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The PSM model of grating diffraction is extended to include a complex refractive index for the case of an unslanted
reflection geometry at oblique incidence and for the o-polarization, The well-known theoretical upper diffraction
efficiency limit applicable to reflective absorption gratings described by Kogelnik's coupled-wave theory, is shown
to be directly derivable from the PSM model. Analytical formulae for the diffraction efficiency of phase, absorption
and mixed harmonic-index gratings are compared with numerical computations using a rigorous coupled wave
description. A conventional truncated coupled-wave description, similar to Kogelnik's approach, is also derived
from the harmonic-index rigorous coupled wave equations by limiting the propagating modes to a signal and
reference wave and by ignoring second order derivatives. At low to moderate average loss the PSM theory is
observed to provide a somewhat better fit to the rigorous coupled wave calculations, and this is particularly evident
for gratings which are dominated by phase modulation. As the average absorption coefficient is increased, all three
models show the diffractive response sharpening around Bragg resonance and the characteristic sideband
structure attenuating and then disappearing altogether, giving rise to a broader spectral behavior away from
resonance. At high average loss, the truncated coupled wave model is observed to very marginally out-perform
PSM, However, overall the PSM model is found to provide an exceedingly good description of the general mixed-
phase-absorption unslanted reflection grating with finite average loss. © 2016 Optical Society of America
OCIS codes:  (090.0090) Holography; (050.1960) Diffraction Theory.
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1. Introduction

The Parallel Stacked Mirror (PSM) model (1-6) provides an
alternative, and rather more intuitive, analytical model of
the diffraction process occurring within lossless planar
phase gratings to that offered by the standard coupled-
wave theory, which was first introduced by Kogelnik (7).

Recently it has been shown that overall the PSM model
constitutes a slightly more accurate model for most lossless
reflection phase gratings, whereas for most transmission
gratings Kogelnik’s theory is observed to generally perform
a little better than PSM (6).

The PSM model is based on an application of the concept of
Fresnel reflection as first suggested by Rouard in 1937 (8).
The grating is decomposed into an infinite series of parallel
stacked mirrors, each of which is characterized by an
infinitesimal thickness; at each mirror the classical laws of
Fresnel transmission and reflection are applied. In this
way a reference wave, which illuminates the grating,
provokes an infinite sum of secondary “Fresnel” waves,
which add to form the overall diffractive response.

The PSM model can be viewed as a differential
generalization of the chain matrix method, which is often
used in the numerical calculation of the optical properties
of stratified media (8-11),

Whereas both PSM and standard coupled wave theory are
“approximate” analytical theories, Rigorous Coupled Wave
theory (RCW) (12) provides a method of describing the
diffractive process to any accuracy required. The theory
makes use of a potentially infinite number of coupled
waves. The number of waves retained in a caleculation
depends on the accuracy required, a proportion of which
will be evanescent waves. From a practical point of view
RCW theory is a numerical technique requiring the
solution either of a set of differential equations or the
determination of the eigenvalues of a large matrix. As such
it cannot offer the advantages of the simple analytic
expressions inherent to both standard coupled wave theory
and the PSM model.

In the present work we extend the PSM model of
diffraction for planar reflection phase gratings to include
finite absorption under a o-polarization. We compare the
resulting analytical formulae obtained for the diffractive



efficiency of complex harmonic index gratings with
counterparts in standard coupled wave theory. Both
analytic theories are then compared with harmonic index
rigorous coupled wave calculations,

Whilst the major application that this paper targets is
optical diffraction in holographic gratings, the results are
also applicable to more general optical gratings. Indeed it
has already been shown that the PSM model may be
extended (2) to describe diffraction occurring in
multiplexed and polychromatic gratings and the results
presented herein may easily be generalized to this context.
In addition the results of the present study may be utilized
to describe particle diffraction from quantum periodic
structures as the time independent Schridinger equation
for a harmonic potential is analytically identical to the
corresponding Helmholtz equation describing optical
diffraction from a harmonic index. Potential applications
include the analysis of neutron super-mirrors that have
been recorded using holographic techniques (13,14).
Finally the results may also be useful in the study of
acoustic diffraction from harmonie structures where the
transfer matrix approach is well known (15).

2. PSM model of the unslanted grating with finite loss

Following (1) we consider the process of replay of the grating
shown in Fig.1. The grating is characterized by a harmonic
refractive index
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where np is the real average refractive index of the grating, ni is
the real harmonic index modulation, ¥, is the average imaginary
index of the grating, 7 is the imaginary harmonic index
modulation and K is the grating vector.
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Fig.1 The Replay of an unslanted reflection grating, as treated by
the PSM model, showing infinitesimally thick dielectric layers and
the Signal and Reference fields present at the index
discontinuities.

