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An Efficient Evolutionary Algorithm for
Chance-constrained Bi-objective Stochastic
Optimization

Bo Liu, Qingfu Zhang, Senior Member, IEEE, Francisco V. Ferndndez and Georges Gielen, Fellow, IEEE

Abstract—In engineering design and manufacturing optimiza-
tion, the trade-off between a quality performance metric and
the probability to satisfy all the .performance specifications
(yield) of a product naturally leads to a chance-constrained
bi-objective stochastic optimization problem (CBSOP). A new
method, called MOOLP (multiobjective uncertain optimization
with ordinal optimization (QO), Latin Supercube sampling (LSS)
and parallel computation), is proposed in this paper for dealing
with the CBSOP. This proposed method consists of a constraint
satisfaction phase and an objective optimization phase. In its
constraint satisfaction phase, by using the OO technique, an
adequate number of samples are allocated to promising solutions,
and the number of unnecessary MC simulations for non-critical
solutions can be reduced. This can achieve more than five times
speed enhancement compared to the application of using an
equal number of samples for each candidate solution. In its
MOEA/D-based objective optimization phase, by using LSS, more
than five times speed enhancement can be achieved with the
same estimation accuracy compared to primitive MC simulation.
Parallel computation is also used for speedup. A real-world
problem of the bi-objective variation-aware sizing for an analog
integrated circuit is used in this paper as a practical application.
The experiments clearly demonstrate the advantages of MOOLP.

Index Terms—Multiobjective optimization, uncertain optimiza-
tion, parameter uncertainty, chance constraint, MOEA/D, yield
optimization, process variation

I. INTRODUCTION

In the engineering design arca, design parameters suffer
from process and environmental variations, which are often
unavoidable. Therefore, uncertainty must be addressed at the
design phase. Yield is the percentage of manufactured products
that meet all the specifications under the presence of the
process variations. A designer not only has to consider the
yield, but also has to balance the yield and some other quality
metrics of the design. For example, in analog integrated circuit
(IC) design [1], a designer often has to balance the yield
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and the power consumption. These applications naturally lead
lo the following chance-constrained bi-objective stochastic
optimization problem (CBSOP):

maximize Y(z) = Pr(gi(z,&) = 0,...,91(z,€) > 0) (la)

maximize Q(z) = Elh(z, )] (Ib)
subject to Y (x) > 0, (le)
z € [a,b]? (1d)

where

o x is the d-dimensional vector of design variables,

o [a,b]? is the search space,

s £ € €1 is a vector of random variables with zero mean
values that models the manufacturing and environmental
variations. If £ is replaced by its mean value (£ = 0), it
implies that manufacturing and environmental variations
are ignored,

e gilx,€) (i = 1,...,k) are k performance functions. A
design meets the design requirements if g;(z, ) > 0 for
all 7. When £ = 0, the constraints become g;(z,0) > 0,
which correspond to the design constraints under nominal
manufacturing and environmental conditions,

o h(z,€) is the quality index function, which may be one
of the g;(z, ) functions,

o Y(z) is the yield function,

e @(z) is the expected performance of the quality index,

« 0 is the yield threshold.

The chance constraint ¥ (z) > @ in (1) [2] is important
since the design is useless in practice when the yield Y (2) is
lower than a certain threshold, even if the design has a good
performance under nominal manufacturing and environmental
conditions. Chance constraints have been widely used in many
real-world applications such as mechanical engineering [3],
electrical engineering, reliability engineering [4] and others
(2], [5].

