
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

7-1-2006

Realistic Large-Scale Network Optimisation
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

Rich Picking
Glyndwr University, Wrexham, r.picking@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., Picking, R., Cunningham, S. & Hebblewhite, R. (2006), ‘Realistic Large-Scale Network Optimisation’. [Paper presented to
the 6th International Network Conference (INC 2006)] 11-14 July 2006, pp121-130]. Plymouth: Plymouth University

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Realistic Large-Scale Network Optimisation

Abstract
This paper considers communication network design problems that arise in the real world, with large numbers
of nodes - and link and switch costs dependent upon their traffic capacity. Such costs, in turn, depend upon
network topology so are not fixed at the start of, or through, any optimisation process. Realistic topological
restrictions are also discussed. The limitations of conventional approaches – both constructive and search
based – are noted and the requirements of practical optimisation methods explored. Two workable
approaches to network design - one an established local search variant, another a more novel geometric
approach – are introduced and combined. Various simple and compound algorithms, ranging from exhaustive
search to fast heuristic are compared with experimental results given in conclusion.

Keywords
Large-scale network optimisation, Algorithms and heuristics

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Runner-up, 'Best paper at Conference' award, Internet Research/Emerald. This paper was presented at 6th
International Network Conference (INC 2006)] 11-14 July 2006, which was held by University of Plymouth
and details of the conference are available at http://www.cscan.org

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/72

http://www.cscan.org/scripts/external_links.asp?REF=conferences&URL=http://www.cscan.org/PreviousINCEvents/inc2006
http://epubs.glyndwr.ac.uk/cair/72?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F72&utm_medium=PDF&utm_campaign=PDFCoverPages

Realistic Large-Scale Network Optimisation

Vic Grout, Rich Picking, Stuart Cunningham and Rich Hebblewhite,

Centre for Applied Internet Research (CAIR), University of Wales, NEWI, Wrexham, UK
{v.grout|r.picking|s.cunningham|r.hebblewhite}@newi.ac.uk

Abstract

This paper considers communication network design problems that arise in the real world, with large numbers of
nodes - and link and switch costs dependent upon their traffic capacity. Such costs, in turn, depend upon
network topology so are not fixed at the start of, or through, any optimisation process. Realistic topological
restrictions are also discussed. The limitations of conventional approaches – both constructive and search based
– are noted and the requirements of practical optimisation methods explored. Two workable approaches to
network design - one an established local search variant, another a more novel geometric approach - are
introduced and combined. Various simple and compound algorithms, ranging from exhaustive search to fast
heuristic are compared with experimental results given in conclusion.

Keywords

Large-scale network optimisation, Algorithms and heuristics

1. Introduction: Conventional Network Optimisation

It is a common mistake to consider the topological network design problem (TNDP) for fixed
networks in general, and communication networks in particular, well-solved. In the standard
formulation, n nodes are to be interconnected with cij representing the cost of connecting node
i directly to node j. The problem is then to find a connecting set of links minimising

∑ ∑
−

= +=

=
1

1 1

*
n

i

n

ij
ijcC . (1)

Early constructive algorithms (e.g. Prim, 1957) solve the problem to optimality in its
unconstrained form and produce Minimal Spanning Tree (MST) solutions (Figure 1.(a)).
Capacity constraints can be applied although the problem then becomes NP-hard (Garey and
Johnson, 1979) and the necessarily adapted heuristics (e.g. Kershenbaum and Chou, 1974)
only yield approximate solutions. However, with an initial solution in place, various classes
of local search heuristics such as tabu-search (Glover and Laguna, 1993), simulated annealing
(Aarts and Lenstra, 1997), genetic algorithms (Winter et al., 1995) or Ant Colony Algorithms
(Dorigo et al., 1999) can be applied to perturbate parts of the solution to look for
improvement. A common, but unrealistic, approach is to formulate the problem in Linear or
Integer Programming (Verkhovsky and Polyakov, 2003). This paper begins by outlining the
practical shortcomings of the TNDP formulation and its associated algorithmic solutions. It
then discusses the requirements of a real-world fixed network design optimisation process and
introduces and compares various effective solutions.

