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A Gaussian Process Surrogate Model Assisted
Evolutionary Algorithm for Medium Scale
Expensive Optimization Problems

Bo Liu, Qingfu Zhang, Senior Member, IEEE, and Georges Giclen, Fellow, IELE

Abstract—Surrogate model assisted cvolutionary algorithms
(SAEAs) have recently attracted much attention due to the
growing need for computationally expensive optimization in many
real-world applications, Most current SAEAS, however, focus on
siall-seale problems, SAEAs for medivme-scale problems (i.e.,
20-30 decision varinbles) have not yet heen well studied. In this
paper, & Gaussian process surrogate model assisted evolutionary
algorithm for medivm-scale computationally expensive optimiza-
tion problems (GPEME) is proposed and investigated. Its mujor
components are a surrogate model-aware search mechauism for
expensive optimization problems when a high-guality surrogate
model is difficult to build, and dimension reduction technigues
for tackling the “curse of dimensionality™. A new framework
is developed and used in GPEME, which carcefully coordinates
the surrogate modeling and the evolutionary search, so that the
search can focos on a small promising area and is supported by
the constructed surrogate model. Samimon mapping is introduced
to transform the decision variables from tens of dimensions
to a few dimensions, in order to take advantage ol Gaussian
process surrogate modeling in a low-dimensional space, Empirical
studies on benchmark problems with 20, 30 and 50 variables
and a real-world power amplifier design antomation problem

with 17 variables show the high efficiency and effectiveness of

GPEME, Compared to three state-of=the-art SAEAs. befter or
similar solutions can be obtuined with 12% to 30% exact function
evaluations.

Index Terms—surrogate model assisted evolutionary computa-
tion, surrogate models, expensive optimization, Gaussian process,
presereening, space mapping, dimension reduction,

[. INTRODUCTION

Many real-world optimization problems require expensive
compuler or physical simulation for evaluating their candidate
solutions [1], [2]. Often, traditional gradient-based mathe-
matical programming methods cannot be applied direetly to
these problems since analytic formulations are unavailable,
Lvolutionary algorithms (EA) cannot directly solve them either
since u large number of function evaluations are unaffordable,
Surrogate model assisted evolutionary algorithms (SALAS)
are recent promising approaches for dealing with such ex-
pensive optimization problems, SALAs use surrogate models
to replace computationally expensive real function evalua-
tions. Since surrogate modeling and prediction/prescreening
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use much less computational overhead than directly using
the computationally expensive exact function evaluator, the
computational cost can be reduced significantly,

This paper focuses on expensive optimization problems of
20 1o 50 decision variables (medium-scale) and we assume
that the computational budget available is in the range of
L0060 real function evaluations. Such problems can be found
in many real-world applications such as mm-wave integrated
circuit design | 3], antenna design [4]. mechanical engineering
[3] and manufacturing engineering [6]. For example, a single
simulation of a high-frequency integrated circuit needs ahout
10 1o 15 minutes, and a typical THz computational clectromag-
netic simulation may cost 20-30 minutes. Due to the very light
time-to-market requirements. the optimization task should be
completed within one to two weeks. Thus, one has to deliver
the final solution within 1, 000 function evaluations. Many of
these computationally very expensive problems have around
20 1o 50 design variables 3], |4]. [6].

Most current SALAs focus on small-scale expensive op-
limization problems [7], [8]. |9]. For problems with 20 or
30 variables. some successful attempts include |1, [10] and
[F1] [1] uses a weighwed sum of the predicted values of
different surrogate models to assist an LA, and the weights
are adaptively adjusted based on the prediction uncertainty
of different surrogate models. Reasonably good results on
benchmark problems with 30 decision variables have been
obtained. but it cost 8,000 exact function evaluations, |11)
uses the Gaussian process (GP) model with, probability of
improvement prescreening [12] as a global surrogate model
and Lamarckian evolution (using the radial basis function) as
a local surrogate model to accelerate an EA, Good results on
benchmark problems with 20 variables can be obtained with
G, 000 exact function evaluations. |10] investizates GP-based
local surrogate models and different prescreening methods
to assist (g4 A) evolution strategics, Benchmark problems
with 20 variables have been tested. and promising results
have been obtained on some problems with only 1.000 exact
function cvaluations. However, its solution quality {especially
for multimodal problems) needs to be improved. We belicve
that much effort should be made to develop efficient and
effective SALAs for medium-scale computationally expensive
optimization problems 1o meet the increasing industry require-
ments,

Many surrogute models have been inroduced 1o assist EAs,
Among them. the GP modeling. response surfuce methods.
artificial neural networks, support vector machines. and radial
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basis functions exhibit good performances and are widely used
[7] 181 [12]. 110) [13), [14]. 115 [16]. The GP modeling
with the lower confidence bound (LCBY [17] prescreening is
used in this paper. mainly based on the following considera-
tions:

o (P modeling is a theoretically sound method for deter-
mining a much smaller number of free model parameters
thun muny other surrogate modeling approaches [18],
[19].

o G modeling can provide an estimate of the model uncer-
tainly to cach predicted point. which can be interpreted
in a very natural way [18]. [19].

