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A Novel Soft Sensor for Real-time Monitoring of
Die Melt Temperature Profile in Polymer Extrusion

Chamil Abeykoon

Abstract—Polymer extrusion is the most fundamental tech-
nique for processing polymeric materials and its importance is
increasing due to the rapid growth of worldwide demand for
polymeric materials. However, the process thermal monitoring is
experiencing several problems resulting in poor process diagnos-
tics and control. Most of the existing process thermal monitoring
methods in industry only provide point/bulk measurements which
are less detailed and low in accuracy. Physical thermal profile
measurements across the melt flow may not be industrially com-
patible due to their complexity, access requirements, invasiveness,
etc. Therefore, inferential thermal profile monitoring techniques
are invaluable for obtaining detailed, accurate and industrially
compatible measurements and hence to achieve improved process
control. In this work, a novel soft sensor strategy is proposed to
predict the real-time temperature profile across the die melt flow
in polymer extrusion to the first time in industry or research. It
is capable of determining the melt temperature at a number
of die radial positions only based on six readily measurable
process parameters. A comparison between the simulation results
of the novel melt temperature profile prediction soft sensor
and the experimental measurements showed that the soft sensor
can predict the real-time melt temperature profile of the die
melt flow with a good accuracy. Therefore, this will offer a
promising solution for making real-time melt temperature profile
measurements non-invasively in polymer extrusion and also it
should be applicable to other polymer processes only with a
few modifications. Moreover, this technique should facilitate in
developing an advanced process thermal control strategy.

Index Terms—Polymer Extrusion, Melt Temperature Profile,
Inferential Measurements, Process Monitoring, Dynamic Mod-
elling, Soft Sensor, Process Control.

I. INTRODUCTION

Polymers are one of the major raw materials in the current
industry and most of the conventional raw materials such as
glass, steel, wood are being replaced by polymeric materials
due to their valuable properties such as high strength to
weight ratio, high impact/chemical/corrosive resistance, ease
of forming into complex shapes, etc. For example, currently
there is a great concern on replacing the conventional materials
such as metal and glass in the transport sector with advanced
polymer composites or with other high performance polymer
materials (which provide very high strength to weight ratio
compared to other materials) as a solution for on-going global
energy crisis. Likewise, polymeric materials are becoming
increasingly popular in the areas such as construction, med-
ical, electrical and electronic, household applications, and so
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forth. This rapid increase of the use of polymeric materials
has caused to demand high quality and efficient processing
procedures from the polymer industry.

Usually, polymer extrusion is used in the final production
of many polymer products such as pipes, films, sheets, tubes,
rods, etc. Also, it is an intermediate processing stage in injec-
tion moulded, blown film, thermoformed, and blow moulded
products. An extruder is a machine which processes material
by conveying it along a screw and forcing it through a die
at a certain pressure. The screw is the key component of
extrusion machines and it has been divided into three main
functional/geometrical zones (i.e. solids conveying or feed,
melting or compression, and metering or pumping) which are
necessarily based on the primary operations of an extruder as
shown in Figure 1. The feedstock material fed into the machine
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Figure 1. Basic components of a single screw extruder

through the hopper conveys along the screw while absorbing
the heat provided by the barrel heaters and process mechanical
work, Materials can be extruded either in the solid or molten
state. However, polymers are generally extruded in the molten
state by melting solid feed material in the machine. Eventually,
a molten flow of material is forced into the die which forms
the material into the desired shape. The main function of
an extruder is to deliver a homogeneous and well-mixed
polymer melt at a specified uniform temperature and pressure.
In all cases, the melt output from the machine is expected
to be homogenous in composition, colour and temperature.
To achieve this dominant requirement, extruders are generally
equipped with an efficient drive; a feed system; a screw
designed to melt and convey the polymer; and devices such
as temperature and pressure transducers required to monitor
the system for troubleshooting and control. Moreover, some
processes use devices such as mixers, gear pumps, controlled
feeding devices, etc, with the purpose of improving the quality
of the melt output [1].

In general, the temperature across the extruder output melt
flow cross-section should be homogeneous and also it should
be uniform over the time. Therefore, accurate process thermal
monitoring is highly invaluable as this helps not only for
diagnosing process thermal instabilities but also for accurate



process control. It is difficult to achieve the process control
accurately if the problems relating to the process cannot be
properly diagnosed. Despite the significant developments in
polymer extrusion over the last few decades, process thermal
monitoring and control still remain issues. Process operators
have to face challenges in achieving the required thermal
quality of the melt output with the existing knowledge and
technology. Indubitably, achieving of good thermal stability is
a major requirement of the extrusion process to form a high
quality product [1]. Even small variations in melt tempera-
ture can cause to have poor quality products [2]. Therefore,
continuous monitoring of the process thermal behaviour is an
essential requirement for advanced process control to maintain
the process thermal stability at a desired level. More details
on the functional requirements and the mechanisms/theories
of polymer extrusion can be found in the literature [1], [3].