2. Limitations of Conventional Optimisation

There are two objections to the MST solution to the TNDP. Firstly, the connecting network
will have long, inefficient paths, even between geographically close nodes and, secondly, the
solution network will be extremely vulnerable to component failure. There is no redundancy

- a fault at any node or link disconnects the network. However, there are also difficulties
associated with this simplistic notion of cost, independent of the method of solution. Only
link (e.g. transmission) costs are considered; node (e.g. switching) costs are ignored. Also,
traffic will flow, possibly asymmetrically, in both directions on a link - the structure of link
costs should reflect this. Finally, costs are taken as fixed in the statement of the problem and
throughout any optimisation process, irrespective of network topology. This final point
warrants further explanation. The true cost of a link will depend partly on its capacity - the
level of traffic it can handle. A similar variance applies to switches. The cost of a link or
switch consequently depends on the solution topology so cannot be fixed for the duration of
the optimisation process.

i

j

(a)

i

j

X

Y

Z

(b)

Figure 1. MST and practical network design.

For large numbers of nodes a more realistic network topology is shown in Figure. 1.(b). A
subset of nodes (switches) is chosen to concentrate and relay traffic among the remainder
through a mesh or partial-mesh core network. The maximum path length between any node
pair is reduced significantly and there is some tolerance of failure, at least in the core network,
provided by redundant links. We take this as our model for a practical network design in this
paper. Other forms are possible of course, such as constrained full-mesh or star core
networks, multiply-connected non-switch nodes or multi- level networks. The techniques
discussed in this paper extend without difficulty to these variant s.

3. A Practical Formulation for Network Cost

Link costs remain variable, however, and switch costs should be considered. If we adopt the
convention of using uppercase characters for switches and lowercase for non-switches then, in
general, cs(i)=0, cs(X)>0, cl(i,j)=0 and, where the link in question is present,
cl(X,Y)>cl(i,X)>0, where cs and cl are the costs of switches and links respectively. More
precisely, if a link L carries traffic t over a distance d then cl(L) = fl(t,d). If a switch S
processes traffic T then cs(S) = fs(T). fl and fs may be any well-defined functions, dependent
upon the underlying technology. Define tij to be the traffic between end-points i and j, that is
the traffic originating at i and destined for j. Define dij to be the ‘distance’ between i and j.
This may the Euclidean straight line (dij = [(x i-xj)2+(yi-yj)2]½ where (xi,yi) and (xj,yj) are the
Cartesian coordinates of i and j) or weighted to reflect local factors. If a link is infeasible then
dij=∞. The cost of a link from a non-switch i to its parent switch X is then given by

),(),(
1

iX

n

j
ijll dtfXic ∑

=

= (2)

with a corresponding cost c(X, i) in the other direction. Define ΓX to be the set of nodes with

X as their parent in a given configuration/solution. Then the cost of the switch X is given by

))(()(
1

∑∑
Γ∈ =

+=
Xi

n

j
jiijss ttfXc . (3)

For a fully-connected core network, i.e. with a link between each switch pair (X, Y), the cost
of the link (X, Y) is given by

),(),(XY
i j

ijll dtfYXc
X Y

∑ ∑
Γ∈ Γ∈

= (4)

with an equivalent cost cl(Y,X) in reverse. Define ΩXY = 1 if there is a link between X and Y.
ΩXY = 0 otherwise. (The node sets ΓX, ΓY, …, and the connection matrix Ω = (ΩXY) fully
describe any given solution.) The total cost of the (fully-connected) network can then be
calculated as

 ∑
∑

∑





















+

+

+

=
Γ∈

X

Y
l

s

i
ll

YXc

Xc

iXcXic

c
X

),(

)(

)),(),((

* . (5)

If the link from switch X to switch Y is not present (ΩXY = 0) this results in a saving of

),(∑ ∑
Γ∈ Γ∈X Yi j

XYijl dtf . (6)

However its traffic must be redirected via switches Z1, Z2, … The cost of each affected
switch, Z1, Z2, … will increase to

),...)((

),)((

2

1

1

1

∑ ∑ ∑∑

∑ ∑∑∑

Γ∈ Γ∈ Γ∈=

Γ∈ Γ∈ Γ∈=

++

++

Z X Y

Z X Y

i i j
ij

n

j
jiijs

i i j
ij

n

j
jiijs

tttf

tttf

 (7)

and link costs to

)),((

...