e Scveral prescreening methods are available for the GP
modeling in optimization, For example, the expected
improvement presereening [7] has demonstrated its ability
to escape a locally optimal area [10],

A key issuc in an SAEA is how 1o use a reasonable amount
of computational effort to build a good model for locating
the most promising candidate solutions. GP modeling can
involve heavy computational overheads. The computational
complexity of a typical learning algorithm for GPP modeling
is O(Ny K3} |10 where Ny is the number of iterations. o
is the number of variables, and & is the number of training
data points. When o is large, a large Ny is often required to
obtain a good model. Our pilot experiments have shown that
when using 150 training data, it can take 240-400 seconds
to build a single GP model for an objective function with
50 variables when the Blind DACLE toolbox [20] is used on a
Xeon 2,00GH2 computer with the MATLADB environment, The
cost will increase cubically as A increases, An SAEA with
a budget of 1.000 function evaluations, as in this paper, may
need to do GP modeling for several hundred times. Although
starting from the GP model from the previous iteration can
reduce the computational overhead to some extent. it is still
not realistic 0 use too many training points in the GP
modeling. On the other hand. using too few training data may
deteriorale the reliability of the model and thus the solution
quality. Besides the number of training data points, another
important factor affecting the quality of a surrogale model is
the location of the training data points, A standard EA, used
as the scarch engine in most SALAs (e.e. [ 1T] 8] [10]. [ T1].
generates new points mainly for optimization purposc but not
for modeling. When an SAEA with such an EA presercens
a candidate solution, the model could be poor to judge the
quality of this solution properly, since it is very likely that not
cnough training data points used for modeling are close to this
solution. particularly in & high dimensional space.

This paper proposes two techniques to address the above
issue. One is to employ a dimension reduction  wechnigue
10 map the training data to a lower-dimensional space on
which the GP modeling will be conducted. In this way, the
quality of the model can be largely improved due to the
reduced space and the computational cost of the modeling
can be reduced significantly, The other technigue is 1o focus
the scarch on a promising subregion, which is achieved by a
new surrogate model-aware search mechanism. A new SAEA
methaod is then proposed that uses these two technigues. called

[

CGaussian process surrogate model assisted evolutionary algo-
rithm for medium-scale computationally expensive optimiza-
tion problems (GPLEML). Experimental results on benchmark
problems show that GPEME, with 129 to 30% cxact function
evaluations. outperforms or performs similarly o some other
state-of-the-urt SAUEAs [1] [10]. [11]. We also report the
result of GPEME for an mm-wave integrated cireuit design
optimization problem.

The remainder of this paper is organized as follows, Section
I introduces the surrogate modeling technique used in our
proposed algorithm. A new SALA framework and GPEMIE are
then presented in Section UL Section IV presents the experi-
mental results of GPEML on some commonly used benchmark
problems and a real-world engineering problem. Comparisons
with some state-of-the-art methods are also provided in this
section, Concluding remarks are presented in Section V.

H. THE SURROGATE MODELING IN GPEME
A Gaussiun Process Maodeling
To model an unknown function g Tl € /Y the
GP modeling assumes that f{x) al any point . is a Gaussian
random variable N {02}, where jand ¢ are two constants
independent of . For any o f{e] is a sample of g+ e{ir).
where e{) ~ N(O.02). For any woe’ € B ele’), the
correlation between «() and « (). depends on o o' More
precisely,
d
l‘.‘i[)( = (};2.1',‘
i

elaca’)

i
L L ()
where parameter 1 < p; < 2 s related 1o the smoothness of
S} with respect to .y, and parameter #; > 0 indicales the
importanee of . on f{w). More details about GP modeling
can be found in [21].

Iy Hyper  Parameter  Estimation:  Given N points
oo™ e B oand their S-function values ', .. g
then the hyper parameters g, o, ..., Og. and py... .. d
can be estimated by maximizing the likelihood that /) 4
ata w1 RK) 7]

! My p)'C Yy g1
exp 2)

(i o2y e (() 22

where (7 is a A % K matrix whaose (7, j)-clement is (o, ),
TR O 97T and 1 is a N-dimensional column vector
of ones.

To maximize (2), the values of yr and 2 must be:

L 1Tty .
1 Ty (
"t TTe1p
and T el .
o ly 1) Oy 1)
FLI LI A (1)

K

Substituting (3) and ¢ into (2) ecliminates the unknown
parameters pooand o from (2). As a result, the likelihood
function depends only on #; and gy for § Lis el €2
can then be maximized to obtain estimates of #; and p;. The
estimates e and 4% can then readily be obtained from (31 and
(4). In our experiments. we use the MATLAB optimization
olbox to optimize the likelihood function,
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2) The Best Linear Unbiased Prediction and Prediciive
Distribution: Given the hyper parameter estimates -"f,—. Pis {1
and 62, onc can predict y  f{&) at any untested point
based on the f-function values y¥ at #itori L., K. The
best linear unbiased predictor of (i) is [7]. [22]:

f)

and its mean squared error is:

joer ey 1) (3)

{1 ety
oy 9

where r (el Vel BT NG, S200) can
be regarded as a predictive distribution for f(«) given the
function values of at ¥ fori 1., ..

