8 10.4 24.83 12.7
300 47.7 34.1 41.95 0.37 5.68 16.85 28.51 12.05
400 50.25 35.45 44.3 0.53 7.53 25.9 29.45 11.84
500 52.7 35.65 46.7 0.84 8.84 36.77 32.35 11.39
600 53.95 36.7 48.25 1.25 12.31 62.26 31.97 10.57
700 55.85 38.15 50.45 1.66 14.05 84.49 31.69 9.67
800 57.95 39.05 51.35 2.4 19.33 115.78 32.61 11.39
900 58.25 40.35 52.6 3.31 21.94 168.02 30.73 9.7
1000 58.7 40.45 53.9 4.23 26.3 210.73 31.09 8.18

Mean Improvement over MRP/Drop (%) 30.36 10.83

Table 4: Mean CDS Size Improvements and Runtimes for Variable n (20 runs)
k=2, c=1, MTD=0.2, LOS=0.5, pfixed=pinf=npath=0

The Improvement for SA over Drop is greater than that found for the optimal examples in
Table 3 and the runtimes are also preferable to GRASP. A comparison of performances for a
variety of values of k-connectivity and c-domination is given in Table 5.

MEAN CDS SIZES MEAN RUNTIMES (s) Improvement (%)
k c Drop SA GRASP Drop SA GRASP SA GRASP
1 1 14.6 10.4 12.45 0.07 1.27 3.43 28.77 14.73
2 1 17.35 11.4 14.05 0.11 1.48 5.11 34.29 19.02
2 2 23.2 17.9 20.4 0.11 2.16 4.5 22.84 12.07
3 1 23.1 16.65 18.85 0.57 5.09 26.95 27.92 18.4
3 2 26.9 20.7 23.5 0.52 6.79 26.43 23.05 12.64
4 1 29.85 21.75 22.8 1.33 12.22 73.18 27.14 23.62
4 2 30.35 24.4 26.75 1.42 14.68 77.81 19.6 11.86
5 1 33.6 26.8 27.3 3.39 27.46 200.87 20.24 18.75
5 2 35.8 29.25 31.2 3.71 34.1 193.05 18.3 12.85

Mean Improvement over MRP/Drop (%) 23.55 15.01

Table 5: Mean CDS Size Improvements and Runtimes for Variable k and c (20 runs)
n=200, MTD=0.3, LOS=0.8, pfixed=pinf=npath=0

SA still performs best here but becomes less successful with increasing connectivity.
Runtimes increase significantly for all algorithms but are small enough to be acceptable. The
algorithms’ constraint handling capabilities are tested in the next three tables.

MEAN CDS SIZES MEAN RUNTIMES (s) Improvement (%)
npath Drop SA GRASP Drop SA GRASP SA GRASP

0 53.12 36.18 46.78 0.71 9.29 36.26 31.89 11.94
2 56.72 39.22 50.84 0.99 12.93 48.89 30.85 10.37
4 60.02 41.92 53.38 1.15 13.62 55.89 30.16 11.06
6 61.96 44.72 55.82 1.13 15.67 63.12 27.82 9.91
8 64.38 47.72 58.58 1.35 17.46 65.67 25.88 9.01

10 66.5 50.12 60.62 1.47 19.07 73.24 24.63 8.84
12 69.14 52.9 62.5 1.63 20.12 77.49 23.49 9.6
14 70 55.16 64.18 1.75 21.52 80.76 21.2 8.31
16 71.62 58.04 66.26 1.89 23.02 96.12 18.96 7.48
18 74.86 60.96 69.22 1.88 24.16 99.32 18.57 7.53
20 75.68 63.3 70.8 2.02 24.42 99.28 16.36 6.45

Mean Improvement over MRP/Drop (%) 24.53 9.14

Table 6: Mean CDS Size Improvements and Runtimes for Variable npath (50 runs)
k=2, c=1, n=500, MTD=0.2, LOS=0.5, pfixed=pinf=0, p=3



Table 6 shows a deterioration in SA performance comparable with that for connectivity
constraints, whereas GRASP shows less ability to cope with multiple paths. Tables 7 and 8
show the effect of increasing pfixed and pinf on both algorithms.

