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Abstract. We present an analytical model predicting the experimentally observed gas mass flow rate in rectangular micro
channels over slip and transition regimes without the use ofany fitting parameter. Previously, Sone reported a class of
pure continuum regime flows that requires terms of Burnett order in constitutive equations of shear stress to be predicted
appropriately. The corrective terms to the conventional Navier-Stokes equation were named the ghost effect. We demonstrate
in this paper similarity between Sone ghost effect model andnewly so-called ‘volume diffusion hydrodynamic model’. A
generic analytical solution to gas mass flow rate in a rectangular micro channel is then obtained. It is shown that the volume
diffusion hydrodynamics allows to accurately predict the gas mass flow rate up to Knudsen number of 5. This can be achieved
without necessitating the use of adjustable parameters in boundary conditions or parametric scaling laws for constitutive
relations. The present model predicts the non-linear variation of pressure profile along the axial direction and also captures
the change in curvature with increase in rarefaction.
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INTRODUCTION

Growing demands in microdevice technology involving the motion of fluids at micro- and nano-length scales open
a new branch in fluid mechanics requiring investigation of fluid flows occurring exclusively in ultra-small devices.
Examples of these mechanical systems include micro-pumps,heat exchangers, jet polishing/cutting systems and,
more importantly, the entire range of Micro-Electro-Mechanical Systems (MEMS) encompassing their various bio-
engineering applications [1, 2, 3].

Knudsen [4] experimental study, was among the first designedto report data pointing to anomalous behaviour of
rarefied gas flow through capillaries. Many experiments havesince confirmed Knudsen’s initial observations [5, 6, 7].
Meanwhile, it is now widely accepted that the standard set offluid mechanical equations, namely those due to Navier-
Stokes-Fourier, are inapplicable. Among recent developments in predicting these phenomena, Gallis and Torczynski
[8] have presented a direct Monte Carlo simulation (DSMC). Gorji et al. [9] obtained the mass flowrate by solving,
numerically, a velocity-space stochastic equation addressing molecular motions. Veltzke and Thaming [10] pointed out
that the mass flowrate in the slip flow regime can be accuratelypredicted by arguments of molecular spatial diffusion
effects without using any fitting parameter.

Sone [11] suggested a correction to the standard Navier-Stokes equation, where the additional terms with character-
istics of Burnett equation terms were called ‘ghost effect terms’. This is because they affect flows of continuum regime
despite being of high order in terms of Knudsen number classification. Meanwhile, existence of different averaging
methods and the influence of molecular spatial stochasticity have been pointed out as means of obtaining a Burnett
regime hydrodynamic model [12]. This model appears more consistent in terms of mechanical and thermodynamic
properties than a traditional full Burnett equation obtained by Chapman-Enskog series expansions applied to Boltz-
mann kinetic equation [12]. In the present paper we derive ananalytical solution to mass flow rate in microchannels
using this new emerging hydrodynamics and compare results with experimental data.



A CONSISTENT VOLUME DIFFUSION HYDRODYNAMIC MODEL: SONE GHO ST
EFFECT

Appearing in the following equations is the material derivative defined asD/Dt = ∂/∂ t +Um ·∇, wheret is the time
variable andUm represents mass-based average velocity: that is a flow macroscopic velocity as seen in a conven-
tional continuity equation. A volume diffusion hydrodynamic model consistent with mechanical and thermodynamic
principles is written [12]:
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The single bar over the velocity gradient in this last equation denotes the transpose operator, withI the idemfactor. In
the above set of equations (1) to (5):ρ is the mass density,p the pressure,T the temperature, andein the fluid’s mass-
specific internal energy density, the latter related to the temperature byein = (3/2)RT, with R the specific gas constant.
VelocityUv appearing in expression of the shear stress is the volume velocity: that is a macroscopic velocity based on
averaging method that accounts for the fluid molecular spatial distributions and not only their masses. ThereforeJv

is a volume diffusion flux that appears as we distinguish volume averaging from mass or gravimetric averaging [13].
Presence of fluxJv in the shear stress makes the above hydrodynamic model of Burnett level. Indeed, using the ideal
gas law written in the form
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∇ρ
ρ

+
∇T
T

, (7)

volume diffusion momentum equation (2) becomes
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if local relative pressure variations are neglected. In equation (8), we observe that the third term involving temperature
gradients on the right-hand-side, is a thermal stress term that is obtained traditionally at the second order in Chapman-
Enskog expansion; so it is a Burnett shear stress term. This term is identical to corrective terms to the Navier-Stokes
equation called “ghost effect terms”: conveying that this is a higher order Knudsen number term, which is found to
influence flows in the pure hydrodynamics or pure continuum regime. Derivation of volume diffusion hydrodynamic
set (1) to (5), does not involve any small parameter expansion procedure. Consequently, within this set of equations, the
volume diffusion presumably may have influence at any Knudsen number order; a situation that appears to corroborate
with Sone ghost effects.