As revealed by the previous work [4]-[7], melt thermal ho-
mogeneity in polymer extrusion is considerably affected by
the process settings, and the melt flow temperature is diflered
depending on the radial location of the die. Therefore, the
study of the entire melt temperature profile as a measurc
of the process thermal stability is more appropriate than
a single point or bulk measurement to ensure high quality
products. Typical wall mounted thermocouples (i.e. based on
the thermoelectric effect) are the most commonly used melt
temperature measurement method in the present industry and
few processes use infrared (IR) and ultrasonic temperature
measurement techniques as well. Unfortunately, all of these
industrially well-established temperature sensors provide low
accuracy single point or bulk measurements only and they
are incapable of detecting thermal variations across the melt
flow [1], [3], [8]. As these thermal variations cannot be
detected accurately, these cannot be controlled and hence
industrial processes experience poor melt quality leading to
high defect rates, long downtimes, material and energy waste,
etc. Some thermal measurement techniques (e.g. traversing
thermocouple, thermocouple mesh, florescent technique) are
capable of monitoring the melt temperature at a range of
points within the melt flow cross-section during the process
operation. A traversing thermocouple uses the same principle
as conventional wall mounted thermocouples but it has the
facility to move the probe into the melt manually or mechani-
cally. A thermocouple mesh consists of a grid of thermocouple
wires, and an electromotive force (emf) is developed at each
grid junction which can be correlated with the local melt
temperatures across the melt flow [9]. In florescent technique,
polymer is doped with a temperature sensitive fluorescent
dye, allowing temperature at different points to be derived
from changes in the fluorescence spectrum [10]. However,
these techniques are not yet suitable for use in a production
environment due to the constraints such as their complexity,
limited durability, access requirements, disruptive effects on
the melt flow and output while they are very useful to gather
valuable process information in a research setting. Currently,
no industrially well-established thermal profile measurement
technique is available. Under these circumstances, inferential
thermal profile monitoring techniques should be promising for
the present industry to obtain detailed, accurate and industri-

ally compatible measurements and hence to achieve improved
process control.

A. Soft sensor

A soft sensor or an inferential estimator is a technique of
estimating some particular parameter/s (e.g. quality measures,
variables) in various applications when a hardware sensor is
unavailable or unsuitable. Generally, soft sensors are used
in real-time process monitoring and control; fault detection;
process diagnostics and so forth. In practise, thése are widely
used in chemical processes such as reactors, cement kilns,
distillation columns, food processing, paper and pulp industry,
etc, to estimate the product quality parameters [11], [12]. In
the majority of previously reported soft sensing applications,
non-linear behaviours of the industrial processes have been
modelled with the techniques such as artificial neural network
(ANN); fuzzy systems; partial least squares (PLS); support
vector machine (SVM) and support vector regression (SVR),
etc [13]-[18]. In fact, designing of a soft sensor is an extensive
task and some of the major steps can be listed as below:

o Process investigation and data collection

o Data processing

o Selection of the variables and model structure

o Model training and validation

o Design and testing of the soft sensor

o Application and maintenance of the soft sensor

Currently, soft sensors are becoming widely popular in various
industrial applications particularly due to their benefits such as:
o It can be highly useful in the applications where physical
sensors may not be applicable or unsuitable.

o It provides real-time estimations while handling time delays.
o It is a low cost alternative for expensive online analysers.
o It can be easily implemented on the existing hardware
platform and no additional investment may be required.

However, a few barriers/complexities are also attributed to
the design/application of the soft sensors:

o It requires a considerable process expert knowledge, effort
and time to design.

o Its performance depends on the quality of the train-
ing/validation data (may have problems due to outliers, noise
and missing data),

o It may be specific only for a given machine, material or
processing conditions.

Obviously, the expert knowledge is playing a key role in the
design and application of a soft sensor. The designer should
have a sound knowledge on all the areas listed in the above.
In the long run, the drifts of the process may be a problem
on the performance of the soft sensor and hence it should be
compensated either by adapting or re-developing the model/s
[19]. More details on soft sensor design, applications and
related issues can be found in the literature [11], [20].

B. Previous work on inferential monitoring of point/bulk melt
temperature or melt temperature profile in polymer extrusion

Although soft sensing techniques are widely popular in
various industrial processes, only a very little work has been
reported on inferential process monitoring in polymer extru-
sion particularly in process thermal monitoring applications.



Previous work by the author [21] reported an attempt to predict
process thermal stability inferentially. Correlations between
screw load torque, melt pressure and melt temperature fluctu-
ations were examined by analysing experimentally measured
signals, However, no strong correlations between these signals
could be observed. It was found that the screw load torque
signal is dominated by the solids conveying torque and hence
it was not sensitive enough to identify unstable melting issues.
Pressure fluctuations had slight correlations with melt temper-
ature fluctuations particularly at low screw speeds. However,
none of these signals showed sufficiently good performance
for them to be used as a powerful tool to monitor the process
thermal stability inferentially. In fact, there is no other reported
work in the literature on inferential thermal monitoring in
polymer extrusion according to the author’s knowledge., A
few researchers attempted to predict some of the parameters
relating to the process quality, in other industrial applications
based on polymeric materials, inferentially [13], [15]-[17],
[22]-[26] and also based on other advanced techniques [27]-
[29]. Therefore, it is clear that no any inferential process
thermal monitoring technique is currently available in polymer
extrusion which can be used in the situations where making
of physical thermal measurements are difficult or unsuitable.