MEAN CDS SIZES MEAN RUNTIMES (s) Improvement (%)
pfixed Drop SA GRASP Drop SA GRASP SA GRASP

0 32.12 22.84 27.44 0.17 2.67 7.98 28.89 14.57
1 33.56 24 28.42 0.16 2.63 7.72 28.49 15.32
2 33.7 24.96 29.5 0.16 2.64 7.88 25.93 12.46
3 35.02 26.2 30.38 0.16 2.57 7.63 25.19 13.25
4 35.62 26.62 30.82 0.15 2.41 7.46 25.27 13.48
5 37.16 28.74 32.28 0.15 2.34 7.15 22.66 13.13
6 37.82 29.6 32.92 0.15 2.23 7.26 21.73 12.96
7 39.12 31.14 34.5 0.15 2.29 6.97 20.4 11.81
8 39.36 32.16 34.98 0.14 2.11 6.59 18.29 11.13
9 40.32 33.48 36.18 0.15 2.11 6.41 16.96 10.27
10 41.82 34.46 36.94 0.14 2.16 6.64 17.6 11.67

Mean Improvement over MRP/Drop (%) 22.86 12.73

Table 7: Mean CDS Size Improvements and Runtimes for Variable pfixed (20 runs)
k=2, c=1, n=500, MTD=0.2, LOS=0.5, npath=pinf =0

Again, the performance of MRP/SA drops off for both type of constraint, but perhaps the most
remarkable feature of Table 8 is the consistency of MRP/Drop.

MEAN CDS SIZES MEAN RUNTIMES (s) Improvement (%)
pinf Drop SA GRASP Drop SA GRASP SA GRASP
0 33.95 22.6 27.15 0.15 2.57 7.51 33.43 20.03
5 32.2 22.55 27.15 0.16 2.29 8.14 29.97 15.68

10 32.55 23 27.05 0.18 2.06 8.45 29.34 16.9
15 33.8 23.6 27.35 0.17 1.97 8.46 30.18 19.08
20 31.15 23.7 27.6 0.18 1.96 9.37 23.92 11.4
25 32.65 24.9 28.05 0.17 1.76 9.37 23.74 14.09
30 32.35 25.2 27.8 0.18 1.64 8.12 22.1 14.06
35 33.9 25.85 28.45 0.19 1.59 9.58 23.75 16.08
40 33.35 26.75 28.25 0.2 1.41 9.78 19.79 15.29
45 32.95 26.9 28.05 0.19 1.39 9.97 18.36 14.87
50 32.65 27.15 29.05 0.19 1.35 9.25 16.85 11.03

Mean Improvement over MRP/Drop (%) 24.67 15.32

Table 8: Mean CDS Size Improvements and Runtimes for Variable pinf (20 runs)
k=2, c=1, n=200, MTD=0.2, LOS=0.8, npath=pfixed =0

5. Conclusions and Future Work

Of the algorithms presented, it appears that MRP/SA is a powerful algorithm for mesh
backbone optimisation. It produces results comparable with exhaustive search for cases small
enough for that process to be an option and outperforms both the construction algorithms
presented. However, MRP/SA does require a construction algorithm to initialise its candidate
vector and MRP/Drop and MRP/GRASP can both be considered options in this case. If
MRP/GRASP is used, multiple MRP/SA passes can be applied to elite or to all candidates
produced during the construction process. This would create a far more time consuming
algorithm but given that may be tolerable for design problems.



Prospects for future work include variations on the objective function outlined here. The
process of simply minimising relays might be exchanged for one in which the degree of relays
is minimised. It is mentioned in section 1 that part of the motive for relay minimisation is the
fact that multiple antennae are present on the relay nodes. A degree minimisation would be the
process of minimising the number of such antennae, rather than the number of relays but it
could be more likely that some weighted combination of the two would be required for
practical problems. This would complicate the search process as not only relays but links
adjacent to relays would need to be specified as part of the solution data structure, increasing
the search space to 2m. The growth in search space is massive considering the upper bound on
m is n2. Also, the link specification would mean that links, rather than nodes might need to be
swapped in and out for MRP/SA. This would, no doubt increase the complexity of that
algorithm.

A start has been made on the minimum relay problem, but further investigation and
implementation is necessary before we can claim a complete solution, even heuristically. The
focus of research from this point onwards will be on increasing the scope of the problem
definition and producing/modifying algorithms to solve it.
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