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The production of advanced fine-grained alumina by carbon nanotube
addition

Abstract
Alumina and alumina+1vol.% carbon nanotube (CNT) composites were fully densified by spark plasma
sintering. Post-sintering heat treatments (1300–1500 ◦C) were performed to completely oxidize CNTs and
then densify the remaining 1 vol.% to produce fine-grained ceramics. The grain size and Vickers hardness of
the heat-treated composites were compared with the monolithic alumina sintered without CNT addition.
Compared to the initial powder particle size of alumina (D50: 356±74 nm), minimal grain growth (∼450 nm)
was observed for the fully dense heat-treated composites. A 25% improvement in Vickers hardness and >10
times finer average grain size were observed for alumina produced by the heat treatment (1300 ◦C) of
alumina+1vol.% CNT composite, compared to alumina sintered without CNTs.
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Alumina and alumina + 1 vol.% carbon nanotube (CNT) composites were fully densified by spark 

plasma sintering. Post-sintering heat treatments (1300 - 1500 
o
C) were performed to completely 

oxidize CNTs and then densify the remaining 1 vol.% to produce fine-grained ceramics. The grain size 

and Vickers hardness of the heat-treated composites were compared with the monolithic alumina 

sintered without CNT addition. Compared to the initial powder particle size of alumina (D50: 356 nm ± 

74 nm), minimal grain growth (~450 nm) was observed for the fully dense heat-treated composites. A 

25% improvement in Vickers hardness and >10 times finer average grain size were observed for 

alumina produced by the heat treatment (1300 
o
C) of alumina + 1 vol.% CNT composite, compared to 

alumina sintered without CNTs. 

 

1. Introduction 
Since Iijima’s report [1], CNTs have been widely appreciated for producing advanced polymer [2,3], 

ceramic [4,5] and metal [6] composites. In the case of ceramic matrix composites (CMCs) [7], CNTs 

have been reported to improve the electrical conductivity [4,5], thermal conductivity [8], fracture 

strength [5] machinability [9], indentation fracture toughness [10], and contact damage resistance [11]. 

We recently reported that CNT addition significantly retards grain growth and lowers the full 

densification sintering temperature of polycrystalline CMCs [12]. The fine microstructure that this 

produces is advantageous improving mechanical properties. Hardness [13], strength [14], fatigue [15], 

wear [13], contact damage [16] and thermal shock resistance [17] increase with grain size refinement. 

Moreover, grain size reduction also improves the toughness of many alloys as well [18].  

 

Owing to its good oxidation resistance, chemical stability and relatively high hardness, alumina 

(Al2O3) is one of the most widely used structural ceramic [19]. However, alumina-CNT composites 

are previously reported to have lower hardness as compared to monolithic alumina [10, 20-26] due to 

various reasons. Jiang et al. reported lower hardness and toughness for alumina + 10 vol.% CNT 

composite due to the degradation of CNTs during sintering [26]. An and Lim [20] reported poor 

dispersion of CNTs in alumina matrix was responsible for decreased hardness. Zhan et al. [10] and 

Laurent et al. [22] reported 21% and 43% decrease in hardness as compared to CNT-free ceramic 

matrices. The possible reasons presented by the authors were poor cohesion (between CNT and 

alumina grains) and graphitic (lubricating) nature of CNTs [10, 22]. The presence of a relatively soft 

phase (hardness of multiwalled CNT in radial direction is 6-10 GPa [27]) at the grain boundaries of 

alumina eases the penetration of diamond indenter during Vickers indentation. This nullifies the effect 

of fine alumina grains produced by the presence of CNTs at the grain boundaries of the composite. 

Some papers have reported no effect [28] or improved hardness [5, 29-31] by the incorporation of 

CNTs. However, the improvements were marginal and no comments were presented on the interfacial 

interactions between hard ceramic particles and the lubricating CNTs. For instance, Mo et al. [29] and 

Burghard et al. [30] reported improvements of 6% and 3% respectively in the hardness values of CNT 

reinforced ceramic as compared to monolithics. 