3 Lower Confidence Bound: We consider minimization
of f{x) in this paper. Given the predictive distribution
N(f(e).2()) for f{a), the LCB of f{x) can be defined
as [17]:

(12[1 g

S20r)

[

where « is a constant, In our algorithm, we use f7.4,(r) instead
of f{x) itself to measure the quality of .. The use of LCB
can balance the search between promising areas (i.c., with
low [(:) values) and less explored arcas (i.c.. with high s(a)
alues).

Jren(r) walir) (7N

B. Dimension Reduction
A key issue in the design of an SALEA can be stated as
follows:

e

e Ciiven I\ points . € R and their [-function
values ', . ... yK. Let o8+ e ®HM e AT untested
points in B9 How can one rank the A/ untested points
without exact function evaluation?

A natural solution to this issue is that one first builds a GP
model based on the exact evaluated ¢ data. computes the LCB
values of cach untested point and then ranks them based on
their LCB values. This procedure is so called prescereening. In
GPEME, we only sclect the point with the best LCB value for
exact function evaluation based on the oblained ranking. It is
desirable that the sclected point is a high-ranked one among
all the untested points, Our pilot experiments have shown that
for the test problems with 50 variables used in this paper, it
is often very hard to achieve the above goal with 100 or 150
training data, Using a larger I, as argued in Section 1, can lead
to a laree amount of computational overhead in GP modeling.

To deal with problems with around 30 decision variables,
we propose an efticient way to do presereening with dimension
reduction, "The key idea is 1o map the truining data 1o o lower-
dimensional space and then do GP modeling, As a result. the
disadvantages caused by the insufticient number of training
data points for medium-seale problems can be overcome. The
method works as follows:

Prescreening by GP with dimension reduction (GP+DR)

Input: (1) Training data: «'.....o® and g'o.oop™0 @)

Points to presereen: ofF1 | p R

Output; The estimated best solution wmong all the untesied

points 5 +1 el

Step 1: Map ol oM ¢ B into 1T, where [ <
d, and obtain their corresponding images in "o
3| P

e

Step 20 Build a G model by using the 7 and ¢ data
(i 1..... ). and then use the model o compute
the LCB value of each #H ;1. W),

Step 3 Find the point with the smallest LCB value among
G ERM ] Output its corresponding point in
the original decision space R as the estimated best
solution,

There are many machine learning methods which can trans-
form the original space 1% 10 the latent space 1 for dimension
reduction [23]. We have the following two considerations:

o The neighborhood relation among the data points plavs
critical role in the correlation function in G modeling.
Therefore. the neighborhood relationship among the ./
points in 7' should be as similar as possible to those
among all the .« points (7 Lo.... K« Ahvin 17
The pairwise distances among the data points should be
preserved as much as possible,

o The mapping technique should not be very costly since
it will be used many times in an SALA,

Based on these considerations, we use the Sammon mapping
[24] which minimizes the differcnees hetween corresponding
inter-point distances in the two spaces. Moreover, it is not
cxpensive when K A and £ are not large. Sammon mapping
minimizes the following error function:

I A ;
\iegeraar TG )
[dis{at. )

dis{at )

dis{af 0l

—

1<i<j< K4 A

X (8)

where dis(=, =) is the Buclidean distance.

Minimization of the error function in (8) is a large-scale
quadratic optimization problem. In our experiments. we use
the gradient descent method in [25] to solve it and we set
{4 (more details can be found in Section 1V). We use the
principle component analysis (PCA} technique (o gencrate an
initial point for the optimization process. When i 100,
M 50 and o 50. as used in our experiments in this
paper. the CPU time consumed by Sammon mapping is a few
seconds on a 2.06GHz computer.

C. GP Madeling with Dimension Reduction using Saminen
Mapping vs Divect GP Muodeling
In the following., we discuss the major advantages and
disadvantages of these two approaches.
GP modeling with dimension reduction (GP + DR):
o Advantages:
— Sammon mapping transforms the waining data points
from the original space 7 10 a lower-dimensional
space KR!, Therefore, the number of training data
points required for a good GP model can be reduced.
— Since the modeling is conducted inoa lower-
dimensional space. the computational overhead can
also be reduced significantly.
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« Disadvantage:

— Although Sammon mapping minimizes the crror
function £ between the two spaces. the error can-
not be zero. This means that some neighborhood
information of the waining data points in the original
space will be lost in the latent space,

Direet GP modeling in the original space L
o Advantage:

— Lrrors caused by dimension reduction can  be
avoided,

o Disadvantages:

— In the case of large d (such as 4 50), it is often
very difficult to select a sufficient number of proper
training data points from the available data set o
build a good GP model for a particular scarch area
of interest.

— When o is large. direct modeling will be costly as
pointed out in Section 1.

For these reasons, we decide to use the direet GP modeling
in our proposed algorithm when ¢ 20 and 30, and GP+DR
in the case of ¢ 50, One thing that needs to be mentioned
is that for problems with 20 or 30 variables, both methods
¢an obtain reasonably good results (better than the available
methods). This is related to our new SAEA framework, which
is another main contributor to GPLEMLE and which will be
described in the next section.

