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The PSM model is used to analyze the process of diffraction occurring in volume reflection gratings in which fringe
contrast is an arbitrary function of distance within the grating. General analytic expressions for diffraction
efficiency at Bragg resonance are obtained for unslanted panchromatic lossless reflection gratings at oblique
incidence. These formulae are then checked, for several diverse fringe contrast profiles with numerical solutions of
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1.Introduction

Volume reflection gratings are often produced by laser irradiation
of a silver halide holographic emulsion and subsequent chemical
processing. During the chemical processing stage, diffusion of the
processing chemicals occurs from only one side of the grating.
This leads to a fringe contrast that decays with emulsion
penetration depth (1).

In addition, photopolymer materials are subject to a similar
effect due to the unexposed photopolymer material
possessing an often rather high absorption coefficient that is
caused by the sensitizing dyes employed. Optical absorption
during recording of the grating can therefore affect index
modulation, resulting once again in a variable fringe contrast
profile,

Current analytic models of diffraction in volume gratings only
describe gratings having a constant fringe contrast (2,3). Here we
shall use the parallel stacked mirror model (PSM) (3-9) to
develop analytic expressions for the diffraction efficiency at Bragg
resonance describing gratings with a very general fringe contrast
profile. In particular we shall show that at Bragg resonance, a
reflection grating possessing a general analytic fringe contrast
profile exhibits the same diffractive properties as an equivalent
grating of constant fringe contrast but of differing thickness.
Away from Bragg resonance this equivalence rule breaks down
but we are still able to find an analytic solution for the case of a

hyperbolically decaying fringe contrast profile, which broadly
corresponds to the expected form for silver halide.

2.PSM model of the normal-incidence unslanted

monochromatic reflection grating

For simplicity and for clarity of exposition we start with the
simple case of the normal-incidence unslanted reflection grating
under monochromatic illumination. A general harmonic index
grating with arbitrary fringe contrast, in this case, may be
expressed as

nor o -
n=n + A{emﬂy +e7 }7()’) 4
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Here y(y) is an arbitrary function deseribing the fringe contrast,
n, is the average (external and internal) index, n, is the index
modulation and y is the normal distance into the grating. The
parameters, oz and f ave respectively the ratio of the replay
wavelength (1) to recording wavelength (4) and the
propagation constant and are given by

2
a=A/A ; =0 (2)
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Fig.1 Unslanted reflection grating shown illuminated by a
reference wave, R which provokes a signal wave, S. The grating
has thickness,d and the refractive index within the grating is a
general harmonic function. The index outside the grating is no.

We now wish to understand the response of the grating to a
plane reference wave of the form

R = " @)

We assume that the grating is surrounded by a zone of constant
index, no and start by modeling the grating of Equation (1) by a
series of many thin constant-index layers, no, mi, nz, .., M,
between each of which exists an index discontinuity (see Fig. 1).
Across each such discontinuity we may derive the well-known
Fresnel formulae for the amplitude reflection and transmission
coefficients from Maxwell's equations by demanding that the
tangential components of the electric and magnetic fields be
continuous.

An illuminating plane wave will in general generate many
mutually interfering reflections from each discontinuity. We
therefore imagine two plane waves within the grating — the
driving reference wave, R(y) and a created signal wave, S(y).
Using the Fresnel formulae we may then write, for either the o
or the m-polarisation, the following recurrence relations:
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Here the terms in curly brackets are just the Fresnel amplitude
reflection and transmission coefficients and the exponential is a
phase propagator that advances the phase of the R and S waves
as they travel the distance 8y between discontinuities. We now
let

dx
X, =X,~d—Y§y—... (8)

where X represents R, S or n and we consider the limit 5y — 0.
Further expanding the exponential terms as Taylor series and
ignoring quadratic and higher order terms in 6y we arrive at the
differential counter-part to Equation (4)

dR R _. L dn l dn
—=—{2if-——}-——§

dy 2 ndy)] 2ndy

(6)
ds S{ ) 1 dn} L dn
—=——12if+——7———
dy 2 ndy 2n dy

These are the basic equations on which the PSM model for the
unslanted normal-incidence reflection grating is based. For the
case of monochromatic illumination of the grating, the PSM
model splits the total electric field into a signal wave of amplitude
S(y) and into a reference wave of amplitude R(y) (see Tig.1).
Equations (6) then provide us with a description of how these two
waves behave and interact within the grating. These equations
are in fact an exact representation of Maxwell's equations. We
will now solve them for the index function of equation (1) by
making some reasonable approximations.