 



 
 

In this paper, CNTs were used for the first time to produce fine grained monolithic alumina. Alumina 

and alumina + 1 vol.% composites were prepared by spark plasma sintering (SPS). CNTs have low 

oxidation resistance (350-700 
o
C) [32]. After sintering, heat treatments (1300-1500 

o
C) were 

performed to oxidise CNTs and densify the remaining 1 vol.% porosity in the composites. The 

purpose of this paper is to exploit grain-size dominated properties, like hardness, by using CNTs as a 

grain growth suppressant in alumina matrix. The grain size and Vickers hardness of the heat-treated 

composites were compared with monolithic alumina sintered without CNT addition. 

 

2. Experimental 
2.1 Starting materials 

The CNTs used in this study are commercially available as “multi-walled CNTs, NC-7000” from 

Nanocyl S.A., Belgium. They were synthesized by the catalytic CVD method and have an entangled 

cotton-like form. The CNTs have an average outer diameter of 9.5 nm (10 graphitic shells), lengths of 

up to 1.5 microns, purity of ~90% and density of 1.66 g/cm
3
. An acid treatment was performed using a 

mixture of nitric (HNO3, 90%) and sulfuric (H2SO4, 90%) acids. Distilled water (~20 vol.%) was used 

to dilute the acids. In order to produce pure CNTs, the as-received CNTs (400 mg) were mixed with 

200 ml acidic solution. Both acids were equally mixed in the solution. The acid-CNT mixture was 

homogenized by stirring with a glass rod on heating plate (~85 
o
C) for 30 min and then bath 

ultrasonicated for 2 hrs. The resulting CNT dispersion was thoroughly washed with distilled water 

until the filtrate was colorless and neutral (pH ~7) after filtration. A Whatman filter paper of 1 µm was 

used. The purified CNTs were then dried for 48 hrs at 100 
o
C in an oven. CNTs were purified to >98% 

by acid treatment. The alumina powder used in this study is commercially available as “AKP 53 

aluminum oxide” micro-powder from Sumitomo, Japan. As supplied, the main features of this product 

are: alpha phase; purity: 99.99%; BET surface area 11.7 m
2
/g; melting point 2050 

o
C; and density 3.97 

g/cm
3
. Particle size analysis of alumina was performed using Malvern nanozeta sizer. 

 

2.2 Powder preparation 

Alumina + 1 vol.% (0.42 wt.%) CNT composites were prepared. The CNTs were dispersed in DMF 

[33] via high power bath sonication for 2 hrs and then hand mixed with alumina powder for another 5 

min. The liquid mixture was transferred to another nylon jar filled with zirconia balls (milling media) 

of two different sizes (10 and 5 mm, mass ratio: 3:2). The jar was sealed and rotation ball milled for 6 

hrs at ~200 rpm. The milled slurry mixture was dried at 100 
o
C for 5 hrs in a rotary evaporator in the 

presence of 5 mm zirconia balls to avoid re-aggregation of CNTs [33]. The dried power was than dried 

in an oven (85 ◦C) for 24 hrs for complete removal of DMF. After drying, the powder was sieved in a 

250 µm stainless steel sieve. The same procedure was used for monolithic alumina powder. 

 

2.3 Sintering 

SPS is a rapid [34] and CNT-friendly [35] manufacturing technique that allows lower sintering 

temperatures and shorter dwell durations. Dried composite powder (~4 g) was poured into a carbon die 

(diameter 20 mm) and cold pressed at 1 ton for 5 s before sintering. Composite discs (~3 mm thick) 

were prepared by SPS in an HPD 25/1 furnace (FCT Systeme, Germany). The sintering rate was 100 
o
C/min and sintering temperature was 1450 

o
C. A pressure of 100 MPa was applied in the range 1100-

1200 
o
C and released at the end of the sintering time, which was 5 min. The furnace has a pyrometer 

focused on a hole close to the sample in the upper punch to measure the processing temperature. The 

same sintering procedure was repeated for the monolithic alumina powder for the sake of consistency 

in this comparative study. It should be noted that these sintering conditions were selected after 

systematic analysis (results not included).  

 

2.4 Heat treatments and characterizations 

The sintered samples were ground using SiC paper and diamond polished down to 1 µm. Density 

measurements were conducted using water buoyancy (archimedes) method and helium pycnometery. 