The grating is illuminated by a wave

R= e!ka.\'ﬁkq,y ( 2)

where
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and where 4 _is the free-space wavelength. The grating vector, K
can be written in terms of a recording angle 8 and a recording

free-space wavelength A,
K =20fcos8 § @
with
a=A I ®

The response of the grating to illumination is the generation of a
reflected signal wave

S =S(y)e ®
with
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The grating, as shown in Fig.], is divided into an infinite number
of parallel stacked mirrors. At each such mirror the complex
index makes a discontinuous jump and we may apply Fresnel's
law to write down expressions for the amplitude transmission
and reflection coefficients. Using the notation of superscripts to
indicate mirror number in y and subscripts to indicate the
quantized x position of a ray intersection, the transmission (t)
and reflection () amplitude coefficients for the mirvor between
dielectric regions k and k+1 are respectively
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Here we have assumed that 0. is the physical angle of incidence.
In fact this is an approximation as the introduction of a complex
index into Fresnel's law introduces a correction to the physical
angle. However this correction is negligible in our case as the
imaginary part of the index is always very much smaller than
the real part as we shall see below.

Coupled recurrence relations for R and S may now be derived by
tracing rays within the grating between mirrors,
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Letting &x, 8y — 0 and making the approximation of a constant
ray direction, we then arrive at a differential description
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We now make the transformations
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where triangular brackets indicate an average over several cycles
of the harmonie functions they operate on. The first component of
equation (14) may then be written as
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Introducing a pseudo-field
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we arrive at the simple differential equation
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In exactly the same manner, the second component of equation
(14) leads to
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Equations (20) and (22) are of course none other than Kogelnilds
equations (7) for a lossy planar grating with harmonic
permittivity, However the coefficients given in equation (21) and
equation (23) are different,

Equations (20) and (22) may be solved analytically given the
boundary conditions appropriate for a reflection geometry

R(0)=1

n (24)
S(d)=0

The reflected signal field at the front of the grating is given by

§(0) = <2ic &/

(e, —c )@ +ic, 00—
4 ale, —c,)—ic, ¥ ’ d
{ kY ) R R } coth( )
ek 265 ) )
=-2iK/
(2 + i}
- Qd
+[\/{2a +iv} + 4K ]coth( ~)
2c,
where
({Cn + cs}ﬁ-i'icﬁz‘})2
—dcc, (@ +imo+ &) 26)
= cmj4(§2 +ia@s+£) -
The diffraction efficiency is then given by
Cola o a A a,
N, =[~HS(0)S"(0) = 5(0)S"(0) (27)
C',R

3. Rigorous coupled wave theory for the harmonic index grating
with finite loas

The Helmholtz equation provides a rigorous description of
diffraction from the grating and may be written for the case of
the o-polarization as

du du
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where u is the transverse electric field (in the z-direction — see
Fig.1) and
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Following (6) the rigorous coupled wave equations can then be
written
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Outside the grating the refractive index is assumed to be real-
valued and equal to ng. The boundary conditions are determined
by demanding continuity of the tangential electric and magnetic
fields, At the front surface of the grating the boundary conditions
are
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and at the rear surface
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The flow of energy across the front surface of the grating is
described by the Poynting vector

(35)
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and accordingly it is clear that we must define the diffraction
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Equations (31) subject to boundary conditions (34) and (35) may
be solved by a state-space method proposed by Moharam and
Gaylord (11) which is also explicitly described in (6).

4. Truncated coupled wave theory

Following Kogelnik (7) we may derive an analytic coupled wave
theory from the rigorous coupled wave equations describing the
harmonic index grating by ignoring second order derivatives and
truncating the mode expansion to a single reference and signal
wave. For clarity, this procedure, when applied to the rigorous
coupled wave equations describing an harmonic permittivity
grating, leads directly to Kogelnild's equations (7).

Applying this procedure to equation (31) yields
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These equations may then be written in canonical form as
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Note that equations (39) are none other than equations (20) and
(22). However the coefficients given in equations (40) differ from
those of equations (21) and (23). This difference in coefficients
constitutes the main practical difference between the PSM model
and the truncated coupled wave model. Note also that Iogelnik’s
equations (7), which describe a complex harmonic permittivity
grating as opposed to a complex harmonic index grating, differ
from equations (39) and (40) only in the alpha coefficient which is
then given by

a=a (41)
Using the reflection boundary conditions

R(0)=1
S(d)=0

(42)

we may, as before, write down an analytic expression for the
amplitude of the signal wave at the front boundary of the grating