A Pareto optimal solution to (1) is a best candidate for
balancing @(z) and Y(z). Let z and 2’ be two feasible
solutions to (1), x is said to dominate z’ if and only if
Q(z) = Q(a'), Y(z) = Y ('), and at least one of these two
inequalities is strict. A solution z* is Pareto-optimal if there is
no other solution that dominates it. The set of all the Pareto-
optimal solutions is called the Pareto set (PS) and the image of
PS in the objective space (i.e., Y — () space) is the Pareto front
(PF). A decision maker often wants to have an approximate
PF for gaining more understanding of the problem and making
his / her final decision.
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In the engineering design optimization field, most reported
approaches for dealing with Y (z) and QQ(z) are based on sin-
gle objective optimization. These approaches optimize Y ()
or @Q(z) under some constraints. Such approaches cannot
provide trade-off informatijon between Y (z) and Q(2), which
is of large practical interest in industrial applications. Some
preliminary work has been done to consider Y (z) in a
multiobjective design optimization problem (e.g. [6], [7]).
In the evolutionary computation field, generic multiobjec-
tive optimization in uncertain environments has been studied
[8]. Many works focus on correctly identifying the optimal
solutions in uncertain environments. Some of them aimed
at handling a high noise level in uncertain multiobjective
optimization [9]. [8] also introduces robust design problems
[10], which consider process variations into the multiobjective
optimization. A key solution method [11] is proposed. It uses
robust measure (e.g. worst case measure) to reflect the degree
of variation to the objectives due to the process variations. The
selection criterion adopted is randomly based on ecither the
conventional Pareto ranking or the robust measure to make
a balance between the Pareto-optimality and the robustness
[8]. The goal is to generate a set of robust Pareto-optimal
designs. Some operators for efficiency enhancement to solve
the robust design problem are proposed. Our approach, on the
other hand, focuses on efficiency improvement for CBSOP,
which explicitly trade off the objective and yicld (In CBSOP,
Y (z) is an explicit objective.) Due to the stochastic value of
€, evaluations of Y'(z) and Q(z) require Monte-Carlo (MC)
simulations, which could be very time-consuming. In many
industrial applications, a single evaluation takes from a few
seconds to minutes. Although the simulation of each sample
does not take too long, many samples are needed to evaluate
the objectives and constraints, hence, this costs a much longer
time. Thus, it is of great practical interest to study how to
reduce the total number of Monte-Carlo (MC) simulations
in approximating the PF for CBSOP. To the best of our
knowledge, however, very little effort has been made along
this direction. This paper attempts to approximate the Pareto
front of (1) with as few MC simulations as possible, so as to
considerably increase the efficiency for solving CBSOP.

In engineering applications, most approaches use primitive
Monte-Carlo (PMC) simulation for each candidate solution to
estimate the values of Y'(z) and @(z), and apply a conven-
tional multiobjective evolutionary algorithm (MOEA) [6], [7].
To reduce the computational cost, some approaches use some
design of experiments (DoE) methods, e.g. Latin Hypercube
sampling (LHS), to replace PMC simulation [12]. Shuffled
Complex Evolution Metropolis [13], which is a Markov chain
Monte-Carlo (MCMC) method to perform the samplings in
noisy multiobjective optimization, was first introduced in [14].
These approaches have some advantages but also have some
limitations. Firstly, LHS often cannol provide a sufficient
speed enhancement with respect to PMC [15]. Secondly,
MCMC-based advanced sampling methods are often sensitive
to some parameters or settings (e.g. start distribution), which
require problem-specific knowledge [13], [15]. Convergence
diagnostic is very critical in MCMC-based approaches, but
there are few general and robust methods to determine how

many steps are needed (0 converge to the stationary distribu-
tion within an acceptable error [16]. A few approaches use off-
line surrogate model to predict ¥ () and Q(z) [2], [17]. Such
approaches work well for small-dimensional problems, but
are often not applicable to high-dimensional problems, since
preparing the (raining data is computationally very expensive.

This paper focuses on efficient solution methods for CESOP,
which is also applicable to other uncertain multiobjective
optimization problems including MC simulation [2]. Three
main contributions are made in this paper to efficiently
solve the uncertain optimization problem of (1). Firstly, an
advanced MC sampling method, Latin Supercube sampling
(LSS) [18], is applied, which is more efficient than LHS,
and is more general and robust than MCMC methods [15].
Secondly, the common practice of using the same number of
samples for all the candidate solutions is not adopted when
handling stochastic chance constraints in this paper. Instead,
a new mechanism is proposed that uses ordinal optimization
(00) [19] to adaptively assign the number of samples to
different candidate solutions. OO was originally proposed for
efficiently selecting the best candidate among a group of
candidate solutions with uncertain parameters. In this work,
we use it in iteration-based optimization, whose goal is to
identify and obtain reasonably good estimations of feasible or
almost feasible solutions and to decrease the computational
effort spent in non-critical candidates. Lastly, a two-phase
optimization mechanism is proposed. Although QO is very
promising for efficiently selecting or ranking good candidates,
its accuracy often cannot satisfy the requirement for objective
optimization. Qur proposed two-phase approach consists of a
constraint satisfaction phase and an optimization phase. OO
is applied in the constraint satisfaction phase using a small
number of LSS samples. The purpose of this phase is to
provide a well-distributed feasible initial population to the
optimization phase. In the optimization phase, a large number
of LSS samples are used to obtain more accurate function
values. The MOEA/D [20] variant in [21] (MOEA/D-DE) is
used as the optimization method. The new algorithm, multiob-
jective uncertain optimization with ordinal optimization, Latin
Supercube sampling and parallel computation (MOOLP), has
been proposed and extensively studied in this paper.