),),((

),),((

21

1 2

1

1

YZ
Xi Yi

ij
Zi Yi

ijl

ZZ
Xi Yi

ij
Zi Zi

ijl

XZ
Xi Yi

ij
Xi Zi

ijl

r

r

dttf

dttf

dttf

∑∑∑∑

∑∑∑∑

∑∑∑∑

∈ ∈∈ ∈

∈ ∈∈ ∈

∈ ∈∈ ∈

+

+

+

 (8)

for each capacity-enlarged link, (X, Z1), (Z1, Z2), …, (Zr, Y) where r is the degree of
redirection for (X, Y) (r=0 ⇔ ΩXY=1). The calculation is repeated for each (X, Y) with ΩXY =
0. (If ΩXY = 0 implies ΩYX = 0 then the adjustments in (6, 7 & 8) are replicated in reverse but
this is not assumed here.) The total network cost c* can be recalculated accordingly. The
removal of a link will result in an overall saving if appropriate spare capacity can be found on
the switches and links through which its traffic is redirected. (A distinction is made here
between redirection and rerouting. Redirection is part of the topological design process by
which required link capacities are estimated. Rerouting is a dynamic process taking place in
real time on network switches. The use of redirection in design does not prohibit dynamic

rerouting in operation.) c*, however, is a complex calculation, based on link costs that vary
with network topology. Significantly, small changes to a topology (such as moving a node to
a different parent switch) have consequential effects across the network and require a full re-
evaluation of the total cost. Conventional local search techniques work well when the effects
of a local change can be calculated locally in terms of a change in cost (such as the
insertion/removal of a link of fixed cost). Their complexity is increased if the cost function
must be recalculated for each perturbation and their power diminishes rapidly

4. Realistic Local Search

Theoretical search routines do not work well for the variable cost problem outlined here.
There are nn-2 possible trees on n nodes (Moon, 1970) and a number of connected networks
given recursively by

 ∑
−

=

−−−
−

−−

Φ−
−=Φ

1

1

2/)1)((
2/)1(

)!()!1(

2)!1(
2

n nn
nn

n n

n

µ

µµ
µ

µµ
 (9)

(Grout, 2005a). Both expressions are exponential, implying that exhaustive search is
impractical for larger n. An approach favoured by practical network designers, although its
origins are uncertain, is outlined in the following algorithm.

DD(n):
Make every node a switch // Initial solution
repeat

 Connect switches as a full-mesh
 ∆s = 0
 Calculate c* // Equation 5
 for each switch X do // Look to drop switches
 begin
 Calculate c*(X) // Equation 5
 repeat
 ∆l = 0

for each link (Y,Z) do // Look to drop links
 begin
 Calculate ∆ = c*(X)-c*(X,Y,Z) // Equations 6,7,8
 if ∆ > ∆l then
 Y* = Y, Z* = Z, ∆l = ∆
 end
 if ∆l > 0 then
 begin
 Remove link (Y*,Z*) // Drop ‘worst’ link
 c*(X) = c*(X,Y*,Z*)
 end
 until
 ∆l = 0 // No further link savings
 ∆ = c* - c*(X)
 if ∆ > ∆s then
 X* = X, ∆s = ∆
 end
 if ∆s > 0 then
 Remove switch X* // Drop ‘worst’ switch

until
 ∆s = 0 // No further switch savings

Starting from a full-switch/fully-connected network, the ‘Double-Drop’ (DD) algorithm tries
candidate switches for removal from the current solution. With each trial switch removed,
links are experimentally dropped in a similar manner. The algorithm is essentially ‘greedy’
but in a nested, local-search form. The network cost c* and perturbated costs c*(X), c*(Y,Z)
and c*(X,Y,Z) (the cost of the ‘current’ network without the switch X and/or the link (Y,Z)) are
calculated as in Section 3. There is an assumption that nodes are connected to their nearest
switch. DD is a practical algorithm in that it deals with costs that vary with network
topology. Its simple structure also minimises search iterations. Its major drawbacks are that:

it is unlikely to be particularly accurate since it removes switches and links in an entirely
greedy manner with no consideration for a wider search neighbourhood, it is still
computationally complex in its consideration of all combinations of node and link drops at
each stage and its complexity is increased further by the need to completely recalcula te the
cost function for each perturbation. A natural extension to the DD process, to overcome the
shortcomings of greedy search, is to introduce larger search neighbourhoods through (e.g.)
tabu search and simulated annealing. However, such refinements, whilst addressing the first
problem, simply compound the second. For moderately-sized problems (n), unrefined DD
has typically proved be the only viable search process.

