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Abstract
The drive to create ever smaller magnetic memory devices has led to the development of new nanomagnetic
domains on surfaces. This paper reports the development of nano-chromium magnetic domains obtained
using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to achieve this using
conventional aqueous solutions were unsuccessful even after thin nickel underlayers were applied. The use of a
novel electrolyte, a deep eutectic solvent, made from choline chloride: chromium (III) chloride enabled
highly conformal overcoatings of chromium on individual bare carbon nanotubes to be obtained. Very high
aspect ratio metal microstructures could be obtained by this novel technology. Magnetic imaging of the
coated nanoarrays showed there to be clear magnetic character to the coating when the thin coatings were
applied but this disappeared when the deposits were thicker and more contiguous.
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Abstract 

The drive to create ever smaller magnetic memory devices has led to the development of new 

nanomagnetic domains on surfaces. This paper reports the development of nano-chromium magnetic 

domains obtained using electrodeposition on vertically aligned carbon nanofibers arrays. Attempts to 

achieve this using conventional aqueous solutions were unsuccessful even after thin nickel underlayers 

were applied. The use of a novel electrolyte, a deep eutectic solvent, made from choline chloride: 

chromium (III) chloride enabled highly conformal overcoatings of chromium on individual bare 

carbon nanotubes to be obtained. Very high aspect ratio metal microstructures could be obtained by 

this novel technology. Magnetic imaging of the coated nanoarrays showed there to be clear magnetic 

character to the coating when the thin coatings were applied but this disappeared when the deposits 

were thicker and more contiguous. 
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1. Introduction 

Vertically aligned carbon nanotubes (VA-CNTs) have become a popular subject for study since Ren et 

al. first reported their preparation using plasma-assisted chemical vapour deposition (PACVD) [1]. 

Since then, many research groups have investigated both the underlying science and applications of 

these novel materials which include field emission displays [2],
 
cold cathodes for vacuum electronics 

[3], thermal management materials [4], and sensors [5] amongst many others. A recent review of 

potential applications demonstrates the high level of interest in these materials [6]. 

 

The high surface area of thin films of carbon nanotubes offers considerable potential for applications 

in energy storage, composites, new magnetic materials, catalysis and sensors. In the area of energy 

storage, interest in these materials for hydrogen storage by direct surface adsorption has waned 

although commercial success has been realized in lithium-ion batteries where bulk CNT fibers are used 

as an essential reinforcing agent in the electrode [7]. Without this reinforcement, battery life would be 

restricted to only a few cycles of charge/discharge making this battery technology practically unviable. 

Metal coated carbon nanotubes promise a route to metal matrix composites by mechanical 

consolidation and these materials have been shown to exhibit excellent wear resistance [8]. 

 

There has been increasing interest in the deposition of metals directly onto carbon nanotubes by 

chemical or electrochemical means, particularly for applications in composite materials [9-17]. 

Electrodeposition of nickel onto multi-walled nanotubes (MWNT), ultrasonically dispersed in standard 

Watt’s bath has been described by An et al. [18]. Here the MWNT’s were adsorbed onto a copper 

cathode where the nickel deposition takes place. Hence the characteristics of the cathode change with 

time as more MWNT’s co-deposit with the nickel and are not the same as with a surface pre-coated 

with nanotubes. Xing et al. electroplated nickel from a simple chloride-only bath onto nanotube paper 

made from MWNT’s and smooth deposits were obtained [19]. Overall, the aspect of metal coating 

carbon nanotubes by electrodeposition has so far been largely focused on nickel coatings and metal 

coating on high surface area templates deserves further exploration as a general technology. Metallic 

nanostructures have been previously realized using electrodeposition using liquid crystal templates 

[20] or self-assembled polymer nanospheres as templates [21]. At a more fundamental level, the 

electrochemistry of carbon nanotubes has been recently discussed by Dumitrescu et al. [22]. 

 

This paper reports the electrodeposition of chromium onto vertically aligned arrays of carbon 

nanotubes formed as thin films using PACVD. The industry standard chromic acid plating bath was 



 

replaced by a novel ionic liquid [23,24]. Abbott et al. showed that eutectic mixtures of choline chloride 

and CrCl3.6H2O could be used for the deposition of chromium with much higher current efficiency, 

typically in excess of 90% [25]. The magnetic properties of chromium coated CNTs were examined 

using a magnetic force microscope and this showed that the nanoclustered deposits exhibited magnetic 

properties but these were lost when thick coatings were created. 