All polished samples were oxidized and thermally etched in a single run. Diffused carbon and CNTs 

were oxidized at 700 
o
C for 3 hrs in a Carbolite HTF 1800 furnace and then heat treated/ thermally 

etched in the range 1300–1500 
o
C for 1 hr. The heating and cooling rate was 3 

o
C/min. Sintered 

samples were also fractured in order to observe the grain size. Fractured and thermally etched polished 

surfaces were gold coated and observed in a SEM (FEI, Inspect F, 20 kV). Grain sizes were measured 



 
 

according to ASTM E112 (line-fraction method) with the aid of the software (Image tool, v3, 

developed by UTSHCSA, USA). A minimum of 500 readings was taken to measure the grain sizes of 

each material. Vickers hardness was evaluated in accordance with ASTM C1327-03 [36]. Load of 1 kg 

was used for a duration time of 15 sec and at least 10 measurements were averaged. 

 

3. Results and Discussion 
3.1 Pre-heat treatment analysis 

Figure 1 shows alumina particle size and shape of the as supplied powder. The particles appear to be 

roughly spherical and of the dimensions 200-500 nm. From particle size analysis, D50 was found to be 

356 nm ± 74 nm. The common sintering temperature (1450 
o
C) used in this study was the minimum 

temperature required for full densification of alumina and/ or alumina + CNT composite. Figure 2 

shows fully-densified alumina and alumina + 1 vol.% CNT composite. The grain size of the alumina 

(4.86 ± 0.81 µm) is much coarser than that of the alumina + 1 vol.% CNT composite (0.39 ± 0.19 µm, 

figure 2). In previous work, the effect of carbon black (CB) on densification and grain growth was also 

studied [12].  As compared to CB, CNTs significant refine final grain size of alumina and a much 

lower sintering temperature is required for full-densification of alumina composite [12]. Higher 

magnification analysis of alumina (figure 2b) shows very fine porosity on the grains. It is very difficult 

to eliminate such porosity during rapid sintering as used in the present study.  Such features were not 

observed for the alumina + 1 vol.% CNT composite (figure 2d). Figure 2d also shows individual and 

homogenously dispersed CNTs in the alumina matrix. This is consistent with our previous work where 

CNTs were located at the grain boundaries and retard grain coarsening by reducing their mobility 

during sintering [12]. Therefore, homogenous dispersion of CNT is crucial for achieving narrow grain 

size distribution in the final heat treated alumina. 

 

Mean measured hardness of alumina and alumina + 1 vol.% CNT composite was found to be 17.3 GPa 

and 16.5 GPa respectively. Lower hardness was observed for alumina + 1 vol.% CNT composite as 

compared to monolithic alumina (prior to heat treatment). This can also be estimated by using the 

hardness rule-of-mixture equation for composites [37]:    

 

HC = HM (1- VF) + HF VF  Equation 1  

 

Where, HC = hardness of composite, HM = intrinsic hardness of the matrix phase, VF = volume fraction 

of the filler phase and HF = intrinsic hardness of the filler phase. The experimentally measured 

hardness of alumina + 1 vol.% CNT composite (16.5 GPa) was found to be less than the theoretically 

predicted value of 17.1 GPa (hardness of multiwalled CNT in radial direction 6-10 GPa [27]). 

Equation 1 is a useful tool for approximation and does not consider the effect of interfacial strength, 

dispersion, orientation, aspect ratio and crystallinity of CNTs on the hardness of composite. CNTs 

lower the hardness of the composite despite it having a >10 times finer grained microstructure as 

compared to alumina (figure 2), due to their graphitic (lubricating) nature and poor cohesion with 

alumina grains [10, 22]. In comparison, ceramic dopants [38] and CNTs [12] suppress grain growth 

and improve the sinterability of alumina, their effect on the mechanical properties is quite different. 

For instance, there is no difference in hardness between an undoped alumina and the MgO/ Y2O3 

doped (500 ppm) alumina [38].  

 

3.2. Post-heat treatment analysis 

To achieve the benefits of fine grained microstructure produced by the incorporation of CNTs in 

alumina, suitable heat treatments (1300-1400 
o
C) were carried out (table 1). Figure 3 shows polished 

surfaces of heat-treated samples. The selected heat treatments (table 1) were used for three reasons: a) 

to fully oxidise CNTs at 700 
o
C (3 hrs) to produce monolithic alumina; b) to fully-densify alumina 

after oxidation of the CNTs, which left 1 vol.% porosity; and b) to thermally etch the polished surface 

for revealing grain boundaries. No CNTs or diffused carbonaceous impurities were observed during 

microscopic analysis of the fracture surfaces of heat-treated composites. The colour of all composite 

samples also changed from bluish black to pearl white after heat-treatments. Therefore it is concluded 

that CNTs were thoroughly oxidized after heat-treating them at 700 
o
C (3 hrs) and the carbon was 

removed from the samples. 