HL. THE PROPOSED GPEML ALGORITHM
A, Differential Evolution (DE}

The DU algorithm is used as the search engine in our
proposed GPEMLE algorithm, DL is an effective and popular
elobal optimization algorithm. It uses a ditferential operator
to create new candidate solutions [26]. There are quite a
few different DI variants, In this paper. we use DLEfbest/]
o generate new solutions for presereening. The DLE/best/]
mutation uses the current best solution as the base vector, so
as to increase the speed of generating promising candidates,

Suppose that [7 is a population and the best individual in I
is st Lot (rg....org) € 87 be an individual solution
in 2. To generate a child solution (e wg) for .
DEbest T works as follows.

A donor veetor is first produced by mutation:

v J:b( sl 4 1". . (‘J.m J,r'gj (()]

where o™ and #™ are two different solutions randomly
seleeted from P and are also different from %t 1 e (0,2] s
a control parameter, often called the scaling factor [26]. Then
the following crossover operator is applied to produce
| Randomly select a variable index juqq € {1.... L},
2 Foreach j 1 to d. generate a uniformly distributed
random number rand from (0. 1) and set:
» O if (,.i'mr.d <O Jrand (10)
4 xj,  otherwise '
where C'R @ 0,17 is a constant called the crossover
rate.

Wz
L1

(Oulput

Initialize the
database

Select training data
Select surrogate
modaling methods

1

Selectthe best

Surrogate modeling

solutions
DE mutation Prescraening

L

DE crossover

|

Selact the most

promising solution

Exact function
= avaluation,
update database

Fig. 1. ‘The Now diagran ol GPEME

B. The GPEME Framework

Like most other SALEAs, GPEME records all the evaluated
solutions and their function values in a database, Onee an exact
function evaluation has been conducted for a new solution ..
this solution and its real function value g will be added 1o the
database. To initialize the database. a Design of Lxperiments
method, Latin Hypercube sampling (LHS) [27]. is used 1o
sample a set of initial points from the search space. The LHS
sampling method samples the design space more uniformly,
and hence, can use fewer samples 1o achieve a more eftective
sampling. It has been widely used for initialization in some
other SAEAs [7]. [15], Let the scarch space be [ b4, The
GPEME algorithm works as follows (see Fig. 1)

Step 1: Use LHS to sample o solutions from [e., & 4 evalu-
ate the real function values of all these solutions and
let them form the initial database.

Step 2: I u preset stopping criterion is met. output the best
solution in the databuse: otherwise go to step 3.

Step 3: Seleet the A best solutions (i.e.. with the lowest
function values) from the database to form a popu-
lation 1™,

Step 4: Apply the DE operators on 2 1o gencrate A child
solutions.

Step 51 “lake the v newest solutions in the database and
their function values as the training data to prescreen
the A child solutions generated in Step < by using
G in the original space or GP+DR with the LCB
presereening.

Step 6: Lvaluate the real function value of the estimated
best child solution from Step 5. Add this evaluated
solution and its function value o the database. Go
back to Step 2.

The fow diagram of the GPEMLE framework is given in Iig,

We can make the following remarks on the GPEME frame-
waork:
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P

« The population [ generated in Step 3 consists of the
A best solutions in the database. Most of these solu-
tions may not be far away from cach other, particularly
after several iterations. Thercfore. most child solutions
generated in Step < are in a relatively small promising
subregion,

o In cach iteration. at most one new solution cnters 7
in Step 3. Hence. in several consecutive iterations. the
solutions to be prescreencd in Step 5. which are generated
from £ in step <, should not be tar away from cach other,
particularly. when most solutions in 7 are distributed in
a small region, For this reason, the waining data points
{obtained from Step 6) could not be far from a solution
to be persereened, which is desirable for GPEML

e The + solutions in Step 5 are the most recently generated
best candidate solutions, and it is reasonable o assume
that these solutions are also not far away from the current
promising subregion. Thus the model built by using these
solutions should be reasonably accurate for ranking the
A child solutions generated in Step .

o Il is not necessary to build a very accurate GP model
in Step S for prescreening. We only require that the GP
model can help to select a reasonably good solution.

Taking the Ackley function with 20 variables as an example.
in GPEME (the experimental setting is given in the next
section), the probabilitiecs on 20 runs that the best ranked
solution by prescreening in Step 3 is among the top 20% and
10% of the A child solutions in terms of exact function values
are 86.1% and 75.8%. respectively, Clearly, the GP modeling
works very well in GPEMLL

To et a rough idea of the scarch ability of the GPEME
framework. we remove the GP modeling and prescreening.
Instead. we conduet exact function evaluations to all the A
child solutions in cach iteration. and randomly seleet one
from the top /# solutions. In such a way, we simulate the GP
modeling and prescreening,