5. Representative Reduction

An alternative design method is proposed for large networks that eliminates a large number of
iterations, branches and cost calculations. It uses the traffic values tij and distances dij to
geometrically reduce the network in size. ‘Conventional’ optimisation then proceeds on the
reduced representative version. Define the weight of each node to be its total traffic load:

 ∑
=

+=
n

j
jiiji ttw

1

)((10)

and note that this value is constant for any solution topology. We also require each node i to
be defined by its Cartesian coordinates, (xi,yi). Then define a single reduction step, RS(m),
acting on m nodes, as:

RS(m):
min = MaxVal // Some arbitrarily large value
for each node pair i, j (1≤i≠j≤m) do

 if dij < min then // Find closest pair
 i* = i, j* = j, min = dij

xk = (wi*xi* + wj*xj*) / (wi* + wj*)
yk = (wi*yi* + wj*yj*) / (wi* + wj*)
wk = wi* + wj* // Replace by a single node
for each node, ? (? ≠ i*,j*) do // with representative traffic,

 begin // coordinate and distance
 dk? = (wi*di*? + wj*dj*?) / (wi* + wj*) // characteristics
 d?k = (wi*d?i* + wj*d?j*) / (wi* + wj*)
 end

RS(m) finds the closest two nodes, as defined by distances dij and replaces them by a single,
representative node, biased by the weights wi and wj. The original m nodes are replaced by a
representative m-1 in this single step. RS(m) is the essential component in a compound
algorithm that can perform conventional optimisation on a network problem of reduced size.
If RS(m) is repeated n – q times, the original network problem of size n will be replaced by a
representative one of size q. These q nodes can be used in three ways to approximate an
optimum solution – described in the next section. The complexity of the reduction process, a
sequence of matrix searches, is bounded above by O(n3).

6. Practical Optimisation following Reduction

Assuming the intention is to site switches at existing locations, define the step Rel(q) to be the
process of relocating the q representative nodes to their nearest true node. If greenfield sites
are permitted then the step may be omitted from the final process. For any given computer
upon which optimisation is to be performed (i.e. its processor power) we define optimisation
limit values. nES is the maximum number of nodes for which exhaustive search is feasible
and nDD the maximum number of nodes for which double-drop is feasible. Clearly, nDD >
nES but actual values depend on the time available. For a given (time) limit, the value of nES
may be derived empirically or calculated exactly from the known complexity of the

exhaustive search process. The double drop algorithm, however, is indefinitely iterative so
nDD is best derived by experimentation. Three compound heuristics are outlined:

6.1. Reduction to Exhaustive Search (RES)

This is a simple, intuitive process. Reduce the number of nodes to nES, relocate to true
positions and optimise to find switches and the core network through exhaustive search.

6.2. Reduction to Double-Drop (RDD)

This is equally simple. Reduce the number of nodes to nDD, relocate to true positions and
perform double-drop (DD) optimisation to find switches and the core network.

6.3. Reduction to Switch Location (RSL)

This is not so straightforward. The idea is as follows. Reduce the number of nodes by one
each time, immediately relocate to true positions (a single step only for the new node),
explicitly make each node a switch and optimize on the core network only. Calculate cost
(Equations 5, 6, 7 & 8). Repeat while cost decreases. However, this would be an extremely
complex approach. Evaluating each of the mΦ core networks for each decreasing value of m
switches (starting with m = n) is comparable with exhaustive search for complexity. To avoid
this, we adopt the heuristic approach of only evaluating the cost of a fully-connected (mesh)
core network. Each algorithm is as follows:

RES: RDD: RSL:
m = n m = n m = n
repeat repeat repeat
 RS(m) RS(m) RS(m)
until until Rel(m)

 m = nES m = nDD COpt(m)
Rel(m) Rel(m) until
ES(m) DD (m) co(m) > co(m+1)

 m = m+1
 Opt(m)

COpt(m) is the process of finding the m switches with the cheapest full-mesh core network
and co(m) is the cost of this core network. The optimal core network is only calculated (by
exhaustive search) for the final switch set (Opt(m)).