  



 
 

Owing to the enormous aspect ratio of CNTs, very low volume of CNTs (<0.8 vol.%) is required to 

make inherently insulting alumina conductive [39]. CNTs offer conductive paths in alumina composite 

and such percolative networks also provide a diffusion path during the oxidation of the CNTs. The 

remaining porosity is connected, which makes it easy to eliminate as compared to isolated porosity in 

alumina (figure 2b). During post sintering heat-treatment, grain coarsening and densification may 

occur depending on the temperature [40]. It was found that the heat-treatments used here densified the 

minor residual porosity (~1 vol.%) left by the oxidation of CNTs (table 1). For instance, heat-

treatments (1400 
o
C and 1500 

o
C) of the composites produced fully-dense monolithic alumina.  

 

The heat-treatments increased the grain size and thermally etched the polished surfaces (figure 3). The 

driving force for grain growth is inversely proportional to the size of the grains [41]. Therefore the 

thermal etching is not recommended for the observation of fine grained ceramics. However, a big 

difference in grain size was still observed between heat-treated alumina and alumina + 1 vol.% CNT 

composites (figure 3). For example, alumina (figure 3a) and alumina + 1 vol.% CNT composite (figure 

3d), heat-treated at 1300 
o
C, have similar densities but the difference in their grain size is >10, i.e. 

alumina: 4.91 µm and heat-treated alumina + 1 vol.% CNT composite: 0.40 µm.  

 

The fine grained monolithic alumina produced by the heat-treatment of the composite has improved 

Vickers hardness as compared to heat-treated alumina sintered without CNT addition (table 1, figure 

4). For monolithic polycrystalline ceramics, the grain dependence of hardness arises primarily from its 

impact on plastic deformation, which is the primary mechanism of forming permanent indentations 

[37]. In classical grain boundary strengthening theory [18, 37], the grain boundaries act as pinning 

points and impede dislocation movement across grains. Impeding such dislocation movement hinders 

the onset of plasticity and make fine grained materials stronger and harder [18, 42]. This can be 

estimated theoretically by the well-known Hall-Petch (HP) relation [43,44]. Valid at low temperatures 

and for grains sizes > ~10 nm [45], it describes the relationship between hardness and grain size of the 

polycrystalline ceramics.   

 

H = HR + kd
-1/2

  Equation 2 

 

where H is the measured hardness by Vickers indentation, HR is the reference hardness, k is a 

proportionality constant (Petch parameter) and d is the mean grain size. The relation was originally 

developed for yield strength but it is also valid for hardness [37]. As compared to heat-treated alumina 

sintered without CNTs, improvement in the hardness was observed for the heat-treated composites 

(table 1). For example, hardness of composite and alumina heat-treated at 1300 
o
C was found to be 

21.3 and 17 GPa, respectively (figure 4). It should also be noted that the residual stresses generated 

during rapid sintering of samples were relieved during slow post-sintering heat-treatments (heating/ 

cooling rate: 2 
o
C/min). The improved hardness in heat treated composites is solely due to the 

refinement in grain size and improved density. It is not due to the presence of residual compressive 

stresses as reported by Jian et al. [26]. 

 

In heat-treated (1300 
o
C/ 1 hr) composite sample, the final grain size is almost the same as initial 

powder particle size. Such results were previously only possible when very high pressures (1-8 GPa) 

were used during the sintering of alumina [46-49]. For example, Liao et al. [49] applied 8 GPa 

pressure during conventional lengthy sintering process to produce a microstructure having a mean 

grain size of 50 nm using 18 nm starting powder alumina. Here, only 100 MPa in combination with 

CNTs were used during SPS to produce a significant microstructural refinement in alumina, resulting 

increase in hardness. The current strategy of producing fine ceramics is also relatively fast and up 

scalable. Chen and Wang presented a two-step method to produce fine monolithic ceramic [50]. 