Weseta  100and A 50, We have tested tive different
values: 1,3.5, 7 and 9. The function values of the best solution
found so far versus the number of iterations is plotted in Fig. 2,
These results are based on 20 runs. It is clear from Fig. 2 that
the convergence speed decreases as the 3 value increases. This
indicates that the quality of the GP model does have an impact
on the convergence speed of GPEMLE, When 1 < i < 7. the
best objective function value obtained with 1000 iterations is
very close 10 0. the global optimal value. This implies that the
proposed GPEMLE framework works well if the best solution
based on prescreening is among the top-ranked candidates in
the newly generated A candidate solutions in terms of exact
function values.

n

Average of the current best function value

Iterations

.{'Z'
1=

Convergence Curve in simudared GPEME

IV, EXPERIMENTAL STUDIES
Ao Parameter Senings
There are several control parameters in GPEMLL To set
some parameters, we have conducted pilot experiments on
benchmark problems. Their settings and our considerations are
given as follows:

« The scaling factor £ and the crossover rate C'f7 in the
DL operators: The setting of the DI parameters has been
well investigated. Following [26]. we set 7 to 0.8, and
17 to (.8,

« The number of training data points ¢ in the GPP modeling:
The tradeof between the model quality and the com-
putational cost is considered when setting 5. Our pilot
experiments have shown that for medium-scale problems.
when using less than 80 training data 1o construct the
surrogate model, the selected best candidute based on the
GP model and prescreening is not a truly high-ranked
candidate in many occasions. On the other hand. although
the model quality can improve when using more training
data, the computational cost of modeling also increases
significantly. Here are some training times 1o construct
a GP model (using the Blind DACL toolbox [20]) for
the problems tested in this paper (sce Appendix) on a
Xeon 2,66GHz computer in the MATLAB environment.
If 100 training data are used, for the problems with 20
30 and 30 variables. the CPU time to construct a GP
model is about 10-20 seconds. 15-35 seconds, 120 to
250 seconds, respectively, When 150 taining data are
used. the CPU time increases to 30-30 seconds, 80-110
seconds. and 240-100 seconds. respectively. We have
found that 80 = &+ < 120 can produce a reasonably
good surrogate model for GPEML with an acceptable
amount of computational time. In our experiments using
benchmark problems. 5 100 is used,

o The dimensionality / of the low-dimensional space in
Sammon mapping: Our pilot experiments have indicated
that 7 = G can make the scarch quite slow and /2 can
[ead to poor results. In our experiments, we set /4

o wused in LCB: Following [10). [17]. w2 is used,
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o The number of initial samples @ in Step ;[ 10] suggests
that at least 2d samples should be used to construet
reasonably good local GP model. However, the initial
samples are randomly generated spreading all over the
search space, so more samples are necessary, We use
100 initial samples in the experiments using benchmark
problems.

o Ain Step 3: Our pilot experiments on A 20,30, 80
have shown that 30 < A < 60 works well. A large A value
causes slow convergence and a small value can ecasily
lead to premature convergence. We set A 50 in the

experiments using benchmark problems,

B, Test Problems

To compare with three state-of-the-art methods reported in
1) [10]. [11]. we take the problems used in their works as
the test instances, The test problems in [10], [11] have 20
variables, [10] uses the Sphere prablem (simple unimodal),
the Ellipsoid problem {unimodal). the Step problem (discon-
tinuous) and the Ackley problem (multimodal). [11] uses the
Sphere problem, the Rosenbrock problem (unimodal but with
a narrow valley near the global optimum). the Ackley problem.
the Griewank problem (multimodal) and the Rastrigin prob-
lem (multimodaly. [1] uses test problems with 30 variables.
including the Ackley problem. the Griewank problem. the
Rosenbrock problem, two shifted rotated problems and five
hybrid composition functions from [28]. Besides problems
with 20 or 30 variables, we also test some problems with 50
variables, which have not been tested by the other methods.
The test problems used in our experiments are listed in Table
I and more details can be found in the Appendix,

We also test our method on a practical design optimization
problem of an mm-wave power wmplifier with 17 design
variables.

C. The GPEME Performance and Compurisons witl State-of-
the-art SAEAs

The statistics of the best function values obtained by
GPEMLE with 1000 function evaluations on 20 independent
runs for F1-I714 are reported in Table 11,

I'rom “Table 1, for most problems with 20 and 30 variables.
GPEME can find very good solutions with 1,000 exact func-
tion evaluations, The exceptions are 14 and IS (Rosenbrock
problem with 20 and 30 variables), 1413 and 14, Although
the Rosenbrock problem is unimodal, the narrow valley of the
plobal optimum makes it difficult to optimize, F13 and 1714 are
artificially designed complex problems. The stundard DL with
30,000 exact function evaluations cannot produce good results
for IS, 1713 and 1714 as shown in the next subsection. Tor the
problems with 50 variables, although the obtined solutions are
not very close to the global optimal solutions, their qualitics
are reasonably good.

