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Abstract- For over a decade researchers have been reporting 

the impact of self-similar long-range dependent network 

traffic. Long-range dependence (LRD) is of great significance 

in traffic engineering problems such as measurement, queuing 

strategy, buffer sizing and admission and congestion control. In 

this research, in order to determine the existence of LRD, we 

apply three different robust versions of the autocorrelation 

function (ACF), namely weighted ACF (WACF), trimmed ACF 

(TACF) and variance-ratio of differences and sums, known as 

the D/S variance estimator (DACF), in conjunction with the 

sample ACF (which is moment based). Here we define the 

moment based ACF as MACF. In telecommunications, LRD 

traffic defines that a similar pattern of traffic persists for a 

longer span of time. Through ACF, it is possible to detect how 

long the traffic lasts. The aim of this research is to investigate 

the performance of ACF in identifying the existence of LRD 

traffic.  

 I.    INTRODUCTION 

Self-similar and long-range dependent (LRD) 
characteristics of Internet traffic have attracted the attention 
of researchers for over a decade. The condition of self-
similarity is that the autocorrelation function (ACF) of the 
time-series declines as a power-law, leading to positive 
correlations among widely separated observations [1]. Note 
that a power law is a characteristic feature of heavy-tailed 
distributions.  In the Internet, heavy-tailed distributions have 
been observed in the context of traffic characterization. The 
distributions having infinite variances are called heavy-
tailed and the weight of their tails is determined by a 
parameter called the tail index, 2<α  [2].  

Self-similarity and heavy-tailedness are of great 
importance for network capacity planning purposes, in 
which researchers are interested in developing analytical 
methods for analysing traffic characteristics. The goal of 
traffic characterisation is to determine the nature of the 
traffic and develop tractable models that capture the 
important properties of data, which can eventually lead to 
accurate performance prediction. The uses of traffic 
characterisation include network planning, design, capacity 
management, performance prediction, real-time traffic 
management and network control. 

The LRD property of traffic fluctuations has important 
implications on the performance, design and dimensioning 
of the network [3]. A simple, direct parameter, 
characterizing the degree of LRD, is the Hurst parameter. 
The Hurst exponent (or Hurst parameter, H), which more 
than a half-century ago was proposed for the analysis of 
reservoir long-term storage capacity [4], is used today to 
measure the intensity of LRD in network traffic. A number 
of methods have been proposed to estimate the Hurst 
parameter. Some of the most popular include aggregated 
variance time (V/T) [5], Rescaled-range (R/S) [3, 4] and the 

Higuchi and wavelet-based methods [6, 7] although there 
are many others. In [8, 9] an estimator is introduced called 
the Hurst Exponent from the Autocorrelation Function 
(HEAF) and it is shown that (and why) lag 2 in HEAF (i.e. 
HEAF (2)) is considered when estimating LRD of network 
traffic. [10] considers the robustness of HEAF(2) when 
estimating the Hurst parameter of data traffic (e.g. packet 
sequences) with outliers and also the reliability of HEAF(2). 

The remainder of this paper is organised as follows: 
Section II describes the relationship between self-similarity, 
long-range dependence and the autocorrelation function 
(ACF). Section III discusses different methods of 
autocorrelation function. Finally, conclusions are drawn in 
section IV.  

II.   THE RELATIONSHIP BETWEEN SELF-SIMILARITY, LRD 

AND ACF 

A phenomenon that is self-similar looks or behaves the 
same when viewed at different degrees of magnification or 
different scales on a given dimension and is bursty over all 
time scales. Self-similarity is the property of a series of data 
points to retain a pattern or appearance regardless of the 
level of granularity used and is the result of LRD in the data 
series. If a self-similar process is bursty on a wide range of 
timescales, it may exhibit LRD. Often lagged 
autocorrelations are used in time series analysis for 
empirical stationary tests.  Self-similarity manifests itself in 
the time series of arrivals’ LRD (i.e., long memory). The 
evidence of very slow, linear decay in the sample lag ACF 
indicates nonstationary behaviour [11]. Long-range-
dependence means that all the values at any time are 
correlated in a positive and non-negligible way with values 
at all future instants.  

A continuous time process ( ){ }0, ≥= ttYY  is self-

similar if it satisfies the following condition [12]: 
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where H is the index of self-similarity (the Hurst 
parameter) and the equality is in the sense of finite-
dimensional distributions. 

The stationary process X is said to be an LRD process if 

its ACF is non-summable [13], that is if ∞=∑
∞
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Details of how the ACF decays with k are of interest 
because the behaviour of the tail of the ACF completely 
determines its summability. From [3], X is said to exhibit 
long-range dependence if  
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Equation (2) implies that the LRD is characterized by an 
ACF that decays hyperbolically rather than exponentially 
fast.  

 

 
 

Fig. 1.  Autocorrelation plot for LRD and SRD processes 
 
LRD processes then are characterised by a slowly 

decaying covariance function that is non-summable. When 
network performance is affected by LRD, data are correlated 
over an unlimited range of time lags and this property 
results in a scale invariance phenomenon. Then no 
characteristic time scale can be identified in the process: 
they are all equivalent for describing its statistics - the part 
resembles the whole and vice versa. Figure 1 illustrates 
typical LRD and SRD (short-range dependent) processes.  