However, the final dwell times were 20 – 40 hrs and the grain size was >4 times larger as compared to 

initial powder particle size. The process may not industrial friendly because of its high energy 

utilization. A higher grain size difference is achieved in current study and the total processing time is 

much shorter (total dwell times: <5 hrs) as compared to Chen and Wang’s two step method [50]. 

 

 

 



 
 

4. Conclusion 
CNTs are useful for improving the properties of advanced CMCs [4,5, 7-11], they can also be used to 

produce fine monolithic ceramics, as presented for the first time in this paper. In ceramic – CNT 

composites, hardness depends more on the presence of lubricating CNTs at the grain boundaries than 

on fine grain size. Owing to physical (large aspect ratio, low percolative and fibrous nature) and 

chemical (low oxidation resistance) properties of CNTs, advanced fine-grained polycrystalline 

alumina were produced by a two-step method. Heat treatments at 1400 
o
C and 1500 

o
C oxidized CNTs 

thoroughly and densified the remaining 1 vol.% porosity. The average grain size in heat-treated 

composite, which is monolithic alumina, was found to be >10 times finer than that of alumina sintered 

without CNT addition. A 25% improvement in Vickers hardness was measured for monolithic alumina 

produced after the heat treatment of alumina + 1 vol.% CNT composite, as compared to monolithic 

alumina sintered without CNTs. The final grain size in heat-treated composite was almost the same as 

the starting powders. This method uses less energy as a result of reduced pressure and processing 

times as compared to previously researched methods [46-49]. Characterization of other grain-size 

dependant properties and utilization of direct electrical heating to oxidise CNTs in composites will be 

the subjects of future research.  
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Figures and table 

 

 

Table 1.  Summary of samples analyzed in this study. 

 

Sample Heat treatment Density Grain size Hardness 

Alumina - 99.7 4.86 ± 0.81 µm 17.3 ± 0.9 GPa 

Alumina 700 
o
C/ 3 hr, 1300 

o
C/ 1 hr 99.9 4.91 ± 0.41 µm 17.0 ± 0.9 GPa 

Alumina 700 
o
C/ 3 hr, 1400 

o
C/ 1 hr 99.9 5.04 ± 0.35 µm 16.9 ± 0.5 GPa 

Alumina 700 
o
C/ 3 hr, 1500 

o
C/ 1 hr 99.9 5.29 ± 0.31 µm 16.6 ± 0.4 GPa 

Alumina + 1 vol.% CNT - 99.9 0.39 ± 0.19 µm 16.5 ± 1.2 GPa 

Alumina + 1 vol.% CNT 700 
o
C/ 3 hrs 98.9 0.40 ± 0.12 µm 16.2 ± 2.1 GPa 

Alumina + 1 vol.% CNT 700 
o
C/ 3 hr, 1300 

o
C/ 1 hr 99.8 0.45 ± 0.11 µm 21.3 ± 0.6 GPa 

Alumina + 1 vol.% CNT 700 
o
C/ 3 hr, 1400 

o
C/ 1 hr 99.9 0.75 ± 0.16 µm 20.7 ± 0.7 GPa 

Alumina + 1 vol.% CNT 700 
o
C/ 3 hr, 1500 

o
C/ 1 hr 99.9 1.08 ± 0.19 µm 18.8 ± 0.5 GPa 

 

 

 
 

Figure 1. Raw alumina powder (D50: 356 nm ± 74 nm). 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Fractured surfaces of fully densified materials prior to heat treatments. SPSed at 1450 
o
C/ 

100 MPa/ 5 min. Alumina at: a) low magnification; b) high magnification. Alumina + 1 vol.% CNT 

composite at: c) low magnification; and d) high magnification. 
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Figure 3. Polished and heat treated samples, alumina: a)1300 
o
C; b) 1400 

o
C and c) 1500 

o
C,  

alumina + 1 vol.% CNT composite: d)1300 
o
C; e) 1400 

o
C and f) 1500 

o
C. 
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Figure 4. Vickers indent by 1 kg loading. Samples heat-treated at 700 
o
C (3 hrs) and 1300 

o
C (1 hr): a) 

alumina sintered with CNT addition (diagonal length: 33.75 µm); and b) alumina sintered with CNT 

(diagonal length: 29.11 µm).  

 

 

 

   (a)     (b) 
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