§(0)=—2i¢ x /

(¢, —c)a+ic,0—

I T (43)
(¢, —c,)—ic, 0 Qd
P f coth(——)
—4¢,cx’ 2¢,¢,
where
& +& ta+ic,d)
o [(Esadass) "
—4g (@ +iad+x7)
The diffraction efficiency is then given by
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5. Analytic solutions at Bragg resonance

The diffractive efficiency of unslanted mixed phase-absorption
reflection gratings with finite loss may be expressed using the
same analytic form under both the PSM model and the truncated
coupled-wave model
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In the case of PSM the coefficients are given by
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and in the case of the truncated coupled wave theory,
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When X, <<n, andn <<n,, which is very often the case,
these coefficients become identical,
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Note that the transformation ¢, —»—c, and a, - -,
leaves 77, invariant. Note also that when y =y =0 we
retrieve Kogelnik’s well-known formula (7)
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6. Phase gratings with finite average loss

Kogelnik (7) defines a parameter, Do which is similar to the
photographic density
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Here g, is the vacuum permeability, ¢ is the velocity of
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Fig.2 Diffraction efficiency versus replay wavelength showing the
effect of increasing the average loss, Do. The graphs pertain to
gratings recorded at an (internal) incidence angle of 20 degrees
and replayed at 10 degrees. The recording wavelength is 532nm
and the grating has a thickness of 20 microns. The index
modulation is real with a value of n; of 0.045. no=1.5. On each
plot there are three lines corresponding to PSM (black), Rigorous
Coupled Wave theory (green) and Truncated Coupled Wave
theory (red).



light, g, is the vacuum permittivity and o, is the average
grating conductivity. In the case of visible wavelengths and
for grating thicknesses less than 100 microns we may use
the approximation y, <<p leading to the simplified

expression

2rd
Dyl (52)
A _cosd,

In Fig.2 we plot the diffractive efficiency versus replay
wavelength of typical reflective gratings having different
values of Do and a zero value of y as calculated by the
PSM model (equations (25)-(27)), truncated coupled wave
theory (equations (43)-(45)) and rigorous coupled wave
theory (equation (37) with /=-1 ). The RCW calculation
uses 7 modes in total.
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Fig.3. Magnified section of Fig.2(b) showing the typically better fit
obtainable with PSM to the rigorous coupled wave solution than
that offered by the truncated coupled wave approach,

Clearly the PSM model provides a somewhat better
description of the diffractive behavior at low to moderate
values of Do as compared to the truncated coupled wave
theory. This is particularly true in relation to the
distinctive sideband structure (see Fig.3). However, as Do
becomes large, the sideband structure starts to diminish
before finally disappearing. As Do further increases the
truncated coupled wave theory starts to slightly out-
perform the PSM model in certain cases but the difference
is very minimal. An identical behavior is also shown in
plots of the diffractive efficiency versus replay angle.

7. Absorption gratings with finite average loss

Following Kogelnik (7) we introduce a density parameter
for the harmonic absorption coefficient of the grating

2rdy,
A cosé,

(53)

Using Equations (46) and (49) and putting Do =D1, which
represents the deepest possible modulation for an

absorption grating, we vetrieve Kogelnilds upper
diffraction limit
1
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This result is then derivable either through truncated
coupled wave theory or through the PSM approach. A more
general formula (see Fig 4), valid for arbitrary average and
harmonic absorption, is
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Fig.4. Diffraction efficiency at Bragg resonance for an unslanted
absorption grating versus the ratio of harmonic to average loss
for various values of average loss. This graph is calculated using
equations (55) and (56) which are a result of both the PSM model
and Truncated Coupled Wave Theory.
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Fig.b. Diffraction efficiency versus replay wavelength for an
unslanted absorption grating of thickness 10 microns with Do and
Di equal to 0.75. Recording Wavelength 532nm. Recording
incidence angle 35 degrees. Replay incidence angle 30 degrees.
no=1.5. Green line indicates rigorous coupled wave calculation.
Red line indicates truncated coupled wave model. Black line
represents the PSM model.

To compare the performance of the PSM model and the
truncated coupled wave approach we plot in Fig.5 the
diffraction efficiency versus replay wavelength for a typical
ten micron thick absorption grating with Do=D1=0.75. Here
we compare the PSM model (equations (25)-(27)), the
truncated coupled wave theory (equations (43)-(45)) and
rigorous coupled wave theory (87) with /=-1. As with
phase gratings we once again see that characteristic
sidebands are clearly present. An enlargement of these
structures (see Fig.6) shows that the PSM theory is, as
before, slightly closer to the rigorous coupled wave
calculation when compared to truncated coupled wave
theory. However at Do=D1=3.0, representing the case of
very large absorption, we observe that the sidebands
vanish and now truncated coupled wave theory is seen to
slightly outperform PSM.