We start by making the transformation

R R(e™ | 555 me™ ¢))
and using
R={(R
_ & (8)
S =(s")

Here, triangular brackets operate on a harmonic or quasi-
harmonic quantity and indicate an average over several cycles of
the respective function, X such that

1 vl . '
<X>= E J X"y’ (9

where £ is greater than several periods (typically >8) but much
smaller than the emulsion thickness, d. Equations (6) then
reduce to

- y L
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Now if the contrast function is slowly varying compared to the
harmonic index modulation, it is clear that

Iy’ )| <«<|2ieBy (y) (11)

and equations (10) reduce further to
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where we have introduced Kogelnik’s constant
nm
x=— (13)
A
Following (3) we introduce the pseudo-field
N (14)
whereupon equations (12) reduce to
dRGY) .
C, T =iy (y)S(y)
Yy
A (15)
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At Bragg Resonance where o = 1 equation (15) has the following
analytie solution for the diffraction efficiency, 1, which is valid for
the reflection boundary conditions R{(0)=1, S(d)=0

c
5
n:—
c

5(0)S"(0) = tanh® |:K'_[ y(y)a'yi| (17)

R

This should be compared to the well-known formula for a
constant fringe contrast of

1 = tanh” [xd | (18)

We can therefore rewrite equation (17) as

n = tanh” [ d g | (19)
where defis an effective grating thickness given by
d
dy=["vdy (20)

In order to check equation (17) we first use a standard Gaussian
form for the contrast function, giving the following index

Wy

n=n,+ne “ cos(2By) (21)
Equation (17) then reduces to
1 T
1= tanh’ | —dk, ’—erfl:\/;] (22)
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Fig.2 Harmonic grating profile with Gaussian decaying fringe
contrast function (equation (21)). Recording wavelength 532nm.
1;=0.04, d=10 microns.

Tig.2 shows an example of the grating of equation (21) for an
omega value of 3. This represents a typical silver halide grating
of typical grating modulation and typical grating thickness. The
choice of an omega value of 3 corresponds to a pronounced
chemical diffusion effect where the efficiency of chemical
processing starts to decay visibly after a penetration of only two
microns. IMig.3 shows the corresponding diffraction efficiency
versus grating thickness as calculated by equation (22) where it
is compared to a numerical Runge-Kutta integration of the
Helmholtz equation. Clearly the analytic result is extremely
accurate.
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Fig.3 Graph showing diffraction efficiency wversus grating

thickness of an unslanted normal incidence reflection grating with
the Gaussian tapering harmonic index modulation of Equation
(21) (see Fig.2). The continuous lines represents the PSM analytic
formula (Equation (22)) with @=3 and the points represent a full
Runge-Kutta integration of the Helmholtz equation. Three values
of the index modulation are plotted: 1n,(0)=0.02, 1:(0)=0.04 and
n1(0)=0.08. Gratings recorded and played back at 532nm. n¢=1.5.

To test equation (17) further we use the more extreme contrast
function

(4'.)_3‘2

n=mn,+ j'—;'-(1 + cos(%z)e—F)cosGﬂy) (23)

In this case equation (17) reduces to
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Fig.4 Harmonic grating profile with Gaussian oscillatory fringe
contrast function (equation(23)). Recording wavelength 532nm.
m=0.08, d=10 microns.
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Fig.4 shows an example of this grating for an omega value of 3
and for a sigma value of 5, The physical significance of this profile
is less immediately obvious than that of Fig.2 although it does
show a worsened chemical diffusion effect. The physical
significance of the second smaller peak in fringe contrast can be
thought of - very approximately - as representing the interaction
of the main chemical diffusion process occurring from the front
surface of the grating, with a (non-constant) optical absorption
effect caused by a finite absorption present in the photographic
material at recording, acting on both reference and object beams.
However, although this constitutes a plausible explanation, the
primary reason for the choice of this more extreme example is to
demonstrate the validity of the key assumption of equation (11)
for an extreme example.

i hﬁ(xd\/;
= tan
1 P

g5 shows the corresponding diffraction efficiency versus
grating thickness as calculated by equation (24) where it is once
again compared to a numerical Runge-Kutta integration of the
Helmholtz equation. Clearly the analytic result is again
extremely accurate, even for this harmonie contrast function that
must be interpreted as an extreme case.