The remainder of the paper is organized as follows. Section
IT introduces the basic techniques used in this paper. Section 111
gives the details of the proposed approach. Section IV presents
the test problems used in our experimental studies. Section V
conducts experimental investigations of the major components
of MOOLP. Section VI studies the hybridizations of the major
components by a real-world analog integrated circuit design
problem. Concluding remarks are given in Section VII,

1I. BAsIC TECHNIQUES USED IN MOOLP

This section provides a brief introduction to some basic
lechniques used in MOOLP.

A. Differential Evolution

Differential evolution is one of the most popular evolution-
ary algorithms for continuous optimization. Its distinct char-
acteristics are its mechanisms for generating new solutions,
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There are several variants of DE operators. In our experiments,
we use the DE/best/1 operator.

Let P be the current population and z%¢5! be the best
solution in P. Given a solution z = (z1,...,zq4) € P, to
generate an offspring v = (uy,...,uq) for z, the DE/best/1
operator first produces a donor vector:

v =gt L §F . (z™ — z™) (2)

where 2™ and x™ are two different solutions randomly
selected from P and also different from zP**t. SF € (0,2]
is a control parameter, commonly known as the scaling factor
[22]. Then the following crossover operator to produce wu is
applied:
1 Randomly select a variable index jyqna € {1,...,d},
2 For each j = 1 to d, generate a uniformly distributed
random number rand from (0, 1) and set:

" — vy, if (TCL'H-D{ < CR)U = jrand
77 xj, otherwise

3)

where CR € [0,1] is a constant called the crossover
parameler.

DE is a robust algorithm and appropriate settings of ifs
parameters (the scaling factor and the crossover rate) are
detailed in [22].

B. Ordinal optimization

Suppose that we have a quality function:

J(@) = B(L(z,€)) )

where = can have M different design values: z!, ..., 2™, and

£ is a random variable. We assume that L(z, £) is very complex
so that J () can only be estimated by Monte-Carlo simulation.
A simulation for L(z?, £) implies to sample a value of ¢ for
and compute the value of L{z?, £). Within a fixed simulation
budget (i.e., a fixed number of simulations), the goal of OO
is to allocate the simulation budgets among different z' in
an intelligent way for finding design values with high quality
values.

Given n samples of £ for z: £;,...,&,. J(x) can be
estimated as: .
J(z) = (3 L(z,&)/n 5)
j=1

The basic idea behind OO is that, to select good designs, one
only needs a reliable order of J(z') instead of very accurate
estimation of their values. OO allocates a large portion of
simulations to promising z' (often called critical solutions in
the OO literature). Let ¢? stand for the variance of L(z?,£). In
00, it can be replaced by its sample variance, and the sample
variance of x is:

T

Y (L. &) - T(2))? ©)

Ji=1

1
2 =
fe) n—1

Let 2 be the best design value, i.e. the one with the largest

J value, and d&y; = Jy — J;. Let n; denote the number

of simulations allocated to 2, an asymptotic optimal budget
allocation should have the following property [23]:

M
My = gb(Zz':l,f;éb n? fo?)H?

00y . . i 5 €]
ni/n; = hi=1,...,M; i£7#0b.
/.7 (O_J/(;b}) J 7&?7{_
An OO algorithm based on (7) works as follows [23]:
1 Ber ! = Opal = .= wh, = ng. Perform ng

simulations for each z?. Estimate J(z') and ¢?. Find
z" and compute ;.