 

III. DIFFERENT METHODS OF AUTOCORRELATION FUNCTION 

 

A.  Sample autocorrelation function (MACF) 

As in [14], for given observed data iX  (i.e. 

nXX ,,.........1 ), the sample autocorrelation function can be 

calculated by the following method: 

Let ∑
=
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where k=0,1, 2, ….., n,    
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ˆ nn γσ = .   (3.3) 

Then the sample autocorrelations of lag k are given by 
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2ˆ

ˆ
ˆ

n

kn
k

σ

γ
ρ =     (3.4) 

(Equations (3.1), (3.2), (3.3) and (3.4) denote the sample 
mean, the sample covariance, the sample variance and the 
sample autocorrelation, respectively). As this ACF is 
moment based, for simplicity we name it as MACF. 
 

 

B. Weighted Autocorrelation function (WACF) 

For a given time series z1, ……, zn, let w1, ……, wn be 
the corresponding weighting series. Then the weighted 
sample autocorrelation function (shorten as WACF) can be 
defined [15] as  
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Here tw is considered as Hampel’s [15] weighted 

function. 
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where a =1.7, b = 3.4 and c = 8.5 
 
As the network traffic data (sample) can be larger than 

8.5, we modify the Hampel’s weighted function as in the 
following: 
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C. Trimmed  Autocorrelation function (TACF) 

Let )()2()1( ........ nzzz ≤≤≤  be the ordered 

observations of the given time series z1, z2, …., and zn. Chan 
and Wei [16] introduced the α -trimmed sample 
autocorrelation function (shorten as TACF) defined by 
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where ][ ng α=  is the integer part of  nα  and 

05.00 ≤≤α . Chan and Wei showed that TACF is, in 
general, very successful in removing the adverse effect of 
outliers on the estimation of ACF. 

 

D.  D/S variance estimator (DACF) 

The moment estimator of ACF can be transformed into 
the following variance-ratio of differences and sums which 
is known as D/S variance estimator [17, 18]. 
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The α % - trimmed ACF-estimator is defined [19] as 
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The results found from these methods are presented here. 

Because of space limitation we cannot provide our all 
results. Figure 1 shows the traffic burstiness and 
autocorrelation plots for UNC data. These real data were 
taken from the UNC archive [21] with trace collections 
obtained from a Gigabit Ethernet link. The data set 
considered here are numbers of TCP packets per 1 ms bin. 
The ACF plots by different methods confirm that the traffic 
is LRD. Clearly, traffic persists for more than 3.5 seconds 
provided by MACF, WACF and TACF. The DACF plot in 
Figure 1 depicts that it can capture the LRD traffic for a 
longer period of time. The estimated Hurst parameter for 
UNC data is 0.63.  Figure 2 illustrates the traffic burstiness 
and autocorrelation plots for video traffic [22]. The frame 
lengths (in bytes) of intracoded frames (I-frames) per 41.7 
ms bin from the movie “Kiss of the Dragon” are considered 
here. For both video traffic and UNC data, the sample length 
(N) considered for the dataset is 65000. In Figure 2, MACF, 
WACF and TACF plots show that the LRD traffic lasts for 
150 seconds. The DACF plot shows that the traffic lasts for 
more than 2500 seconds which is indicative of heavy 
network load conditions. The estimated Hurst parameter for 
this video traffic is 0.91 which agrees with the 
autocorrelation plots. We used the HEAF(2) estimator to 
measure the degree of LRD (i.e. Hurst parameter). 

 

IV.    CONCLUSIONS 

The autocorrelation function is a very useful tool in 
traffic engineering problems, especially when measuring the 
duration of existing traffic in the network. In this research, 
we investigate the performance of four different versions of 
ACF. The experimental results show that variance-ratio of 
differences and sums estimator (DACF) can capture  a 
longer duration of traffic whereas MACF, WACF and 
TACF provide similar performance, showing the duration of 
traffic captured for less period of time.  It is particularly 
important to understand the link between self-similarity and 
long-range dependence of network traffic and the 
performance of the networks because such characterization 
can be potentially applied for essential control purposes 
such as traffic shaping, load balancing and other strategies 
of the future.  

The autocorrelation function of the traditional Markovian 
(or memoryless) traffic process decays exponentially, 
whereas self-similar, long-range dependent traffic decays 
more slowly and tends to be hyperbolic, implying a strong 
correlation structure of such a process. Such traffic 
behaviour (e.g. self-similarity, long-range dependence, 



  

heavy-tailedness) is of great importance for network 
capacity planning purposes, in which researchers are 
interested in developing analytical methods or mathematical 
models for analysing traffic characteristics. There is a 
significant impact observed when the underlying network 
traffic exhibits self-similar, long-range dependent behaviour, 
such as packet drops due to buffer overflow, which, in turn, 
causes delays in packet transmission. As a result, it makes 
the network system slower, which leads to a degrading of 
the quality of service. The autocorrelation function is an 

efficient tool, which can be used to evaluate network 
performance by using offline data traces as well as 
monitoring real time network traffic characteristics. Results 
from performance evaluation can be used to identify 
existing problems, guide network re-optimization and aid in 
the prediction of potential future problems.  
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Fig. 1.  Traffic behaviour by UNC data 
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Fig.  2. Traffic behaviour by the movie ‘Kiss of the dragon’ 
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