In this work, a highly instrumented single screw extruder
was used in the experiments to make a number of real-time
process measurements. Here, a single screw extruder was
selected as it is the most common type using in the polymer
processing industry [30]. A thermocouple mesh technique [9]
was used to measure the radial temperature profile across
the die melt flow over different process operating conditions
as this technique was recognized as the one of the best
methods to measure a melt temperature profile over several
other techniques [3]-[5]. Then, the data obtained was used
to develop a novel soft sensor strategy to predict a die melt
temperature profile in polymer extrusion which is the main
contribution of this paper [31]. Therefore, this work will
provide a strong platform and an initiative for future research
on investigating real-time thermal information across the die
melt flow in polymer extrusion which is very important for
advanced process monitoring and control, but cannot be easily
obtained via a physical temperature sensor. Moreover, the
optimisation of the process thermal efficiency and energy
usage is timely important as energy prices have been rapidly
increasing over the last few decades throughout the world.
Therefore, this type of novel technique would be greatly useful
to the current industry as it would contribute to minimise the
process energy usage via advanced thermal monitoring and
control.

II. EQUIPMENT & PROCEDURE

All measurements were carried out on a 63.5mm diameter
(D) single screw extruder (Davis Standard BC-60). A barrier
flighted screw with a spiral Maddock mixer and a 2.5:1 com-
pression ratio (feed or solids conveying - 5xD, compression
or melting - 13xD, metering or melt conveying - 6xD) was
used to process the material. The extruder was fitted with
a 38mm diameter adapter by using a clamp ring prior to a
short capillary die with a 6mm bore as shown in Figure 2.

The extruder barrel has four separate temperature zones and
another three separate temperature zones are available at the
clamp ring, adapter and die. Each of these temperature zones is
equipped with a separate temperature controller which allows
individual control of the set temperature.
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Figure 2.

Melt temperature profiles at the die (i.e. at the end of the
38mm diameter adapter) were measured using a thermocouple
mesh which is placed in-between the adapter and the die as
shown in Figure 2. As it was previously confirmed by Kelly
et al. [7], the die temperature measurements are symmet-
rical across the centerline of the thermocouple mesh when
averaged over sufficient time. Therefore, seven thermocouple
junctions (i.e. with 7 positive and 1 negative thermocouple
wires) were placed asymmetrically across the die melt flow
along the diameter of the mesh as shown in Figure 3, and
this asymmetric placement of wires gave the opportunity to
increase the number of effective temperature measurements
across the melt flow by mirroring them over the centreline to
obtain the complete dic melt temperature profile.
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Figure 3.

Finally, the melt temperatures measured at these seven
points across the die melt flow were mirrored over the
die centreline to obtain the complete die melt temperature
profile. The die wall set temperature was used as the melt
temperature at the +19mm radial positions. Then, the final
temperature profile was obtained by fifteen radial positions
(distances from the die centreline to each radial position: Omm,
+3mm, +4.5mm, +8.8mm, £11mm, +14.7mm, £16.5mm,
and +19mm) across the melt flow as illustrated in Figure
3. In addition to the thermocouple mesh measurements, an
IR temperature sensor (Dynisco MTX 922-6/24) was used
to make bulk temperature measurements of the melt in the
adapter close to the thermocouple mesh as shown in Figure 2.

A data acquisition (DAQ) programme developed in Lab-
VIEW was used to communicate between the experimental
instruments and a PC. Screw speed and all temperature signals
were acquired at 10Hz using a 16-bit DAQ card (National
Instruments PCI-6035E) through a TC-2095 thermocouple
connector box and a low-noise SCXI-1000 connector box.

The thermocouple mesh arrangement



A. Materials and experimental conditions

Experimental trials were carried out on a virgin high den-
sity polyethylene (HDPE), (ExxonMobil HYA 800), (density:
0.961g/cm3, melt flow index (MFI): 0.7g/10min @ (190°C,
2.16kg)). The extruder barrel temperature settings were fixed
as described in Table I under three different set conditions
denoted as A (high temperature), B (medium temperature) and
C (low temperature).

Table I
EXTRUDER BARREL TEMPERATURE SETTINGS
v Set temperatures (°C)
Ratec] 2anice Clamp ring | Adapter | Die
settings 1 2 3 4

A 110 | 130 | 180 | 230 230 230 230
B 105 [ 125 | 175 | 215 215 215 215
C 100 | 120 | 170 | 200 200 200 200

The experiments were started with the temperature setting
A and data was recorded with the screw stationary for 1
minute, Then, the screw speed was increased up to 90rpm with
random steps of between +5-40rpm and in different barrel set
temperatures with the extruder running for about 193 minutes
continuously as shown in Figure 4.
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Figure 4. The process settings matrices of training and validations tests

The extruder was allowed to stabilise for 15 minutes after
each set temperature change while the extruder was hold for
about 7 minutes at each other different condition. All of these
settings were selected in order to generate realistic processing
conditions whilst covering the full operating range of the
extruder (i.e. 0-100rpm). This therefore allowed investigation
of melting performance at low throughputs where melting
is dominated by conduction from the barrel and screw, and
intermediate and high throughputs where melting is primarily
achieved by viscous shearing. Separate tests were carried out
to obtain the data for model training and validation.