2 If TO1, the total number of simulations performed
so far, exceeds the total budget TO, stop.
3 Increase the simulation budget by A and compute the

new budget allocation nll‘H i

(7) and the constraint:

y-+., Ty Which satisfy

a4l =TO1 + A,

If ng"'l > Nonaz, then reset ni-“ =
4 Perform additional maz (0, ni-“ —nt) simulations for
zt, i=1,...,M. Use all the simulations performed
so far to update J(z%), oZ, z® and dpj. Setl=1+1
and go to Step 2.
ng, T'O, Nmaz and A are control parameters. In Step 1, ng
simulations for each 2 are performed to provide a very rough
estimate of J(z%). Based on the simulations made so far, Step
3 computes, by using (7), the optimal budget allocation with
additional A simulation budget. .. is used to bound the
simulation number for each z'. Step 4 conducts additional
simulations and updates .J(z*) and other statistics, which can
hopefully make the rank of J(z') more accurate.
In our constraint satisfaction phase, we need to estimate
and compare the yield (i.e. Y (z)) values of a set of candidate
solutions. Let

1, if all the g;(z,€) >0fori=1,...,k;
0, otherwise.

I(EE,E) == {

Note that
Y(z) = E(I(z,£)),

we can treat I(z,£) as L(z,£) and then apply the above
00 method to estimate and compare the ¥ values of these
solutions.

C. Lartin Supercube sampling (LSS)

In our proposed method, we need to estimate Y (z) and
Q(x) by sampling. Both of them can be regarded as specific
cases of (4). Assume that £ in (4) is uniformly distributed in
the s-dimensional supercube [0,1)* (otherwise, we can use a
variable transformation to make this assumption true). Suppose
that we use (5) to compute J(z). The estimation error can be
bounded by the Koksma-Hlawka inequality [24]:

|J(x) = J(z)| < D*(é1,- - ,€n)Vur(L) ()

where D*(£y,...,&,) is the so-called star discrepancy of
E1y..., &y in [0,1)*: more uniformly distributed samples have
lower D*. Vi e (L) is the total variation of L(z, -) in the sense
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of Hardy and Krause. LSS tries to generate a sequence of
points in [0,1)* with a low star discrepancy.

As a first step, LSS divides £ into several subvec-
tors. A lower-dimensional (randomized) quasi-Monte Carlo
((R)YQMC) method is used with each subvector to generate
a set of (R)QMC points. Reference [15] shows that QMC
can achieve a 2-50 times speed enhancement compared to
PMC simulation (using computer generated random numbers).
(R)QMC uses low-discrepancy sequences (LDS) to generate
more uniformly distributed samples, so as to obtain a much
smaller D* compared to the fake random numbers generated
by the computer. LDS is a deterministic infinite sequence of s-
dimensional points. The goal of the constructed sequences is to
fill the space as geometrically equidistant as possible. There
are different methods to generate a LDS, e.g. Halton set,
Sobol set, ete, In MOOLP, we use RQMC samples generated
by the Sobol set with a skip of 2Liegn/leg2] points. More details
can be found in [18], [24], [25].

The next step of LSS is to present these (R)YQMC points in
a random order within subvectors to produce a set of points in
[0,1)%. The purpose is to address high dimensional sampling.
Suppose £ is a s-dimensional input sample, which is divided
into kg groups (s = kg xsg). &, (i=1,...,n,7=1,...,ky)
is a s,-dimensional (R)QMC point set. The it" LSS sample
is:

k ;
Ei:(‘E:rl(i):"-:‘gﬂig(f));z:17'-'17]‘ (9)
where 7; are independent uniform random permutations of
1,...,n. The purpose of this random permutation is the same

as in LHS, i.e. to make the projection of each coordinate of
the samples more uniform so as to reduce the variance. The
details of LSS can be found in [18].

1II. THE MOOLP ALGORITHM
A. Main Idea

To estimate Y () and Q(z) in (1), one has to do computer
simulations which are often computationally expensive in
practice. Thus, our goal is to reduce the number of simulations
by as many as we can. We have the following considerations:

« Constraints are more important than objectives. When a
candidate solution does not meet the constraints, we do
not deliver it as a final solution to the decision maker.
Therefore, it is unnecessary to spend much effort to
estimate the objective function values of an infeasible
solution,

« In most engineering applications, if a solution does not
meet the following deterministic constraints:

gi(z,0) >0fori=1,...,k, (10)

which is the constraint without variations, then its ¥ (z)
should be zero or very low, and is unlikely to meet the
chance constraint:

Y(z)>46

for practical values of . Therefore, it is unnecessary
to estimate Y (z) when z is infeasible in terms of the
deterministic constraints.