While a classical set of full Burnett hydrodynamic equations derived using Chapman-Enskog expansion series
are known to have several mechanical and thermodynamic inconsistencies [14], the above set of equations (1) to
(5) satisfies a series of mechanical principles and is compatible with linear irreversible thermodynamics [12, 15].
Phenomenological transport coefficients involved consistof: µ the fluid dynamic viscosity,κm = k/(cpρ) the volume
diffusivity coefficient, andκh = kcv/cp, with k the Fourier thermal conductivity, namely the conductivityappearing in
the Prandtl number, withcv andcp the specific heat conductivities [see 16, section5.4.1] andalso [see 15, section 5.2].



ANALYTICAL SOLUTION

We consider a steady-state isothermal pressure-driven flowoccurring in a rectangular microchannel. The streamwise
flow coordinate variable is denotedx and the wall normal coordinate is denotedy. The height and width of the channel
are denoted respectively byh and w, whereinw >> h such that the flow may be supposed two-dimensional. The
rectangular channel height-to-length ratioh/L is assumed to be small to neglect the inlet and outlet effects. Velocity
component,Um =Um(x,y) is restricted to the streamwise direction and is a function of x andy. Disregarding energy
equation, continuity and volume diffusion momentum equations (1) and (2) can be written as :

∇ · [ρUm] = 0, (9)

∇ · [ρUmUm] =−∇p−∇ ·Πv. (10)

In terms of boundary conditions, impenetrability of mass atthe channel walls requires normal component of mass
velocityUm to vanish aty= ±h/2. In addition, we impose on the volume velocity a form of slipcondition so that all
boundary conditions are written:

umy (x,±h/2) = 0, (11)

and
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In boundary conditions (11) and (12), subscriptxandy refer to components inxandydirections, respectively. Subscript
‘o’, refers to the channel outlet, which is simply used here as aconvenient arbitrary reference. Furthermore,λo is the
gas mean free path at the channel outlet. Note that equation (12) is not a standard slip condition, as the equation can be
viewed as a constitutive equation for the volume fluxJv at the boundary whenumx = 0 (i.e., when the no-slip boundary
condition is imposed on the mass velocity).

A solution method starts with continuity and momentum equations (9) and (10), reformulated as:
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The solution of equation (14) satisfying boundary condition (12) is
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in which we denoteE = h2Kno/(2νo), whereinνo denotes the kinematic viscosity at the outlet, andKno = λo/h is the
outlet Knudsen number. Substituting (15) into (13) and solving the resulting expression forumx, by subjecting to the
boundary condition (11) results in
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where the integration constantC(x) is a function only ofx. However, application of boundary conditions (12) requires
thatC(x) = 0 as a result of symmetry. The preceding equations furnish the pressure distribution in accordance with
the following scheme. Evaluate equation (16) aty=±h/2, and use boundary condition (12) to obtain
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Eliminate the density in equation (17) in favour of the pressure via use of the ideal gas lawp= ρRT, and subsequently
use the identitypdp/dx= (d/dx)(p2/2) to obtain
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Integration of equation (18) followed by rearrangement yields
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Alternatively, in terms of the Knudsen and Prandtl numbers,
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h

µ
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√
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λ
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wherekλ =
√

π/2 is a coefficient associated with the definition of the mean free path as related to the choice of
molecular collision model. Equation (19) is the pressure distribution, in which constantsC andD are determined from
knowledge of the channel inlet and outlet pressures,p(x= 0) = pi andp(x= L) = po. This furnishes expressions

C=−
[

(P2−1)+F(P−1)+GlnP
]

, D = P2+FP+G(lnP+ ln po) , (22)

whereP= pi/po, denotes the inlet/outlet pressure ratio. The mass flowratethrough the channel is given by the formula

Ṁ = w
∫ h/2

−h/2
ρUmdy= const. (23)

UsingUm =Uv− Jv, with equations (15) and (5) we have that
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Multiply equation (24) byρ and subsequently eliminateρ in favor of p on the right-hand side. Introduction of the
resulting expression into equation (23) yields
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The bracketed term in equation (25) is seen to be identical tothe bracketed term in equation (18). It follows that

Ṁ =−
wh3p2

o

24LµRT
C, (26)

whereC is the constant given by equation (22). Thus, the mass flow rate is given explicitly in terms of the parameters
characterizing the problem as

Ṁ =
wh3p2
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24LµRT
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Prk2
λ

Kn2
o lnP

]

. (27)

Equation (27) has a structure frequently obtained when slipboundary conditions are used [17]. However, our goal in
this investigation is to demonstrate that, due to the use of volume diffusive flux, equation (27) can reproduced faithfully
the experimental data without the use of any fitting parameter.