ITI, TYPICAL DIE MELT TEMPERATURE PROFILE

As was mentioned in section 2, melt temperature profiles
across the melt flow at the end of the 38mm diameter adapter
were observed and profiles over some processing conditions
(i.e. the average values of the data collected for the last two
minutes of each speed) are shown in Figure 5. The data
collected over the last two minutes at different experimental
conditions were used to create these plots as the process
signals were included transients during the first few minutes,
followed by the applied step changes to the process variables.

These temperature profiles show the effects of process settings
on the temperature profile of the extruder melt output and
more details relating to this area were discussed by the author
previously [3]-[5].
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Figure 5. Average die melt temperature profiles over the last two minutes

at different temperature settings (i.e. conditions A, B, and C shown in Table

I) and screw speeds of 10, 30, 50, 70 and 90rpm

IV. DEVELOPMENT OF THE SOFT SENSOR TO PREDICT THE
MELT TEMPERATURE PROFILE

A. Comparison of the temperature measurements of the IR
sensor and thermocouple mesh

The thermocouple mesh technique is good in providing
detailed and accurate information on the thermal homogeneity

of the extruder output melt flow. It was felt that it is better
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Figure 6. (a). Measured melt temperatures by the IR temperature sensor and
the thermocouple mesh at different processing conditions (b). Corresponding
step changes applied to the process settings during the temperature measure-
ments (in this figure 'R’ refers to the radial position and all the numbers
followed by R are in millimeters)



if it is possible to inferentially predict melt temperatures at
the different melt flow radial locations to obtain similar types
of measurements to the thermocouple mesh, Therefore, the
collected experimental data was used to develop a dynamic
model which can predict a melt temperature profile across
the melt flow from rcadily measurable process parameters
during the process operation. Although this model can predict
the melt temperature profile, it is still good to have some
reference or correction for the predicted melt temperatures at
the different radial locations to ensure the prediction accu-
racy, From the experimental results achieved by evaluating
the commonly used melt temperature sensors in polymer
processing [3], (4], it was found that an IR temperature
sensor had the closest relationship with the thermocouple
mesh measurements among the methods evaluated. However,
the experimentally measured melt temperatures in this study
by using the TR temperature sensor and the thermocouple
mesh were compared to confirm the suitability of using an
IR temperature sensor to compensate the possible prediction
errors of the melt temperature at the different radial locations
of the melt flow, and these temperature signals arc shown in
Figure 6. As it is evident, the IR temperature sensor follows the
process thermal dynamics in a similar way to the thermocouple
mesh. Specifically, an IR temperature sensor is an industrially
compatible thermal monitoring technique and hence it can be
used on industrial extruders. Moreover, it is not required to add
any modification to the existing extruders to use this method as
an IR temperature sensor can be attached to a standard sensor
port which has been designed to attach typical temperature and
pressure sensors. Another advantage is that the non-invasive
melt temperature measurements with a fast response time can
be made by using IR sensors near to the screw tip or in the
die during the process operation (i.e. real-time measurements).
Therefore, an IR temperature sensor was selected to obtain a
temperature feedback to compensate the possible errors of the
soft sensor’s temperature predictions at the different melt flow
radial positions.

B. Structures of the dynamic models

Generally, the proposed soft sensor includes two dynamic
models (which are named as the MTPP model and the IRTP
model) based on readily measurable process parameters and
a temperature feedback based on an IR temperature sensor.
Here, there are a few considerations to be made prior to
selecting the structures of process models as these should
be compatible with real-time applications. In general, all the
parameters included in these models are required to be easily
measurable during the process operation. Moreover, these
models should have the capability of predicting the relevant
process parameters to a good accuracy as quickly as possible.

1) Melt temperature profile prediction model (MTPP
model): A detailed review of the literature [1], [32], [33]
on melting in polymer extrusion (e.g. melting mechanisms,
models, experimental investigations) was carried out prior
to selecting the structure of the MTPP model. Moreover, a
number of experiments were carried out on an industrial scale
extruder to observe the real-time die melt temperature profile
and some of these findings werc presented in section IIT and

in the previous publications of the author [3]-[6]. Based on
the information gathered, the melt temperature (7, ;) at a
particular die radial position (R, ;) which is jmm away from
the melt flow centre can be represented as a function of wse,
Rp,j and Tb!

Tm,j = f(wSC) Rp,j:Tb) (N

where ws, is the screw speed and T}, represents the barrel set
temperatures (subscript b represents different barrel zones T7-
Ty). Six inputs (Wse, Rp 3, 11, To, T3, Ty) were considered to
model the melt temperature at a particular die radial position
(Tm5), —19mm < 7 < 19mm, as illustrated in Figure 7.
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Figure 7. Extruder model with selected inputs and output

The set temperatures of the clamp ring, adapter, and die are
always equal to Ty in this study. If the set values of these
zones are different from Ty, it is possible to add them as
three different model inputs, Apart from these six inputs, the
difference between the predicted and measured IR temperature
sensor measurement (g, grror) at each radial position with
a suitable adjustment (i.e. a positive or a negative bias value
specific to each radial position) are also taken as inputs of
the MTPP model for the purpose of the compensation of
the possible prediction errors. Currently, these bias values are
determined off-line and the author expects to improve the
modelling algorithm to select these bias values on-line under
future work.