8. Mixed gratings with finite average loss

In Fig.7 we plot the diffractive efficiency versus replay
wavelength for the case of Fig.5 but where now a finite
value of m1 is also included. This is a mixed phase-
absorption grating. The PSM model is again seen to give a
slightly better description of the diffractive structure for
low to moderate loss.

9. Discussion

In this paper we have extended the PSM model (1-6) of
diffraction from planar gratings to include a complex index
of refraction for the case of zero grating slant, the o-
polarization and a reflection geometry. This has allowed us
to derive analytical expressions for the diffractive
efficiency of phase gratings with finite background loss,
absorption gratings and mixed phase-absorption gratings.
In order to ascertain the performance of the PSM model we
have compared it with truncated coupled wave theory (7)
and rigorous coupled wave theory (12). The major result is

that the PSM analytic model provides an excellent
description of the diffraction process in all three cases
studied — reflective phase gratings with finite background
loss, reflective absorption gratings and mixed reflective
phase-absorption gratings.

The behavior of PSM relative to truncated coupled wave
theory largely mirrors the case of a real index studied in
(1). In particular the characteristic diffractive sideband
structure appears better described by the PSM model.
However in cases of very high background loss, this
structure averages out and disappears, and in such cases
truncated coupled wave theory produces a slightly closer
result to rigorous coupled wave theory. Another
observation we could make is that thinner gratings tend to
be modeled somewhat better using PSM. This is no doubt
largely to do with a better modeling by PSM of the second
order derivatives in equation (31) and also the averaging
process defined in equation (17), which is fundamental to
PSM and which requires very few cycles to produce
effective results, particularly if the grating thickness
represents an exact number of waves.

x 10

Ms

Truncated Coupled Wave Model
L Rigorous Coupled Wave Model A

of t/PSM Model

520 530 540 1 frrm

Fig.6 Magnified section of Fig.5 showing the typically better fit
obtainable (for absorption gratings) with PSM to the rigorous
coupled wave solution than that offered by the truncated coupled
wave approach.

The major application of this work is in describing optical
diffraction occurring in holographic gratings. However
PSM may also be applied to particle wave diffraction where
the concept of “Fresnel”’ reflection is well known (16).
Potential applications include the analysis of neutron
super-mirrors that have been recorded using optical
holographic techniques (13,14). Our results may also be
useful in the study of acoustic diffraction from harmonic
structures where once again the acoustic equations reduce
to the same equations governing optical diffraction (15).

Finally we should comment on the computational use of
our results. In particular we have presented analytic
formulae that may be used to practically and easily
calculate diffraction efficiencies. Although we are unable to
say that these analytic results of the PSM theory always




constitute a better model than those of the truncated
coupled wave theory, in many cases this is so. Where exact
computation is required an “exact” method such as
rigorous coupled wave theory provides the preferred
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Fig.7 Mixed phased absorption grating. The plot is identical to
Fig.6 except that a finite real harmonic index has been added.
Green line indicates rigorous coupled wave calculation. Red line

indicates truncated coupled wave model. Black line represents
the PSM model

computational technique. However this is always at a far
greater cost in floating-point operations and in certain
circumstances the extra accuracy available through such
exact methods is simply not warranted when the analytic
expressions presented here require far less computational
resources.

10. Conclusion

The PSM model of grating diffraction has been extended to
include a complex refractive index for the case of an unslanted
reflection geometry at oblique incidence and for the o
polarization. The well-known theoretical upper diffraction
efficiency limit applicable to reflective absorption gratings
described by Kogelnik’s coupled-wave theory, is shown to be
directly derivable from the PSM model. Analytical formulae for
the diffraction efficiency of phase, absorption and mixed
harmonic-index gratings have been compared with numerical
computations using a rigorous coupled wave description. A
conventional truncated coupled-wave description, similar to
Kogelnil's approach, has also been derived from the harmonic-
index rigorous coupled wave equations by limiting the
propagating modes to a signal and reference wave and by
ignoring second order derivatives,

At low to moderate average loss the PSM theory is observed to
provide a somewhat better fit to the rigorous coupled wave
calculations, and this is particularly evident for gratings which
are dominated by phase modulation. As the average absorption
coefficient is increased, all three models show the diffractive
response sharpening around Bragg resonance and the
characteristic sideband structure attenuating and then
disappearing altogether, giving rise to a broader spectral
behavior away from resonance, At high average loss the
truncated coupled wave model is observed to very marginally
out-perform PSM. However, overall the PSM model is found to

provide an exceedingly good description of the general mixed-
phase-absorption unslanted reflection grating with finite average
loss.
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