Away from Bragg resonance equation (17) is not valid. Here we
cannot find a general analytic formula for the diffraction
efficiency valid for an arbitrary fringe contrast profile. However
we are able to solve equation (15) for various specific contrast
profiles which are nevertheless suitable for describing typically
expected fringe contrast distributions for the silver halide
chemical processing effect. For example the contrast function

Y= (25)
1+ay
leads to a diffraction efficiency of
c, :
n=[—8(0)S (0) (26)
CR
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and where the Omega functions are given in Appendix A.
Fig.6 shows an example of the fringe contrast function of
equation (25). In Fig.7 we plot the corresponding
diffraction efficiency of this grating versus replay
wavelength along with a Runge-Kutta integration of the
Helmholtz equation, where excellent agreement is
observed.

Another useful fringe contrast function which is associated
with an analytic expression for the diffraction efficiency is
the simple exponential decay

yy)=e" (28)

Here a rather complex solution is available in terms of
Bessel functions of the first kind,
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Fig.s Graph showing diffraction efficiency versus grating
thickness of an unslanted normal incidence reflection grating with
the Gaussian oscillating harmonic index modulation of Equation
(23) (see Fig.4), The continuous line represents the PSM analytic
formula (Equation(24)) and the points represent a full Runge-
Kutta integration of the Helmholtz equation. Grating recorded
and played back at 532nm, ne=1.5.
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Fig.6. Example of the fringe contrast profile of equation (25) with
a value of the parameter, a =100,000.

3.Unslanted multi-chromatic gratings at normal

incidence

The above discussion can be extended in a fairly trivial fashion to
the case of multi-chromatic recording and reconstruction.
Equation (1) generalizes to

N
n i g —2 o
n=n,+ z ;k_{ezmkﬂy Joig 1 By }'yk ) (29)
k=1

Following (3) and assuming that the individual gratings labeled
by the subscript k have very different spatial frequencies
Equation (12) then reduces to

Ry . [= x iy
= S()’)Z ey (e
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(30)
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Here the subscript m indicates that the alpha, kappa and gamma
parameters belong to the grating closest to Bragg resonance with
the flluminating S wave. Basically all other gratings are simply
averaged out by the triangular brackets!

Applying the same procedure as above we then deduce an
expression for the diffraction efficiency when a multi-chromatic
grating is illuminated with one of its component recording
wavelengths

’n:

el
C

S(0)S"(0) = tanh® [x f: Tiu (y)dy} (31)

R
4. Unslanted gratings at oblique incidence

When the reference wave is incident to the grating at an oblique
angle, equation (6) must be replaced by the following more
general PSM equations (3,6) which are valid for a o-polarization

. oR oR
sin@, —+cosf, —=

ox dy

R| . 1 on| S 1 on
— 2”6 — pu "R e
2 ncos®_dy| 2 (ncos@ dy

) a5
sinf ——cosf — =

ax ay

S 1 on| R I on
—42if+ —rt— —
2 ncosf_dy| 2 |ncosé, dy

It should be pointed out here that an approximation of constant
ray direction has been made in arriving at these equations and as
such they constitute an approximate solution of Maxwell's
equations (3).

(32)

We may now apply a similar method to that applied to the
normal incidence case in section 2. Firstly we adopt a modified
grating equation

n 2iafcosbry =2iaf o
n=n, + —‘{e“ oBoaley 4 o+ Sﬂ""}y(y) (33)
2

where @ _is now the angle of incidence on recording. Secondly the
transformation of equation (7) must be generalized to

if(sinf x+cosf,y)

By R'(y)e S S;(y)eiﬂ(sinﬂl.r—cosﬁ‘.y) (34)
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Tig.7. Diffraction efficiency versus replay wavelength for the
hyperbolically decaying fringe contrast function of equation (25)
and Fig.6. Recording wavelength 532nm. no=1.5. mi=0.06. Red
solid line is the analytic result of equation (27) and blue circles
represent a Runge-Kutta integration of the Helmholtz equation.