Indeed, in the course of gas-kinetic molecular descriptionof the hydrodynamic set of equations (1)-(5), volume
diffusion is a manifestation of the molecular-level spatial diffusion process that used to be ignored [18]. This, in turn,
generates a second level of non-equilibrium scaling beyond, or parallel to, traditional Knudsen number scaling [12].
Veltzke and Thaming [10] demonstrated in this context that volume diffusivity coefficient depends not only on the
properties of the gas but also on the channel geometry. This leads us to identify a volume diffusivity coefficient for
the rectangular channel corrected by the channel dimensions as,κ∗

m = κmL/w. As thermodynamic expression of the
volume diffusivity coefficient isκm = k/(cpρ), this geometrical correction only affects the Prandtl number coefficient



TABLE 1. Summary of fluid properties and physical coefficients used infigure 1

w L h Pr

4.92×10−4 [m] 9.39×10−3 [m] 9.38×10−6 [m] 0.67

µ kλ Sc P

1.97513×10−5 [Pa· s ]
√

π/2 0.67 5
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FIGURE 1. Mass flow rate as predicted by volume diffusion hydrodynamics compared with experimental data

by a factorL/w in the final pressure distribution equation (19), and the mass flow rate equation (27). Full expression
of the micro gas mass flow rate in rectangular channel using the volume diffusion momentum equation is therefore
finally given by

Ṁ =
wh3p2

0

24LµRT

[

(P2−1)+12Kno(P−1)+
24w

PrLk2
λ

Kn2
o lnP

]

, (28)

in which, there appear only physical properties with no coefficient playing a fitting role such as a slip coefficient.
These physical properties in the case of Ewart et al. [7] experimental data for gaseous helium are summarized in table
1. A full comparison between predictions by equation (28) and experiments are seen in figure 1, plotted in the form of
dimensionless flowrate,Gm, vs the mean Knudsen number that are defined by

Kn[mean] =
kλ
h

µ
pi+p0

2

√
2RT, Gm = Ṁ ∗

(

wh2

L
√

2RT
(pin − pout)

)−1

. (29)

From the figure, the volume diffusion model, i.e. equation (28), agrees with experimental data up to a Knudsen number
of about 5 with all parameters possessing clear physical meanings as given in table 1 and a viscosity coefficient having
its appropriate experimental value. This agreement can be said an excellent achievement considering the fact that
conventional Navier-Stokes modified by slip boundary corrections, gives agreement with the data within the slip but
not deep into the transition regime as the present volume diffusion model does.

Figure 2 presents a comparison of normalized streamwise pressure distributions against the experimental data of
Pong et al. [19] at various pressure ratios (P). Here, pressure is normalized with the outlet pressure of the channel, and
the pressure ratio is defined as the ratio of inlet to outlet pressures. The measurements by Pong et al. [19] were made
by embedding measurement ports in a microchannel in which pressure transducers were mounted. The working gas
was nitrogen and the outlet Knudsen number was 0.044. So theoretical graphs are plotted using pressure distribution
equation (19) including nitrogen Prandtl number ofPr = 0.72 and the geometrical correction factorL/w from the
volume diffusivity coefficient. The comparison between thepresent volume diffusion model and the data is good.
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FIGURE 2. Pressure distribution as predicted by volume diffusion model compared with experimental data of Pong et al. [19]
for an outlet Knudsen number of 0.044 and various pressure ratios (P).
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FIGURE 3. (a) Normalized pressure distribution along the streamwisedirection for various Knudsen numbers, (b) dimensionless
deviation of the pressure distribution from the linear pressure distribution as a function of the dimensionless distance.

The volume diffusion effect on the streamwise pressure distribution can be assessed by varying the Knudsen number.
Interesting results are observed as shown in the Fig. 3(a) for a pressure ratio of 3. The curvature of the pressure
variation decreases with an increase in Knudsen number, andthe pressure distribution becomes linear in the early
transition regime. With further increases in Knudsen number the curvature changes from convex (in the continuum
and early transition regimes) to concave (in the late transition regime). Change in curvature of pressure profile can
also be captured by the second-order slip model [20], however the classical first-order slip model fails to predict this
phenomena. Fig. 3(b) shows the dimensionless deviation of the streamwise pressure distribution from a linear pressure
profile, as a function of dimensionless distance along the channel. With an increase in Knudsen number, the rarefaction
effect tends to dominate compressibility effects, and the dimensionless deviation becomes zero at a Knudsen number of
around 0.5. With further increases in Knudsen number, the dimensionless deviation changes from positive to negative
value. In the slip flow regime, where compressibility effects are still dominant, the pressure profile is unsymmetrical
with respect to the streamwise distance, but turns out to be quite symmetric in the transition regime atKn= 2, where
rarefaction/volume diffusion effects are dominant.



CONCLUSION

In this paper we derived an analytical solution to Knudsen enhanced mass flowrate phenomena in micro gas channels
using a volume diffusion hydrodynamic model. The solution equation is similar in form to that obtained using first and
second order slip boundary conditions. However, with the volume diffusion approach and volume diffusivity coefficient
that depends on the geometry of the channel, we obtain agreement with the experimental data up to Knudsen number
of 5. It also allows the direct investigation of the non-linear pressure distribution, and predicts the change in curvature
of the streamwise pressure profile with an increase in rarefaction (when the diffusive effects dominate the convective
fluxes).
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