2) Infrared temperature prediction model (IRTP model):
The IRTP model is used within the feedback mechanism of
this soft sensor to inferentially predict the temperature which
is measured from the IR temperature sensor. Based on the
experimental observations, the melt temperature measured by
the IR temperature sensor (Zygr) can be represented as a
function of wse, Tin,aet and Tp:

Trr= f(wscz Tonacts Tb) (2)

The Tin qct is the mean value taken from the predicted melt
temperatures at the different radial positions by the MTPP
model as given by equation (3).

T i
Tm,act = 'l? ;(Tm,j)i (3)
where K is the number of radial positions that have been
chosen actoss the melt flow and T}, ; is the predicted melt tem-
perature of the radial location where jmm away from the melt
flow centre. Then, the difference between the predicted and
measured TR temperature sensor measurements (77 g, grror) is
given by:

Trr,Error = TIR — Trr 4)

where T is the predicted melt temperature relating to the IR
temperature sensor.



C. Modelling technique

For this work, a modelling technique should be selected
to develop simple, compact and computationally efficient
models which are appropriate for real-time applications. The
development of models based on the first principles were
possible but these may have limitations in practical appli-
cations due to the issues such as computational complexity,
difficulty of obtaining closed form solutions and so forth
[34]. Alternatively, it was possible to use one of the data
driven modelling approaches such as time series, transfer
function, state-space, grey box, etc which could be found in the
previous research and more details on these approaches were
discussed previously [5], [6]. However, it was realized that an
alternative modelling approach would be more appropriate as
most of these previously used techniques have encountered
with some problems. After considering a number of mod-
elling techniques, a recently proposed two stage algorithm
[35] which can be employed in the selection and refinement
of linear/nonlinear polynomial models with a linear-in-the-
parameters (LITP) model structure was selected for this study.

Here, the MTPP model should predict the melt temperature
value of the each radial position assigned by the radial position
input. For this study, fifteen radial positions (i.e. K = 15
for this study) make a complete melt temperature profile
across the die melt flow. The model should estimate the melt
temperature values of these fifteen positions individually by
only changing the radial position input, while the screw speed
and barrel set temperatures remain constant. There are twenty
five different processing situations including 1,737,000 data
points over 193 minutes (i.e. 193x600x15). The process
settings matrices (i.e., the MTPP model input matrices) for
training and validation data are shown in Figure 4. The model
output contains the measured melt temperatures at the different
radial positions corresponding to the relevant inputs, and the
signal length is the same as the input signals length.

The process was modelled as a general nonlinear discrete-
time dynamic multi-input-single-output (MISO) system which
can be expressed as:

y(t) =yt — 1), y(t — 2), .yt = n1), .y (t = na), wilt — nik),

ui(t ] l), ...Mi(t — Tl — Tll), ...Ui(t — Tk — 'nﬂ,)) (5)
where y(t) is the system output at time ¢; u;(t) ,4 =1,---,m
are the system input variables at time ¢ (m is the total number
of inputs to the system); n, is the number of poles; n; is the
number of zeros plus 1 and n; is the corresponding delays
(i.e. number of input samples that occur before each input
affects the output) of each input.

Firstly, an attempt was made to identify a linear model
to correlate the output with the inputs by approximating the
function f. However, this did not predict the temperature values
accurately due to the significant nonlinearities in the process
and has not been presented in this paper. Then, nonlinear
polynomial models were adopted and a 2nd order model was
selected as the MTPP model. This model included a large
number of terms which may limit its practical application.
However, only a few terms were found to provide a significant
contribution to the output, Sub-model selection algorithms
(e.g. orthogonal least squares (OLS) [36], fast recursive algo-

rithm (FRA) [35]) can be applied to construct a parsimonious
model with satisfactory generalisation capability. Due to the
lower computational complexity and improved stability over
OLS, a FRA was used as a sub-model selection algorithm for
this study. It solved the problem recursively and did not require
matrix decomposition as was the case for OLS techniques
[36]. In the first stage, the model structure selection and the
estimation of the model parameters were carried out. In the
second stage, a backward model refinement procedure was
carried out to eliminate non-significant terms to build up
a compact model. The significance of each sclected model
term was reviewed and compared with those remaining in the
candidate term pool and all insignificant terms were replaced
to obtain the improved performance without increasing the
model size. Likewise, the same procedure was followed for
the development of the IRTP models with different size and
a 2™ grder model was selected to use in this study. More
details on the application of the modelling technique used in
this study to the polymer extrusion process was previously
discussed by the author [5], [6], [37].

D. Structure and the operation of the novel die melt temper-
ature profile prediction soft sensor

The structure of the newly proposed soft sensor for the die
melt temperature profile prediction in polymer extrusion is
shown in Figure 8. In operation, the soft sensor should predict
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Figure 8. The structure of the proposed soft sensor to predict the melt
temperature profiles across the extruder output melt flow in rcal-time

the melt temperatures at the different radial positions (which
are defined by the user or designer) across the die melt flow
by allowing to determine the melt temperature profiles in real-
time. Overall, the proposed soft sensor employs two models
for its operation, One model is to predict the melt temperature
profile (MTPP model) across the melt flow and it takes eight
inputs (Wse. Bpjr T1» T2 T3, Ty TIR,Error and a + bias)
for its prediction as shown in Figure 8. A desired number
of radial positions can be defined under the R ; input as
required and for this study fifteen radial positions (see Figure
3) were defined. In practice, the MTPP model would operate in
place of the thermocouple mesh. The IRTP model (or feedback
model) takes six inputs (wWse, Tm,act> 11 T2, Ts, Ty) and
predicts the melt temperature given by the IR temperature
sensor. Then, the measured and predicted IR temperature
signals are compared to identify the possible prediction error
of the die melt temperature profile. Finally, the generated
error signal (Tt g, Error) is fed into the MTPP model together
with a bias (which is specific to the each radial position)
for compensating the prediction error at each radial position.
This operation takes place throughout the process operation



while updating the sensor output by user defined intervals.