 

2. Experimental  

All CNT thin films were grown in a simple DC PACVD system based on a quartz bell jar very similar 

to that described elsewhere [26] operating at 8 mbar pressure using 50:200 sccm C2H2:NH3 flows at a 

temperature of c.a. 700
o
C. Substrates for CNT growth included titanium nitride coated silicon chips or 

polished stainless steel. The CNT fibres had lengths of 5-7 µm. Chromium electroplating was initially 

conducted with chromic acid (250 g dm
-3

 CrO3, 0.25 ml H2SO4 with lead-silver alloy (10% Ag) 

anodes) operated at 50°C [27]. A TTI EX4210R bench power supply was used with, currents of up to 

10 Amps for chromium electroplating trials. 

 

Chromium electrodeposition was carried out using a choline chloride and chromium chloride based 

ionic liquid (Cromline 200 from Scionix Ltd. UK) which was used as received. The deposition was 

conducted in an open beaker at 20
o
C. Currents of no more than 0.15 A were used with a platinised 

titanium anode. 

 

Nickel coatings as a smooth underlay prior to chromium deposition were obtained with a standard 

nickel sulfamate bath but with no additional additives [28]. The sulfamate bath composition was 30 

g/L of Boric acid, 315 g/L nickel sulfamate and 1 g/L nickel chloride (pH 4) and operated at 54 °C. 

The nickel chloride is added to the sulfamate bath to maintain anode activity but is kept to a minimum 

to avoid internal stress in the deposit. Pure nickel anodes were used. A constant current of 10 mA was 

used for nickel plating. This is about one tenth of the normal current density for nickel plating of flat 

surfaces [28] when the total area of the carbon fiber is factored in. The carbon fiber arrays give an 

increase in surface area of some sixty-fold over the flat surface when fiber density, diameter and length 

are measured by SEM. Lower than standard current densities were used to ensure that plating occurred 

down at the fiber base and that the upper levels were not ‘plated out’ first. After electroplating, all 

samples were washed in water and then in iso-propyl alcohol before drying. The resulting electroplated 

microstructures were examined in a field-emission SEM (FEI XL30) at 12-15 kV. 



 

 

Atomic/Magnetic Force Microscope AFM/MFM images were acquired using a Digital Instruments 

(DI, Veeco) Nanoscope IV, Dimension 3100 instrument in resonant (tapping) mode (software version 

6.12) and the designated quartz liquid-mode cantilever mount supplied directly by Veeco. The probe 

tip used to obtain these images was the MESP-RC model.  The TM deflection images were acquired 

by passing the probe tip 40 nm above the sample to measure any magnetic response. All images were 

obtained at a scan rate of 0.600 Hz. 

 

3. Results and discussion 

The electrodeposition of electronegative metals from aqueous solutions is notoriously inefficient. 

Chromium electrodeposition on fibrous carbon nano-tube materials proved very difficult to achieve 

using chromic acid baths because high currents were required to create deposits even onto the CNT-

free areas of the chips. It is well known that electroplating using chromic acid is very inefficient, 

typically around 12 %, [27] with most the current being used for gas production. Negligible plating 

was observed on the CNT pads although some decoration around the pad was observed presumably 

due to insufficient current density in the CNT coated region. To circumvent this, an insulating ceramic 

coating (AREMCO Ceramabond 509) was applied to the chip edge and a pointed lead rod anode was 

employed to focus current towards the centre of the chip. Using this approach it was possible to 

successfully electroplate chromium using a constant current of 6 A for 30 s. Figure 1a shows a typical 

SEM image of the deposit obtained under these conditions using chromic acid. The chromium deposits 

were formed as a dense crust rather than as a coating of each individual CNT. Using various current 

densities from 6A down to 0.15 A did not improve the nanotube coating and lower current densities 

than this did not result in material deposition. To improve on this result the CNTs were first 

individually coated with nickel using a standard nickel sulfamate bath (120 s at 10 mA, 1.2 C) before 

chromium plating. Figure 1b shows an SEM image of the nickel coated carbon nanotubes and it can 

clearly be seen that a conformal nickel coating is achieved. Repeating the chromic acid plating 

experiment with the Ni coated CNTs did not improve the deposition of chromium as can be seen from 

Figure 1c where strong clustering of the chromium at the nanotube ends has occurred. 