« It is relatively easy to find a set of (nearly) feasible
solutions compared with the optimization problem itself.
If most initial solutions are feasible and of good diver-
sity in an EA, then its computational effort should be
significantly reduced.

Based on the above considerations, we divide our search
into two phases: constraint satisfaction and optimization. The
constraint satisfaction phase tries to find a set of nearly feasible
solutions which have a good diversity. The optimization phase
takes the output of the constraint satisfaction phase as its initial
population and searches for an approximate PF.

In the constraint satisfaction phase, we do not need to
estimate ¢)(z), and only estimate Y (z) when necessary. More
importantly, the goal is to provide an initial population to the
optimization phase, so we only need to have a rough estimate
of Y'(x), particularly for those solutions which are unlikely
to be feasible since those solutions would be discarded later.
Thus, it is very reasonable to use the OO method in this phase.

In the optimization phase, since its initial population is
almost feasible, thus we do not need to employ very sophis-
ticated constraint handling techniques in this phase. For sim-
plicity, we use the penalty function approach to maintain the
feasibility. Because this phase produces the final solutions to
the decision maker, we allocate a good number of simulations
to each candidate solution to estimate its objective function
values.

Since the LSS is much more efficient than other sampling
techniques, we use it in both the constraint satisfaction and
optimization phase. In addition, both, the evaluations of indi-
viduals in each iteration of evolutionary algorithms and their
MC simulations are independent from each other, and, hence,
parallel computation can be easily applied.

B. Phase 1: constraint satisfaction

The goal of the constraint satisfaction phase is to provide a
good initial population to the optimization phase. We set the
following two requirements for its output population Pop:

o For each solution z in Pop, Y () > 0.96. The reason
why we relax the chance constraint is that nearly feasible
solutions can often provide very useful information for
the optimization phase, and those solutions can be also
helpful to increase the diversity of Pop.

» Pop should be of good diversity in the decision space.
We use the following mefrics to measure the uniformness
of Pop:

Uni(Pop) = Z (dis — dis(z, Pop\{z})?

xz€Pop

an

where Pop\{z} denotes the whole population Pop
except the individual 2 and dis(z, Pop\{z}) is the
Euclidean distance between z and the individual of
Pop\{z} closest to z, i.e.

d?‘-s(ﬂ.’, Pop\{m]’) = ﬂ?"""n’zilepﬂp\{m}nﬁ 5t _rﬂ"“1

and dis is the average of all these distances. The smaller
the Uni value, the more uniform is the distribution of the
points in Pop.
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The constraint satisfaction starts with a population of N
solutions randomly generated from |[a, b]d. At each generation,
it produces one offspring solution for each solution in the
current population by using the DE operators (Section II (A)).
To evaluate the qualities of these N new solutions, we split
them into two groups:

o Group A: it contains all the new solutions which do not
mect the deterministic constraints g;(z, 0),
« Group B: it contains all the other new solutions.

For a solution z in Group A, we define its deterministic
constraint violation DCV (z) as the sum of the violations of
each constraint. We do not need to do more simulations to
estimate its Y value and simply set it to zero. We apply OO
on Group B to estimate the ¥ values of its solutions. The main
goal is to obtain a good ranking for the candidate solutions
to make sure the selection is correct, while decreasing the
necessary nwmnber of simulations as much as possible.

To update the population, we compare each solution z and
its offspring o. o replaces z if and only if one of the following
conditions is true:

« when 2 violates some deterministic constraints and
DCV (o) < DCV(z),

o when DCV(z) =0, ¥Y(z) < 0.96 and Y (z) < Y (o),

o when Y (z) > 0.96, Y'(0) > 0.9¢, and Uni value of Pop
will decrease if z is replaced by o.

We use the estimated Y values in the above comparison.
Due to the nature of OO, for those solutions which severely
violate the chance constraint, they will be allocated a very
small number of simulations and thus their estimated Y values
are not very accurale. However, it will not have a large
effect since these solutions should be replaced during the
constraint satisfaction, whereas the (nearly) feasible solutions
for the initial population of the optimization phase have a good
estimation accuracy because much more samples are allocated
lo them.