More importantly, the screw speed and barrel set temperatures

which are used as the MTPP and IRTP models’ inputs can

be measured easily in any industrial polymer process during

the process operation and this would be an advantage which

makes it is easy to use this soft sensor in practical applications.
V. RESULTS & DISCUSSION

A. MTPP and IRTP models used in the soft sensor

For the selection of dynamic MTPP and IRTP models, a
number of different model combinations (i.e. with different
orders and number of terms) were studied. One past output
term and one past input term from each model input were used
to predict the current output (i.e. n,=1 and n, for each input is
equal to 1) and these two variables can be adjusted as required.
Then the maximum delays (ny) attributed to the each model
input had to be determined. Changes of the melt temperature
at each radial position followed by the step changes of the
screw speed and barrel set temperature were observed from
the experimentally measured data. Melt temperature changed
soon after any change of the screw speed. Also, the melt
temperature was affected by the set temperatures of the barrel
heater zones but it was taken slightly long period of time to
reach to the set value once any change was made. Moreover,
these changes in melt temperature depend on the size of the
changes applied to the variables and also the magnitude of
which the variable was before the applied change. Therefore,
the selection of delays was quite complex and hence the values
were selected to reflect the information collected from the
measured signals and the other details which were observed
during the experiments. The values which were selected for
delays attributed to each input are: d — wee=10s, d — Ry ;=0s,
d — Ty=150s, d — Ty=120s, d — T5=90 s and d — Ty=60s.
These delays can be adjusted as required depending on the
screw geometry, material, processing conditions, etc. In fact,
it is good to allow to the modelling algorithm for selecting
the delays itself automatically depending on the processing
conditions and this will be considered under the future work.

To test the accuracy of the developed models, the normalised
prediction error (NPE) of each of them was determined by
equation (6).

N N

NPE2[S (5:(0) - wm(®)?/ Y w(®)’]/? x 100%  (©)
i=1 i=1

where y;(t) and 7j;(t) are the measured and model estimated

melt temperatures at time ¢ respectively, and NV is the number

of data points,

Eventually, a 2"¢ order model with fifteen terms (i.e. with a
1.22% NPE on the validation data) and a 274 grder model with
six terms (i.e. with a 0.25% NPE on the validation data) were
selected as MTPP and IRTP models to use in the soft sensor
and these are given in equations (7) and (8), respectively.

Tn, 5 (£)=0.8207 X Ty, it —1) —~0.0012 x Ty, (¢ — 1) x Ta(t — 120)
+40.0081 X Rp'j(t) % Tyq(t — 60) + 0.0134 x }lp_j(t) x To(t — 120)

—0.0113 X Ty (¢t — 1) x Rp ;(t) — 0.0008 x T, j(t = 1) X wse(t — 10)
40,0008 X wae(t — 10) X Ry ;(t) +0.0043 X wag(t — 10) X T1(t — 150)
+0.0008 X waa(t — 10)2
+40.0638 x T3(t — 90)
+0.3006 X T4(t — 60)
+TIR,Error

4 0.0033 X wae(t — 10) X To(t — 120)
— 0.0037 X wse(t — 10) X Ta(t — 90)
2
—0.0223 x Ry j(t)
+ bias m

Ty p(£)=0.9507 x Tyt — 1) + 0.0008 x Ty (t — 150) X Ty (t — 120)
+0.0270 X T act  — 0.0001 X Ty(t — 150) x Ty(t — 60)
+9.9513 x 10795 x T3(t — 00) x T4(t — 60)
_5.8588 x 10790 x wse(t — 10)% ®

Inputs of these models can be updated in real-time to obtaif
the corresponding outputs.

B. Evaluation of the performance of the soft sensor

The proposed soft sensor was implemented in Matlab-
Simulink to check its performance of predicting the melt tem-
peratures at different melt flow radial locations. A comparison
of the experimentally measured (i.e. temperatures measured
under the barrel set temperature conditions A and B over
129 minutes (see Figure 6) at the end of the 38mm diameter
adapter) and the predicted temperature signals at different
radial positions is shown in Figure 9. All sub-figures are
plotted on the same scale and the relevant melt flow radial
position is shown at the right bottom corner of each figure.
Only the temperature range of 200-270°C of the Y-axis is
shown in these figures for more clarity. The time intervals
shown along the X-axis are relevant to the times of the applied
screw speed step changes. A step change of the barrel set
temperatures was applied at the time of 65 minutes.
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Figure 9. Moasured and predicted melt temperatures at the 0.0mm, 3.0mm,
4.5mm, 8.8mm, 11.0mm, 14.7mm, 16mm and 19.0mm die radial positions
(in figure 'R’ refers to the radial position)