We have compared GPEME with GS-SOMA [1]. SAGA-
GLS [11] and MALS [10]. As shown in Table 1. GS-SOMA
has heen tested on IS, P8, FIL FI3 and FI4 in [ 1], SAGA-
GLS on F4, I'7 and FLO in [11]. and MAES on ] and 7 in
[10]. Table 11 to Table V report the following values:

TABLE |
TEST PROBLEMS USED IN THE EXPERIMENTAL STUDIES

Problem| Objective No. ol | Global | Property Contprarison
Tunction Vi~ vpli- Method
ablus muni
Fl Ellipsoid 20 0 unindal | [ 10]
F2 Ellipsoid 0 U wiinodal | NLAL
K3 Ellipsoid 50 n unimodal | NLAL
F4 Rusenbrock| 20 1] unimodal | |11
with
TN
villey
kS Rosenbrock | 30 0 unimodal 111
with
TETOW
valley
k6 Rosenbrock | S0 0 usimodal | N.A
with
TFTUW
villey
K Ackley 20 0 multimodal] | 0.
111
8 Ackley 30 0 mulamodal] (1]
FY Ackley 30 0 mudtimodal] N.AL
Fl0 Giriewank 20 ] multimodal] |11]
K11 Griewink 20 0 multimodal| 1]
Fi2 Griewank 50 0 mulimodal] N.AL
(SR Shilted AU -2 very 1]
Rotated comph-
Rustrigin citted
mulu-
modal
Fi4 Rotated RIY] 1 very 111
Hybrid compli-
Com- vated
position nuli-
Function maodal
(K19 n
..... i _

NUAL means that none ol the three methods (1] (10]0 111 has been tested on
these instances.

TABLE 11
STATISTICS OF THE BEST F TION VALUES OBTAINED BY GPENMEIN
1.000 EXACT FUNCTION EVALUATIONS FOR FI-F14

I'roblem best wurst average std

3] 1.37c-6 7.2¢-5 133 T 78¢-5
2 (0153 L1647 0.0762 1.HO1

F3 1300681 | 3725567 | 220070 | 816123
Fd 15.1491 758806 224287 | 187946
K3 26.264 88,2323 46,1713 | 255109
Fo6 1723547 | 4014187 | 288278 | 8O8TY
Fi 0.oox? 1.5403 0.1990 0.571

F8 1.9491 4.9640 30105 09250
v 0.2524 14,9343 132327 1.5816
F10 n.o0o2 (.22 n.n3ng 0.0652
K11 17368 1.rtal 0.9969 01080

F12 225456 049767 2.6-459 | 131788
F13 -SLonts 18.0327 S218610 | 364HY2
F1d DAL 1601 YY2E6RIS | USRSV | 25,6940
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TABLE 111
COMPARISON OF GPEME wiTH GS-SOMA (1]

Problem | UPEME (B estizzzl | OS-50MA (Besfizss) | O3-50MA (Hazz)
s ARITIN 9% KUK
FK Lotos 20 KUK
FIl (L9500 s 23
F1a 2186 »50 210
Fii USRI LIRS S0

TABLE IV
COMPARISON OF GPEME witi SAGA-GLS |11)

“Problem | UPEME (B esfa733) | SAGA-GLS (Bestiazs) | SAGAGLS Hazead
i ) 287 I [ ' 6L
il 0.1090 5.8 €300
FlLO LR PR ¥ 6L

o Ddesfy goo: the mean of the best function values obtained
using 1.000 exact function evaluations by GPLEMIE

o Iy gop: the number of exact function evaluations needed
by an algorithm in [1], [10]. [11] to achieve the same
best function value obtained by GPEMLE. In total. GS-
SOMA, SAGA-GLS and MALS used 8,000, 6,000, and
1000 exact function cvaluations, respectively. If their
final results are worse than the GPLEML result with 1,000
exact function evaluations. we denote this as > 8,000,
= 6,000, and = 1,000, respectively.

Some of the above values have not been provided in [1],
[10]. [11] in numerical form. so we extract them from the
tigures in these papers, [10] tried four difterent prescrecning
methods and obtained four different results; we choose the
best one of them in our comparison,

From Table 11 to Table V. it is clear that GPEME outper-
forms the three state-of-the-art methods on these test instances.,
More specitically:

e As shown in Table 1L with 1.000 exact function evalua-
tions for 55, S, F1 and F13, GPEML can produce much
better results than GS-SOMA. GS-SOMA is not able
to produce solutions with the same quality with 8.000
function evaluations on 15 and I'8. For F11 and 13,
GPEMLE achieves about two times speed enhancement
compared with GS-SOMA. For Il the result obtained
by GPEML is also better than GS-SOMA when both
algorithms use 1,000 function evolutions. and GS-SOMA
needs about 3.200 function evaluations to obtain similar
results,

o The average best function values obtained by GPEMLU
with 1,000 exact function evaluations over 20 runs are
better than or similar to those obtained by SAGA-GLS
with 6.000 function evaluations as shown in Table IV, The
best function values of SAGA-GLS with 1,000 function
evaluations are much worse than those of GPEMIE

TABLE V
CoMPARISON OF GPEME witit MAES [10]

Fioblem | GPEME (Beslycoe) | MAES 1Besticzel | MAES (Hizee)
S R T 7 I - )
F7 01990 i >N