The same mathematical steps then show that equation (32)
simplifies directly to equation (15), but where now
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Fig.8 Diffraction efficiency at Bragg resonance versus grating
thickness of an unslanted reflection grating recorded and replayed
at oblique incidence with the Gaussian tapering harmonic index
modulation of equation(43). The continuous green lines represents
the PSM analytic formula (equation(42)) and the dashed lines
represent a rigorous chain matrix computation. Three values of
the index modulation are plotted: n(0)=0.02, n:(0)=0.04 and
n1(0)=0.08. Gratings are recorded at 532nm and 20 degrees angle
of incidence and played back at 490.3nm at 30 degrees.
no=1.5,0=3.

The diffraction efficiency at Bragg resonance is then given

by

d
n % S(0)S'(0) s tanh? J'(J.ﬂ 7’(Y)dy
=, =|—tan _vJo_______

Away from Bragg resonance we may write the diffraction
efficiency for the case of the hyperbolically decaying fringe
contrast of equation (25)
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and where the omega functions are again given in Appendix A.

In the case of the mpolarization the PSM equations (3,6) can be
written
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If we replace Kogelnik’s constant by
K — K cos 26, (41)

then applying the same method as above we arrive at identical
equations as derived for the o-polarization. For example at Bragg
resonance we may write
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Fig.9. Diffraction efficiency versus replay wavelength for the
hyperbolically decaying fringe contrast function of equation (43)
and Fig.6. Recording wavelength 632nm. no=1.5. m=0.06, d=10
microns, Recording incidence angle is 20 degrees and replay
incidence angle is 30 degrees. Blue dashed line is the analytic
result of equation (42) and red line represents a rigorous chain
matrix calculation.
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To ascertain the accuracy of these formulae we use as a reference
a rigorous numerical chain matrix calculation based on 10,000
discretized layers (6,10). Fig.8 shows the analogue of Fig.3 when
reconstructed using a m-polarization reference beam having an
incidence angle of 30 degrees. Here the grating equation is given
by

G!J)‘2

n=n,+ nleu @ cos(20Bycosb,) (43)

Fig.9 likewise shows the analogue of Fig.7 when reconstructed by
a mrpolarization reference beam at an incidence angle of 30
degrees. Clearly both figures show excellent agreement between
the rigorous numerical chain matrix calculation and the PSM
model.

5.Discussion

Reflection HOEs and holograms recorded in a silver-halide
emulsion can be subject to a fringe contrast that depends on
the depth into the emulsion (1). Since wet processing is
required, the development process starts from the top of the
emulsion and the developer reaches the bottom rather later,
resulting in higher silver density variation at the top of the
emulsion as compared to that at the bottom. During the
bleaching process to create a phase hologram, the density
variations result in corresponding variations in &n, the index
modulation, which gradually decreases throughout the depth
of the emulsion.

The emulsion thickness for reflection holograms recorded in
silver-halide emulsions is typically between 7 and 10 microns
and in this case the 8n variation may not be that significant.
However in thicker gratings this is not the case. Indeed
special processing techniques have been developed for
nuclear emulsions.

A nuclear emulsion is an extremely thick photographic
silver-halide emulsion in which elementary particle tracks
are recorded directly as the particles pass through the
emulsion (11-13). These very thick emulsions (up to 1 mm)
require a uniform depth development through the entire
emulsion in order to be useful. One solution to this problem
has been to use special developers and to adjust the solution
temperature in such a way that the developer penetrates the
emulsion without having a developing effect on it. This can
be achieved if the developer is kept at a low temperature
during the penetration stage and if, at the offset of
development, the temperature is increased. The technique
has been applied to holography by Kaspar et al (14).
Holographic processing tests by one of the authors (HB),
using a modified version of this technique, resulted in
reflection holograms rather narrower
bandwidth.

of a spectral

In addition to silver-halide materials photopolymer materials
are routinely used to record phase reflection gratings and
holograms. The photopolymer material does not need wet
processing - the image is actually formed automatically
during the recording. A finished polymer hologram is almost
free of absorption, However, the unexposed photopolymer
material has rather high absorption caused by the sensitizing
dyes. The absorption during recording can therefore affect
index modulation, resulting in a variable fringe contrast.



In order to derive useful analytical expressions for the
diffraction efficiency for reflection gratings having a depth-
dependent fringe contrast we have used the PSM model (3-9).
We have restricted the analysis here to the unslanted
grating; but in fact the same techniques may be applied to
gratings of finite slant.