In case of accurate prediction, the predicted and mea-
sured IR temperature signals should be overlapped and hence
TiRr,Error Should be equal to zero. The experimentally mea-
sured and predicted (i.e. by the soft sensor) IR temperature
signals over the duration of 129 minutes are shown in Figure
10 while the corresponding IR temperature prediction error
(TrRr,Error) 18 shown in Figure 11. As shown in Figure 10,
both the experimentally measured and predicted IR tempera-
tures are mostly overlapped and the prediction error sits around
2610, i.e. in the range of -5°C to 5°C or less than +2.25%
of the full scale reading. The highest difference between the
predicted and measured IR temperatures can be observed just
after the applied barrel set temperature change (i.e. negative




step changes to all of the barrel zone temperatures as shown
in Table 1) together with a 40rpm screw speed step change.
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Figure 10. Measured and predicted melt temperatures signals relevant to the
IR temperature sensor
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Figure 11. IR temperature prediction error (i.e. the difference between the
measured and predicted IR temperatures)

Furthermore, the normalised prediction error between the
experimental measurement and the soft sensor prediction at
each radial position was determined based on equation (6)
and the corresponding values are shown in Table II.

Table 11

THE NORMALISED PREDICTION ERROR BETWEEN THE EXPERIMENTAL
MEASUREMENT AND SOFT SENSOR'S PREDICTION AT EACH RADIAL

POSITION
Radial position (mm) Normalised prediction error (NPE)
0.0 1.99
3.0 1.70
4.5 1.33
8.8 2.10
11.0 2.89
14.7 2.72
16.5 1.45

Overall, the soft sensor predicts the melt temperatures at
the different melt flow radial locations with good accuracy
and some of the slight deviations can be seen only over
a few processing conditions, To further confirm the perfor-
mance/reliability of the proposed soft sensor, its responses
over the disturbances were checked by adding different size
of negative and positive step changes (i.e. 10, 20 and 30 units)
to each individual process variable from their set value while
others remained unchanged and also by applying similar types
of disturbances to the feedback model. The results confirmed
that the soft sensor can settle back to the normal operating
conditions just after removing the applied disturbances on its
input variables and the feedback model which showed good
disturbance rejection ability.

In fact, these experiments were carried out by applying fre-
quent screw speed step changes and a large step change of the
barrel set temperature (see Figures 4 and 6 for more details).
However, there will be no such frequent screw speed changes
under the industrial processing conditions as the processes are
usually operated at a constant temperature and speed for a long

period of time. Obviously, the soft sensor may have much
better performance under such constant process operating
conditions. Here, the comparisons between the predicted and
experimental measurements (as shown in Figure 9) were made
only with the radial positions at which mesh junctions were
placed in the experiments. However, the soft sensor can predict
the melt temperature of any desired radial position across
the melt flow in its normal use. Moreover, as the newly
proposed temperature profile prediction soft sensor showed
good performance in predicting a melt temperature profile
across the die melt flow, it should be used to develop a control
strategy to manipulate process settings to achieve the desired
average melt temperature across the extruder output melt flow
while minimising the melt temperature variance. Some of
the initial results relating to the development of a process
controller incorporating this soft sensor have been presented
by the author recently [38].

C. Industrial use of the soft sensor and possible improvements

In fact, promising results were achieved although this is
the first time of introducing a soft sensor for determining
a die melt temperature profile in polymer extrusion. This
strategy would be very much appropriate (i.e. in its present
state) for processes which use the machine to manufacture
the same product, all the time by using the same screw and
material. The required process models can be developed by
following the same procedure as was used in this study (i.e.
from the system identification experiments). Also, all the re-
quired process measurements for soft sensor’s operation can be
made easily by using commercially available sensors without
involving modifications to the existing machine. Moreover,
the good performance of the proposed technique in rejecting
disturbances is also a supporting factor for its industrial use.
Furthermore, there are a few possible directions for improving
the soft sensors’ performance and its applications in future and
these are discussed in the followings.

Tn this study, the die melt temperature profile and the bulk
melt temperature indicated by the IR temperature sensor were
modelled as functions of major process variables (i.e., screw
speed and barrel set temperatures) together with a machine
geometrical parameter (ie., die radial position). Although
these are the variables which significantly affect the process
melt temperature, proposed models may be further improved
with a generalised structure (as the example shown in equation
(9)) by taking all the relevant material, machine geometrical
and processing parameters into account.

T ; =%(a1 x wiz x D*%) & (a2 x k22 x TF4 x REY)
+(a3 X W28, .o £ (@i X ),k (0 X RE) )

where a;, i = 1,2,--,7, are the model coefficients of a
generalised model, zi are the corresponding powers of the
variables included in a generalised model, D is the diameter
of the screw, T}; are the barrel zone temperatures, km is the
melt thermal conductivity, C; is the specific heat capacity of
the solid material and 7 is the total number of model terms
of a generalised model (it should be noted that a generalised
model may include several other process variables which were
not included in equation (9)). Obviously, the development



of these types of generalised models may allow to obtain
models which are smaller in size but with good accuracy
(i.e. obtaining highly accurate predictions from the models
which are low in order and with less number of model terms)
that can be used with any machine, material and process
settings and hence will be-considered in future research.
Furthermore, such generalised models could represent the
actual process dynamics better than the first principle models
which are usually developed based on a number of simplifying
assumptions.