-1

=

2

Averagée of the current hedl Ntness values (log)
P La ;

o

1 1 1 1
1000 2000 3000 4000 S000 6000 TONC B000 S8i0
The rumrker of exact incticn eval-at ons

Fie. 3. Convergence curve of the objective funetion Tor F1T with 8.000 exaet
funetion evaluations by GPEME

- e -~ @ @

g =2 g g 3 2

s = S = =
' ' L

=
v

Average of the current besl filnews value
=

5w

000 100 HEC 2500 2000 3500 4000 4500
Tre rurrker of exast function evalial ons

Fig. 4. Comvergenve curve of the ehjective funetion for F13 with 4.000 exact
function evaluations by GPEME

o MALS also uses 1,000 tunction evaluation on 1 and 17,
Table V shows that the results obtained by GPEML are
better by one or two orders of magnitude than the resulls
of MALS.

Note that for FI1 and F13, GS-SOMA can achieve the
result of GPEME in 2.000-3.000 cxact function evaluations.
The convergence curves in [ 1] show that the fitness value
decreases very rapidly in GS-SOMA from 2.000 1o 3.000
exact function evaluations, To get an insight into the behavior
of GPEML with more than 1,000 function evaluations. we
conduct experiments on GPEML for P11 with 8,000 exact
function evaluations and for 13 with <.000 exact function
evaluations. The convergence curves of the average best func-
tion values found so far over 20 runs are given in FFig, 3 and
IFig, 4. The average best function values of GS-SOMA with
8.000 exact function evaluations are 2.2¢ 3 and 126 for
11 and P13, respectively [1]. while the GPEMI result for
F11 with 8.000 exact function evaluations is 3.33¢ 16 and
for I°13 with 4.000 exact evaluations is  IS7.04, From Fig. 3
and Fig. 4. it can be seen that the final result of GS-SOMA
can be achieved by GPEML with about 2.000 exact function
evaluations,
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TABLE VI
THE EXPERIMENTAL RESULTS BY THE STANDARD DE FOR F1-F14

Problem | 100D FEY T 30,000 FEV
Fl 203,22 12400 OA7e-17
F2 788.08 10750 4.28¢-10
3 32813 5750 Abde-4
F4 53485 4350 1.2
5 1621.) 56510 14.53
F6 41479 5800 43710
Fi 16,94 9uno 4.18¢-9
K8 18.35 S050 0.13
FY 19.24 4100 1.18
F10 81.06 11400 0.013%
11 183.18 sy 0.0025
F12 467717 S400 (.0069
F13 18009 3130 -138.18
i ) 993.5% 1600 018.84

The second and lost columns are the average best lunction values obtamed by
DE with 1, 000 and 30, 000 function evaluations over 20 runs. respectively. T
is the nuniber of Tunction evaluations reguired by the stndard DE w achieve
similar results by GPEME with 1, 000 [inetion evaluations.

TABLE ¥l
COMPARISON BETWEEN G DR AND DIRECT GP FROM FIG. 5T0 FiG. 18

No. ol variables | GPIDR wins [ GP wins
0 174 34
20 lity it
50 44 04

The second colunm shows the nuntber of problems which can provide o better
result using GPADR over the wial number ol test problems, The third column
shows the sume statisties but Tor the case that better results can be obtained
by direet GIX

0. Comparison with Standard DE

To understand the benefits of the key techniques in GPEMLE,
we compare GPEMLE with the standard DI |26] without
surrogate model on FI-F14, When applying standard DI, the
population size. the scaling factor I and the crossover rate €17
are the same as those used in GPEMLL DE/Mbest/ 1 mutation is
also used. The number of exact function evaluations is set to
be 30,000, The experimental results are presented in Table
VL

It is evident from Table V1 that GPEMLE performs much
better than DI if the computational budget is 1,000 function
evaluations. The efficiency of GPEMLE comes from the sur-
rogate model-aware search mechanism and the corresponding
surrogate modeling method.

EGPDR vs Direct GP

In the above experiments, direct GP modeling is used for the
test problems with 20 and 30 variables, and GP+DR for tesl
problems with 50 variables, In the following. we compare the
performances of GP+DR and direct GP modeling in GPEML,
Both modeling approaches are tested in GPUEML for Pl o If 14,
Iig. 5 to Fig. 18 compare how the average best function value
found so far deceases against the number of exact function
cvaluations in GPEME with direct GP and GP+DR. The results
are based on 20 runs and are summarized in Table VIL

One can observe that:

o lor the four problems with 20 variables, GPEMIE with

=

—GFERE (GP+DR) |
7 'GPEME(GP)

o
i

Average of the current best fitness value (og)

T 1 R R N R
The nurber of exact function evaluations

Fig. 5. Convergence eurves of the objective function for F1 (20-13 Ellipsoid)

go : e
< —GPEME [GP+0R)
E - GPEME IGP]
14 '
v
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£
%
X
E 2- \_‘\ |
= \.\‘
o U ., 1
~
- N,
47
§
e X ; ;
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The nurber of exact funclion evaluabons

Fig. 6. Convergence curves of the ohjective function for F2 (30-D Ellipsoid)

direet GP clearly performs better than GP+DR on 1L 177
and 10, and GP+DR is a litde bit better on 14,

o Vor the six problems with 30 variables. GPEME with
dircet GP is better than GP+DR on 12 18, FIT and P14
On 1°5, GPEME with direct GP performs a little bit better.
GP+DR wins on [F13.