For simplicity, we always use the current population Pop
as the bascline when we check if the Uni value decreases
by replacing = with o. We adopt the generational DE in
which all the replacements are conducted in parallel. Thus,
a replacement based on the Uni change computed in our
approach may not lead to the Uni decrcase in some cases.
However, since only a few solutions are replaced at each
generation when the candidates move to the feasible space,
our approach works very well in practice as confirmed in our
pilot experimental studies.

We have observed that the Uni value of the current pop-
ulation increases first as the population moves towards the
feasible region and then decreases as Uni becomes the major
driving force. The constraint satisfaction phase stops when the
Uni value is smaller than that of the initial population or the
number of iterations used exceeds a predefined number. The
constraint satisfaction phase is summarized as follows:

1 Randomly sample N candidate solutions uniformly
distributed in [a,b]? to form the initial population
Pop. Compute the DCV values of all the solutions,
divide them into two groups and set/estimate their
Y values accordingly. If no solution in Pop meets

all the the deterministic constraints, the best solution
is that with the smallest DC'V value. Otherwise, the
best solution is that with the largest Y value.

2 Use the DE operators to create an offspring for
each solution in Pop. Compute the DCV values of
all the offsprings, divide them into two groups and
set/estimate their ¥ values accordingly.

3 Compare each solution and its offspring, and update
Pop.

4 If the stopping condition is met, output Pop. Other-
wise, go to Step 2.

C. Phase 2: objective optimization

MOEA/D is used for multiobjective optimization in the
optimization phase. A general framework of MOEA/D is
proposed in [20]. By using a (linear or nonlinear) weighted
aggregation method, the approximation of the PF can be
decomposed into a number of single objective optimiza-
tion subproblems. MOEA/D defines neighbourhood relations
among these subproblems based on the distances among their
weight vectors. Each subproblem is optimized in MOEA/D by
using information mainly from its neighbouring subproblems.
In our experiments, we employ the Tchebycheff approach
and a penalty function technique for transforming (1) into N
unconstrained single objective optimization problems. More
specifically, the k-th subproblem is formulated as the mini-
mization of:
¥ia) - v+, AT

Ff(z) = T

k
mﬂfﬂ{m

+p x (maz{d — Y (z),0})

where @* and Y* are the largest values for Q(z) and Y (z)
in the feasible region.

It is worth noting that as @* and Y™ are usually unknown
before the scarch, the algorithm uses the largest () and Y
values found during the search to substitute them. We generate
the same number of LSS samples for each candidate solution
to estimate its ¥ and @ values. The number of the LSS
samples should be Jarge enough to obtain a good accuracy.

There are a number of different variants of MOEA/D. In our
experiments, we adopt MOEA/D-DE proposed in [21]. During
the search, MOEA/D maintains:

» a population of N solutions z!,..., 2" € [a,b]?, where
2 is the current solution to the i-th subproblem; and their
estimated (Q and Y values,

o Q% and Y™, the largest @ and Y values found so far,

respectively.

Let B(i),i € {1,... N} contain the indices of the T closest
neighbours of zf, defined by the Euclidean distances between
other weight vectors and . The k-th subproblem is a neighbour
of the i-th problem if k € B(i). Neighbouring problems have
similar objective functions, so their optimal solutions should
be similar too. Before applying MOEA/D, we should set the
value of the neighbourhood size 7. We also need to set the
value of n,, the maximal number of solutions allowed to be
replaced by a single new solution.
The algorithm is summarized as follows:

Copyright (c) 2013 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the [EEE by emailing pubs-permissions@ieee.org.
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1. Initialization:

1.1: Set the output of Phase 1 as the initial
population. Use 1,4, LSS samples to estimate the ¥
and @ values of each individual.

1.2: Assign the solutions in the initial population to
the subproblems in a random way.

1.3: Initialize @* and Y™ as the largest @ and Y
function values, respectively, in the initial population.

2. Update:

For i=1,...,N
2.1 Selection of the mating pool:
Generate a uniformly distributed random number
rand in (0,1]. Set

B(i),
Pn.b:{ {1(> )fN}v

2.2 Reproduction: .

Set zP*** = zf, randomly select two indexes, r1
and 73, from P, and generate a new solution %
using the DE operator introduced in Section IT (A).
Then, perform a polynomial mutation [26] on ¥ with
probability p,, to produce a new solution .

2.3 Use LSS sampling to estimate Q(y) and Y (y).
2.4 Update Q¥ and Y™*:

If Q(y) > @*, set @ = Qy). If Y(y) > Y*, set
Y* =Y(y).