Conversely, the performance of the IR temperature sensor
may be affected by some of the material properties such as
melt emissivity [39] and this is one of the possible disadvan-
tages of the use of an IR temperature sensor within this soft
sensor. However, IR temperature sensors are readily used in
the present industry with a large number of materials without
any problem. Nevertheless, it is possible to replace the IR
temperature sensor from the proposed soft sensor if any other
better technique is available which can perform the same job.

The accuracy of the process measurements is also important
for the better performance of the soft sensor. That is because
the models developed are based on the measured experimental
data and if these measurements are poor in accuracy, resulting
models would also be poor in accuracy. Moreover, the soft
sensor uses a few real-time process measurements for its
predictions. Therefore, the use of highly accurate equipment
for process measurements is a major requirement for a model-
based soft sensing or control approach. Also, all of the sensors
should be calibrated properly while avoiding possible offsets
of sensor readings. A careful attention should be made on the
possible effects of the noise (if any) attached to the measured
signals on the performance of the soft sensor. As was reported
in the literature [40], [41], filtering of the signals should
not be carried out for avoiding noise or large fluctuations in
the measured signals to making it is easy to design the soft
sensor. This may cause to filteting of the fluctuations which
may really affect the process functional quality and hence
the measurements made by the sensor may not be capable
of indicating the real fluctuations attributed to the process.
In fact, the best practice would be the achievement of the
accurate measurements (i.e. measurements such as screw speed
and barrel set temperatures) to the highest possible level by
improving the quality of the sensors and data acquisitioning
(DAQ) devices. If it is obvious that some of the information
included in a measured signal is not relevant to the actual
process, then these can be filtered by using a properly designed
filter. Sometimes, it would be difficult for industrial processes
to follow all the practices which can be followed in an exper-
imental laboratory to make accurate process measurements.
However, it would be better to check the accuracy of the
physical sensors (which are engaged with the soft sensor)
from time to time while observing the key process signals
on a screen in real-time. Obviously, the real-time observation
of process signals on a screen should allow to identify the
accuracy of these measurements while determining the process
functional quality.

In this stage, the soft sensor strategy is proposed only for
single screw extruders. In the application of the proposed

technique into the multi screw extruders, the generalised
models should be developed by studying their processing
behaviours. Although the same model structure can be used,
additional process and machine geometrical parameters may
need to be considered depending on the machine and the nature
of the process. In fact, there is no fundamental issue of using
the thermocouple mesh technique on multi screw extruders.
However, the possibility of using of the thermocouple mesh
technique may depend on the process speeds, output channel
shape and size, access requirements, etc. Currently, research
work is underway to test the performance of the soft sensor
on an industrial extruder and also to extend this technology to
other type of extruders.

VI. CONCLUSIONS

A thermocouple mesh technique was used to monitor the
temperature profile across the die melt flow of an industrial
polymer extrusion plant. The data obtained was used to
develop a novel real-time technique to predict the tempera-
ture profile across the extruder output melt flow in polymer
extrusion (i.e. a soft sensor for temperature profile prediction)
for the first time in research. It predicts the melt temperatures
at a number of radial positions across the die melt flow and the
possible prediction errors are compensated by a temperature
feedback obtained from a combined mechanism of a physical
IR temperature sensor attached to the extruder and a feed-
back model. Basically, two computationally efficient dynamic
process models are included within the newly proposed soft
sensor. These models are simple in structure and can be used
in real-time applications. Moreover, the predictions of these
models are in good agreement with the previously reported
experimental findings and hence it confirms their accuracy.
Generally, only the readily measurable process parameters
(i.e. screw speed, barrel zone temperatures, a temperature
measurement from an IR temperature sensor) are used by
the proposed soft senor for its predictions, As all of these
parameters can be easily measured in any industrial/practical
environment by using commercially available instruments to
a reasonable accuracy, the newly proposed soft sensor can be
used to make real-time measurements. In the operation of the
proposed soft sensor, it compares the predicted and measured
IR temperature signals (i.e. the feedback mechanism) and the
difference between these two signals (Trr,Error) is used to
compensate the possible errors in melt temperature profile
prediction. A simulation of the proposed soft sensor on a set
of unseen data of 129 minutes of process operation showed
that the predicted and measured IR temperatures were mostly
overlapping while occasional prediction errors (i.e. Trr,Error)
less than +5°C (i.e. less than +2.25% of full reading) were
available, More importantly, this newly proposed soft sensor
technique should help to demonstrate a potential method for
determining in-process melt flow thermal homogeneity (i.e.
across the melt flow cross-section) without disturbing the
steadiness of the melt flow. Usually, the use of physical sensors
for making temperature profile measurements across the melt
flow is not industrially compatible due to several constraints.
Therefore, the newly proposed soft sensor technique will be
a promising industrially compatible solution to predict real-




time melt temperature profile across the melt flow cross-
section in polymer extrusion. Moreover, this technique allows
to build-up a control strategy to obtain the required melt flow
thermal homogeneity in polymer extrusion by manipulating
the process settings while maintaining the desired average melt
temperature across the melt flow.
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