« On all the four problems with 30 variables. i.c.. 3. 10,
19 and F12, GP+DR outperforms direct G

Theretore, we can conclude that it is reasonable 1o use the

\ — GPEIME (GPHOR]
a5 -=*GPENE(GF)

Average of the curren] besl Tiness value (log)

£ 1 i
Ty W0 W0 0 50 &0 T
The nomoe of exact furchon evalustions

W 0w T

Fig. 7. Convergence vurves of the objeetive function Tor B3 50-12 Ellipsoid)
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It is interesting 1o investigate it the models built by these
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brock) model quality differences are consistent with the performance
differences of GPEME. Recalling that only one model is built

and one solution is selected from the A candidate solutions for

exact function evaluation in cach iteration. it is desirable that

the selected solution is one of the best (op-ranked) candidate

solutions in terms of exact function values. We divide the 900

" GPEVE (GP-DR) iterations after “Initialization”™ (i.c.. Step 11 into 45 phases,
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the quality of modeling in a particular phase. we define its
performance score as follows:

D 3 x Ny 2x Ny

(rn

where
o N is the number of iterations in a phase and in which the
selected solution is among the top 2 of the A candidate
solutions.

—GPENE{GP+LR)
-=~GPENE G7)

Average of Ihe curren best Mitness vilue (fog)

Il o ¢ S | . i I
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Hybrid Composition Functon, FI19in [1]

o Ny is the number of iterations in a phase and in which
the selected solution is among top 3 10 5,
e Ny ix the number of iterations in a phase and in which
the selected solution is among top 6 Lo 10

If the selected solution is out of the top 10. it is not very useful
for the search and thus it is not counted in the score, Clearly.
the higher the performance score is. the better the modeling
and presereening performs in this phase. Fig, 19 10 Fig, 22
plot the scores of two maodelings (direet GP versus GPEDR)
in GPEML for IF1, I°2 and I3 and 14 Except Fig. 22 (14,
the scores for the other problems are qualitatively similar 1o
IFig. 19 to Fig. 21, For some instances. such as FLand 20 the
two modeling methads are quite different in terms of scores.
More importantly, one can find that the score differences are
consistent with the algorithm performance differences. lor
example, the scores of GPHDR are higher than direct G on I3
as shown in Fig. 21, and GPEME with GP+DR outperforms
the one with direet GP as shown in Fig. 7. The scores of direct
GP are higher on Il as shown in Fig, 19.and correspondingly.
GPEML with it wins as shown in ig. 5. 14 s the only
exception. But as said above. FI4 is an artificially construeted
hard problem and it is difticult to optimize. Using the scores,
we may be able to improve GPEML by developing maore
effective and efficient modeling technigues.

In GPEML. we use Sammon mapping o do dimension
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reduction, To study the effectiveness of Sammon mapping,
some other dimension reduction methods are compared with
Summon mapping in GPEME on 7, These methods are PCA,
Lincar Discriminant Analysis (LDA), Local Linear mbedding
(LLE) and Neighborhood Components Analysis (NCA) |23],
The average best function values found with 1000 exact
function cvaluations over 10 runs are shown in Table VIIL
It can be seen that Sammon mapping is the best.
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TABLE VI
RESULT OF F7 USING FIVE DIMENSION REDUCTION METHODS

Sanmon
.57

PCA [ IDA | LLE
93 | 135 | 187

E mm-wave Infegrated Cireait Optimization

GPEME has been designed for expensive engineering opli-
mization problems. This subsection provides the experimental
results of GPEME for dealing with an mm-wave integrated
circuit (1C) design optimization problem. In recent years, high-
frequency integrated circuit design is attracting more and more
attention, both in academia and industry. At high frequencies.
simple equivalent circuit models for passive components dare
no longer aceurate to be used. and a “trial and error” method
is inevitably tedious. Therefore. automatic design optimization
of mm-wave 1Cs is of great practical importance, However,
electromagnetic simulation is required to evaluate candidate
designs, which is computationally expensive, Muany mm-wave
ICs have from 10 w0 30 design parameters (e, decision
variables) to be optimized,

We consider @ design optimization problem of a 60GHz
63nm power amplifier with 17 design parameters, The eval-
uation of one candidate design requires 10-12 minutes using
ADS-Momentum, which is a popular clectromagnetic simula-
r. The synthesis time available to this problem is typically
one to three days, In this problem. the design parameters
are the inner diameters and metal width of the primary and
secondary inductors of cvery transformer. There are three
ransformers with two inductors in cach. The feasible ranges
are 20prn 1o 100gun for the inner diameter, and 3o 10 1070
for the metal width, There are also 3 biasing voltages with
ranges from 0.3V 10 2V, The optimization problem is shown
in (12). This is a simulation-based optimization problem. so no
explicit analytical formulations for its objective and constraints
are available.
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