7. Testing and Results

The algorithms introduced in this paper are compared here. Two types of test instances were
used: computer-generated and real-world. It is known (Grout, 2005b) that certain algorithms
can favour problem instances with parameters taken from particular statistical distributions so
every attempt has been made to consider a variety of situations and characteristics.

7.1. Computer-Generated Instances (CG)

Random generation of test instances is straightforward but must be appropriate and realistic.
Just over 4,000 instances were produced with numbers of nodes (n) between 10 and 100,000.
Node positions were randomly taken from the [0,1] unit square but with reference to between
0 and 25 cluster points (cp) and a cluster coefficient (cc) of between 0 and 1. A cc of 1 forces
all nodes to be coincident on cluster points. A cc of 0 allows nodes to be placed anywhere – a
uniform distribution across the unit square. cp and cc were randomized uniformly. End-to-
end traffic figures between each node pair were independently randomized on the interval
[0,1] according to (both, separately) a uniform distribution (U) and a normal distribution (Ns)
with mean 0.5 and standard deviation (s) between 0.005 and 0.25. Realistic link and switch
costs are more complex – even for randomly generated instances. The benefits of redirecting
traffic between switches, calculated in Section 3, are only positive if spare capacity can be
found on existing links and switches to offset the additional cost of connection and switching.

Real link and switch costs increase in discrete steps. General principles are given in Chan
(1998) and formulated in Gabrel et al (1999). Our cost functions are based on this approach.

7.2. Real-World Instances (RW)

Four real network problems were also studied. Actual network data in the form of node
locations, traffic requirements and link/switch costs were provided as follows:

• Case 1: A Frame-Relay network of 78 nodes with estimated traffic flows, allowing
the traffic matrix to be approximated.

• Case 2: A Frame-Relay network of 103 nodes with known (measured) traffic flows,
allowing the traffic matrix to be calculated.

• Case 3: An ATM network of 221 nodes with unknown traffic flows. The traffic
matrix is taken as being constant for all node pairs.

• Case 4: An IP network of 491 nodes with known (measured) traffic flows, allowing
the traffic matrix to be calculated.

For reasons of commercial confidentially, it is not possible to release precise details of
locations, traffic and costings. It is, however, acceptable to summarise results.

Three algorithms are considered and their complexity and accuracy compared. RES :
Reduction to Exhaustive Search. RDD: Reduction to Doub le-Drop. RSL: Reduction to
Switch Location.

0

5

10

15

20

25

10 30 100 300 100
0

300
0

100
00

300
00

100
000

RSL(0:0)

RDD(0:0)

RSL(5:0.5)

RDD(5:0.5)

RSL(15:0.4)

RDD(15:0.4

RSL(15:0.8)

RDD(15:0.8)

RSL(25:0.4)

RDD(25:0.4)

RSL(25:0.8)

RDD(25:0.8)n

RDD (cp:cc)

% improvement over RES

RSL (cp:cc)

Increased
clustering

Increased
clustering

Figure 2. % Improvement of RSL & RDD over RES for different cluster values.

Based on each algorithm, coded in C++, running on a 2.8GHz Pentium IV processor, the
optimisation limit values were derived (experimentally) as nES = 12 and nDD = 60. These
values permit run times of up to one day (86,400 seconds). Figure 2 compares RSL, RES and
RDD directly. There was some small variance for different network/traffic characteristics but
the more significant trends are summarised in Figure 2 as percentage cost improvements of
RSL and RDD over RES, averaged over all instances with clustering (cp, cc).

Essentially, RDD outperforms RSL, which in turn outperforms RES. RDD and RSL (by
choosing appropriate values of nES and nDD) can be constrained to approximately equivalent
times. RSL is much faster – several orders of magnitude for the largest problems. RSL
performed slightly better with increased levels of clustering and RDD slightly worse. All
observed differences increase with larger values of n.