 

Under these conditions some columnar growth was observed but the growths appear quite nodular in 

appearance and certainly much rougher than the nickel under-layer plated on the CNT fibers. The 

effect of a nickel underlay is however beneficial in that the chromium plating is now closer to 

conformal although still not ideal. 



 

 

Electrodeposition of chromium was subsequently carried out using a eutectic mixture of 1 choline 

chloride: 2 CrCl3·6H2O. At this composition it is a dark green liquid with a viscosity of c.a. 2000 cP 

and a conductivity of < 1 mS cm
-1

 at 30
o
C [23]. Previous reports have shown that black nanocrystalline 

deposits are electrodeposited from the eutectic mixtures, [24] however it has recently been reported 

that a different formulation can result in the deposition of thick, bright, adherent chromium with a 

hardness of 750 Vickers [25].  

 

Using Chromeline 200 electroplating solution, bright chromium deposits were obtained using a current 

of 0.075 A for 10 minutes. The fibres are now encased in a thick chromium layer some 7-9 µm deep  

as shown in Figure 2. At higher currents still, 0.15 A for 10 mins, a very thick ~20 µm or so layer of 

chromium is formed. Ionic liquids commonly use much lower current densities to achieve metal 

deposition than aqueous solutions. Using a current of 0.018 A for 10 mins the deposit obtained was 

black in appearance. The much lower currents used with ionic liquid electrolytes meant that silicon 

substrates could be used which enabled the samples to be cleaved to expose the cross-sectional 

structure. Even at low currents, the chromium still has a tendency to be more concentrated near to the 

CNT pad edges and in this region the upper halves of fibers are conformally electroplated with 

chromium as shown in Figure 3a. The coating is much thinner on the lower portion of the deposit 

revealing small chromium clusters. Clearly the deposition process is limited by the depletion of 

chromium from the ionic liquid despite being present at a concentration of 2.9 mol kg
-1

. Successful 

conformal over-plating over these very high aspect ratio structures requires that sufficiently high 

diffusion of chromium ions down to the fiber base must occur otherwise depletion will result in less 

metal being deposited there. The process of conformally overcoating such structures is then diffusion 

limited rather than kinetically limited. Higher currents will tend to ‘plate out’ the surface as more 

metal is being deposited there. Figure 3b shows the center of the nanotube pad where current density is 

lower due to current crowding at the edges and this has clearly led to a thinner but uniform coating of 

chromium enabling a morphology which is more similar to that shown for nickel in Figure 1b. 

 

These result obtained from the use of ionic liquid electrolytes are a considerable advance on that 

possible with chromic acid. The higher viscosities typical of ionic liquids (20-700 cP)
 
[29] appear to be 

no obstacle to their use for high aspect ratio structures such as carbon nanotube forests. 

 

Figure 4 shows the topography of three samples using an atomic force microscope. Figure 4a shows 



 

the uncoated sample with a topography indicating clumping of nanotubes upon drying. The 

magnetisation profile was obtained by withdrawing the magnetic tip by 40 nm from the surface and 

then following the contours of the surface while measuring the magnetic force between the tip and the 

substrate. As would be expected the uncoated sample has no discernible magnetic character. A CNT 

array was coated with chromium by the same method as that described in Figure 3 using a current of 5 

mA for 30 minutes. The topography shows that the coated nanotubes are clustered together which is 

seen to some extent in Figure 3b but is commonly seen in other nanowire systems [30]. This is caused 

by the effect of surface tension or capillary forces upon drying and can result in cellular-like structures 

[31]. The magnetic force image shows a significant magnetic character which maps on to the 

chromium coated bundles as shown in Figure 4d. Coating the CNTs using a larger current but for a 

shorter time such that the total charge is roughly constant results in what is seemingly a similar 

topography (Figure 4e) but with no discernible magnetic character (Figure 4f). This is presumably 

because the chromium is not nano-dispersed (c.f. Figure 3a) and does not have the same magnetic 

character. The fact that some magnetic effect is seen on uncoated nanotubes can be ascribed to the very 

small nickel catalyst particle that is attached to end nanotube tip [1]. This effect disappears when 

covered with chromium. 