Unfortunately there appear to be no actual measurements
published in the literature concerning fringe contrast
profiles, The closest studies are perhaps those of Ingwall et al
(15,18) of Polarcid’s DMP-128 photopolymer but although
electron micrographs were presented in these papers of the
cross-section of reflection gratings, no actual measurement of
the fringe contrast profile was made. As such, we have
applied the theoretical model developed in this paper to
various fringe contrast profiles ranging from what one might
typically expect under the most simplistic arguments to
rather more extreme cases. Hopefully this approach will be
seen to demonstrate the validity of our approach in the
absence of exact experimental vresults. Indeed direct
measurement of the fringe contrast profile is not at all
simple. However an indirect measurement may perhaps be
most easily inferred by using the theory developed here to
match spectral measurements.

The PSM model is based on an application of the concept of
Fresnel reflection as first suggested by Rouard in 1937
(17). The grating is decomposed into an infinite series of
parallel stacked mirrors, each possessing an infinitesimal
thickness: at each mirror the classical laws of Fresnel
transmission and reflection are applied. In this way a
reference wave, which illuminates the grating, provokes an
infinite sum of secondary “Fresnel” waves, which add to
form the diffractive response.

The PSM model can also be viewed as a type of differential
generalization of the chain matrix method, which is often
used in the numerical calculation of the optical properties of
stratified media (10, 18, 19).

As we have seen, the PSM model lends itself rather easily to
analyzing the case of a general fringe contrast profile as the
underlying equations are valid for arbitrary index
modulation. PSM would also seem the natural starting point
for such an analysis as it seems to provide a somewhat better
predictive model of most unslanted reflection gratings than
that provided by conventional coupled wave theory (8), This
is not to say that conventional coupled wave theory cannot be
used to derive these results, It most certainly can, and in fact
the equations derived from 2-wave coupled wave theory at
Bragg resonance turn out to be identical to the PSM
equations. Away from Bragg resonance the governing
differential equations are only different in the definition of
the coefficients. This is of course very reminiscent of the
situation at constant fringe contrast.

The most important result of this paper is the derivation of a
very general and simple analytic formula for the diffraction
efficiency at Bragg resonance. Comparison of this result for

even quite radical fringe contrast profiles shows extremely
close agreement with rigorous numerical calculations. The
theory tells us that at Bragg resonance we may always think
of a reflection grating with variable fringe contrast as
equivalent to a grating of constant fringe contrast having an
effective thickness which is just a simple integral of the
actual fringe contrast. Although we have restricted our
attention to the unslanted grating, the analysis carries
through identically to the case of finite slant as long as the
normal finite-slant expressions for ¢, ¢, and ¥ are now

used (8).

Away from Bragg resonance we find that the PSM equations
do not unfortunately lead to an analytic form that is valid for
an arbitrary fringe contrast. The same situation occurs in a
coupled wave analysis. However the special case of a
hyperbolically decreasing fringe contrast is shown to lead to a
rather complex, yet useful analytic solution. Once again,
comparison of this result shows extremely close agreement
with rigorous numerical solutions.

6.Conclusions

The PSM model has been used to analyze the process of
diffraction occurring in volume reflection gratings in which
fringe contrast is an arbitrary function of distance within
the grating. Such variable fringe contrast profiles are
expected to arise from diffusion processes occurring in the
chemical processing of silver halide gratings and from
optical absorption occurring in photopolymer gratings.
General analytic expressions for diffraction efficiency at
Bragg resonance have been obtained for the unslanted
panchromatic lossless reflection grating at oblique
incidence. These formulae have then been checked, for
various diverse fringe contrast profiles with numerical
solutions of the Helmholtz equation where exceptionally
good agreement has been observed. Away from Bragg
resonance the case of the hyperbolically decaying fringe
contrast profile has been shown to lead to an analytic
expression for the diffraction efficiency and this has again
been compared successfully with numerical solutions of the
Helmholtz equation.

Appendix A

The omega functions of equation (27) and equation (38) are given
here in terms of confluent hypergeometric functions of the second
kind, U, modified Bessel functions of the second kind, K, and
generalized Laguerre polynomials, L. For equation (27)

a=a (44)
whereas for equation (38)
. cosf
0=0—2= (45)

2
cos” 6
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