2.5 Update of Solutions: Set ¢ = 0 and then do the
following:

if rand < 6,

otherwise. (13)

(1) If ¢ = n, or P,y is empty, go to Step 3.
Otherwise, randomly pick an index j from

P
(2) If Fi(y) < Fi(a?), then set 27 = y, and
c=c+ 1
(3) Remove j from Fpp and go to (1).
End
3. Stopping
If the stopping criteria (e.g. a certain num-

ber of iterations) are satisfied, then stop and
output {z',....z"}, {¥Y(z'),...,Y(a")} and
{Q(zh),...,Q(z"™)}. Otherwise go (o Step 2.

IV. TEST PROBLEMS

We have experimentally studied our proposed method on
constructed mathematical test problems for the main compo-
nents of MOOLP and a real-world engineering design problem
for the hybridization of the main components (the full MOOLP
algorithm).

A. Variation-aware analog sizing problems

This paper uses the proposed method to solve a real-world
analog integrated circuit design problem, the design of a two-
stage fully-differential folded-cascode amplifier with common-
mode feedback, shown in Fig. 1. The circuit is designed
in a 90nm CMOS process with 1.2V power supply. The
specifications are:

« DC gain> 60dB,

’

4{??@
[

T
——

Vss

Fig. 1. Two-stage fully differential folded-cascode amplifier

« gain bandwidth product> 45MHz,

« phase margin> 60°,

» output swing> 2V,

o power< 2.5mW,

o Jarea < 180um.
Y (z) is the probability that a design meets all the above
specifications. The chance constraint is Y (z) > 85%. The goal
is to maximize Y (z) and minimize the power consumption
(Q(z)). There exist 21 design variables, including transistor
widths T/}, transistor lengths L;, the compensation capacitance
Cc and the biasing current Ip. The bounds of the design
variables are: 0.12um < W; < 800pm, 0.1pm < L; <
20um, 0.1pF < Ce < 50pF, and 0.05mA < I, < 50mA.
All transistors must be in the saturation region. The number
of process variation variables (noise variables) is 52, which
are all normally distributed. To estimate ¥ () and Q(z), all
these 52 variation variables need to be considered. Note that
in this application, the uncertain parameters and the design
parameters do not have a one-to-one correspondence. The
design parameters are width and length for each transistor,
but there are several inter-die and intra-die variation variables,
which need to be considered when evaluating the performance
of a circuit.

B. Problems for testing the two-phase optimization mechanism

One of the main characteristics of MOOLP is the two-
phase optimization mechanism. To test the effectiveness of
this mechanism to handle constrained MOPs, some problems
are constructed. Since the uncertainty handling is not the major
purpose of this Lest (tested by using the real-world engineering
problem), we use the deterministic unconstrained test problems
UF1 to UF4 and UF7 to UF10 from the CEC09 competition
suite [27] and add constraints to some objectives. Although
they are deterministic problems, they have some similarity to
(1), since some objectives also serve as constraints. For the
two-objective problems, the added constraints are

fi(z) <06

and
folz) <08
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TABLE 1
X¢ OF 11 SETS OF TEST POINTS FOR OO

group | X(1) | X(@) | X3 | X | X@) | X©)
1 137 | 140 | 149 | 15.1 | 15.7 | 163
) 134 | 137 | 145 | 151 | 15.7 | 169
3 134 | 148 | 155 | 159 | 162 | 16.7
1 133 | 134 | 151 | 153 | 155 | 162
5 31| 133 | 135 | 136 | 155 | 168
6 130 | 131 | 138 | 144 | 145 | 169
7 138 | 142 | 144 | 147 | 161 | 167
g 139 | 142 | 144 | 148 | 155 | 168
g 134 | 139 | 142 | 147 | 148 | 166
10 | 134 | 135 | 140 | 142 | 149 | 153
11 | 13.7 | 150 | 157 | 159 | 16.1 | 167

For the three-objective problems, the added constraint is
fa(z) £0.7

Problems UF5 and UF6 are not considered because their
Pareto sets are discrete. The number of decision variables is 20.
In the next section, the two-phase optimization mechanism will
be compared with a single-phase approach in which MOEA/D
is used with penalty functions.