 

Bulk chromium metal has the body centred cubic (BCC) structure and is an itinerant antiferromagnet 

that exhibits incommensurate spin density waves. Antiferromagnets such as bulk chromium have no 

net magnetic moment and are not expected to show contrast from magnetic-tip AFM. However, 

theoretical work has shown that small (N≤11) clusters of chromium exhibit a strong magnetic moment 

where N is an odd number of atoms [32,33]. Beyond  a cluster size of 11, the structure begins to form 

the regular BCC form. Neutron diffraction studies of electrodeposited chromium have shown that 

crystal sizes can be as small as 27nm [34]. Our results suggest that very thin chromium films as 

deposited on carbon nanotubes using ionic liquids contain very small chromium clusters which 

facilitate a finite magnetic moment able to be detected by magnetic-tip AFM. 

 

We expect the magnetic chromium clusters to be surrounded by a thin layer of native oxide formed 

naturally on exposure to air. The initial electrodeposition will create larger clusters of chromium, most 

probably non-magnetic in character, which upon oxidation will result in a smaller number of 

chromium atoms able to exhibit a finite magnetic moment due to non-cancellation of spins. Repeated 

deposition/oxidation could in principle lead to the build up of a thicker magnetic layer. It is interesting 

that very recently there has been a report of switchable magnetic structures created with only twelve 



 

atoms of iron [35]. 

4. Conclusions 

This work shows that it is possible to conformally electroplate chromium onto carbon nanotube arrays 

using commercially available ionic liquids based on choline chloride and chromium chloride. It is also 

shown that maintaining thin chromium coatings on the CNT arrays endows the coating with magnetic 

properties which could potentially be used for magnetic storage devices. It is shown that conformal 

chromium deposits are very difficult to achieve with the standard chromic acid bath composition even 

when smooth, thin nickel under-layers are used. The very low current efficiency of chromic acid baths 

leads to strong gas evolution which prevents the ingress of electrolyte into the fiber structure. The 

chromium based ionic liquid has a much higher current efficiency and circumvents many of the issues 

which arise with aqueous electroplating. It can be concluded that lower currents combined with longer 

times are beneficial to conformal over-plating using this technology. We show that it is possible to 

create thin film composites of chromium and carbon nanotubes which may have advantages for 

tribological applications. Thin film composites of copper and ceramic particles have already been 

described using ionic liquids [36] and this study opens an alternative technique to preparing metal 

composite coatings.  
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Figure captions 

 

Figure 1: Chromium and Nickel electrodeposits on carbon nanotubes. Chromium electrodeposit 

obtained on bare nanotube fibers (1a) using chromic acid as the electrolyte after 60s at 6 A. Nickel-

coated nanotube fibers (1b) as used as base template for chromium electrodeposition. Chromium 

coating deposited on nickel modified CNTs (1c) using chromic acid as the electrolyte after 376 s at a 

current of 10A. 

 

 

Figure 2: Cross-sectional SEM image of chromium coated vertically aligned carbon nanotubes. 

Heavy chromium deposit obtained using a 1 choline chloride: 2 CrCl3·6H2O eutectic based ionic liquid 

using a current of 0.075 A for 10 minutes. Some individual protruding fibers are encased in thick 

chromium while lower levels of nanotube forest are totally embedded in metal. 

 

 

Figure 3: Cross-sectional SEM images of chromium coated carbon nanotubes. Chromium 

electrodeposit from a 1:2 choline chloride: chromium chloride eutectic based ionic liquid on CNT. 

SEM image of the edge of grown forest showing smooth, conformally over-plated fibres in upper half 

(3a) and much thinner but uniformly over-plated fibers in centre of the forest pad (3b). Current was 

0.018A for 10 minutes. 

 

 

Figure 4: AFM topography of uncoated and chrome coated CNTs together with the 

magnetisation profile of the same area. Uncoated nanotubes are shown in 4a (topography) and 4b

(magnetisation). Nanotubes electroplated at 5mA for 30 minutes show strong magnetic profile, 4d with 

topography in 4c. Deposits created using higher currents (18mA) for shorter times (10 minutes) do not 

show magnetic profile, 4f while topography, 4e, remains similar to 4a and 4c. 
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