8. Conclusions

Theoretical, fixed-cost models of the network design process are simplistic. In the practical

design of a real network, both link and switch costs have to be considered and these costs are
(at least partially) a function of (required) capacity. As this capacity depends upon the
topology of the solution network, costs cannot be considered fixed and entered as input to a
standard algorithmic solution. The further, implied difficulty that the cost function is not
locally stable, and must be re-evaluated fully for each solution variant, increases the
complexity considerably, particularly for large problems. Conventional construction or local
search variants fail for one or both of these reasons.

Noting these objections, this paper initially considers two practical optimisation algorithms:
exhaustive search (ES) and a doubly- iterative drop (DD). However, both have limits (nES and
nDD) on network size so additional techniques are needed to reduce larger problems to within
their range. We consider three variants: reduce down to exhaustive search (RES), reduce
down to double-drop (RDD) and reduce directly down to switch location (RSL). There is an
additional heuristic simplification involved in RSL.

RES does not perform well, mainly due to a necessarily very small nES. RSL gives better
results: its core network heuristic makes it the fastest of the three reductive approaches at the
expense of some accuracy. RDD is the most accurate: nDD > nES outweighing the heuristic
limitation of DD. If time permits, RDD would be the preferred method of solution for a
large-scale network design problem. If less accurate results are required much faster (for
example, if frequent re-optimisation is to be performed) then RSL is an acceptable
compromise.

9. References

Aarts, E.H.L. and Lenstra, J.K., Local Search in Combinatorial Optimization, Wiley, 1997.

Chan, R., Wide Area Network Design: Concepts & Tools for Optimization, Morgan Kaufmann, 1998.

Dorigo, M., Di Caro, G. and Gambardella, L.M., “Ant Algorithms for Discrete Optimization,” in Artificial Life ,
MIT Press, 1999.

Prim, R.C., “Shortest Connection Networks and some Generalizations,” Bell Systems Tech. J. Vol. 36, pp1389-
1401, 1957.

Gabrel, V., Knippel, A. and Minoux, M., “Exact solution of multicommodity network optimization problems
with general step cost functions,” Operations Research Letters, Vol. 25, pp15-23, 1999.

Garey, M.R. and Johnson, D.S., Computers and Intractability: A guide to the theory of NP-completeness, W.H.
Freeman, New York, 1979.

Glover, F. and Laguna, M., “Tabu Search,” in Modern Heuristic Techniques for Combinatorial Problems,
Reeves, Ed. New York, Wiley, 1993, pp70-150.

Grout, V.(a), “Principles of Cost Minimisation in Wireless Networks”, J. Heuristics, Vol. 11, Issue 2, March
2005.

Grout, V.(b), “Initial Results from a Study of Probability Curves for Shortest Arcs in Optimal ATSP Tours with
Application to Heuristic Performance”, Proc. 20th British Combinatorial Conference (BCC 2005), University of
Durham, UK, 10th-15th July 2005.

Kershenbaum, A. and Chou, W., “A Unified Algorithm for Designing Multidrop Teleprocessing Networks”,
IEEE Trans. Communications, Vol. COM -22, No. 11, pp1762-1772, 1974.

Moon, J.W., “Counting Labelled Trees”, Canadian Mathematics Congress, Montreal, 1970.

Winter, G., Periaux, J. and Galan, M. (Eds.), Genetic Algorithms in Engineering and Computer Science, Wiley,
1995.

Verkhovsky, B.S., and Polyakov, Y.S., “Algorithms for Optimal Switch Location: Concave Cost Functions,” in
Advances in Decision Technology and Intelligent Information Systems, Vol. IV, Lasker, Ed. Int. Inst for
Advanced Studies in Systems Research and Cybernetics, pp16-20, 2003.

	Glyndŵr University
	Glyndŵr University Research Online
	7-1-2006

	Realistic Large-Scale Network Optimisation
	Vic Grout
	Rich Picking
	Recommended Citation

	Realistic Large-Scale Network Optimisation
	Abstract
	Keywords
	Disciplines
	Comments