C. Problems for testing OO

The goal of OO is to select (nearly) feasible solutions for a
chance constraint with as few simulations as possible. It can
also provide relatively accurate estimations to those (nearly)
feasible solutions. A chance constraint problem is defined as

Y (k) = Pr{X (k) + Nrand < 15} > 75%

where X (1),...,X(6) is a group of six numbers. Nrand
represents the sum of 7 standard normally distributed random
numbers. The task is to find all the k among {1,...,6} that
meet this constraint. Each row in Table I represents such a
group of numbers. In other words, this table gives 11 test
instances, which are randomly generated around 15. In the
next section, OO will be compared with the traditional method
which assigns the same number of samples to each candidate.

V. EXPERIMENTAL STUDIES OF THE MAIN COMPONENTS
OF MOOLP

This section experimentally studies the main components
of MOOLP: the two-phase optimization mechanism, OO for
handling chance constraint, separately. Another main com-
ponent of MOOLP, the LSS simulation, has been studied
in literature. The advantage on convergence speed of LSS
compared to PMC is detailed in [15], [18]. Hence, we will
study the advantage of LSS in handling CBSOP in the next
section based on the real-world problem.

A. The two-phase optimization mechanism

This subsection studies the effect of the two-phase opti-
mization mechanism to handle constraints and compares it
with a conventional single-phase method based on MOEA/D
and penalty functions. The test problems used in this sub-
section were given in Section IV (B). In our experiments,

TABLE II
CLASSIFICATION OF TEST PROBLEMS

Class Problems G(init) | Severity | N(obj)
A UE7 40 Low 2
B UIF1,UF2 100 Medium 2
C UF3,UF4 150 High 2
D UF8 50 Low 3
E UF9,UF10 200 High 3

the population size is 200 for two-objective problems, and
400 for three-objective problems. In the constraint satisfaction
phase, the severity of the constraints can be assessed. Problems
with severe constraints require more iterations. Based on
the severity of constraints and the number of objectives, we
classify the test problems into 5 groups, which are shown in
Table II.

In Table II, G(init) is the average number of iterations
(rounded to tens) among 10 independent runs of the constraint
satisfaction phase with the stopping criterion described in
section III (B). G(init) can be considered as an indicator
of the severity of the constraints. G(MO) in Table III is
the number of iterations used in the optimization phase in
our proposed approach. The number of iterations assigned to
the single-phase MOEA/D with penalty functions to handle
constraints is G(init) + G(MO). The penalty coefficient p is
set to 10, the neighbourhood size 7' is 10% of the population
size and the replacement boundary n, is 10% of T for
both approaches. In the constraint satisfaction phase of our
proposed approach, following the suggestions from [22], the
scaling factor SF'1 is set to 0.8 and the crossover rate CR1
is set to 0.8 in the DE operators. In the optimization phase
of our approach and the single-phase MOEA/D, following the
suggestions from [21], the crossover rate C'R2 is set to 1 and
the scaling factor SF2 is set to 0.5 in their DE operators,

The inverted generational distance (IGD) [28] is used to
assess and compare the performance of the algorithms. Let
P* be a set of uniformly distributed points in the objective
space along the true PF. Let A be an approximation to the PF,
the inverted generational distance from P* {0 A is defined as:

S, vy, 4)

14
7] o

IGD(A, P*) =
where d(vp, A) is the minimum Euclidean distance between
v, and the points in A. The average IGD values in 20 runs
for the benchmark problems are shown in Table III.

From Table III, it is evident that the two-phase approach
is not worse than the single-phase MOEA/D with penalty
function for all the test problems in terms of the IGD values.
A Wilcoxon signed rank test [29] with a significance level
of 0.05 has been used to compare the IGD values in 20 runs
obtained by the two algorithms. Tt confirms that our two-phase
approach is significantly better on all the test instances except
UF2 and UF7. Table III reveals that:

« For the two-objective problems with low and medium
severity constraints (classes A and B), our two-phase
approach leads to moderate improvement;
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TABLE 1II
THE IGD STATISTICS BASED ON 20 RUNS OF OUR PROPOSED TWO-PHASE
APPROACH (TWO PHASE) AND MOEA/D WITHOUT CONSTRAINT
SATISFACTION PHASE (ONE PHASE)

Problems | Class | Two Phase | One phase | G(MO)
UF1 B 0.0024 0.0032 800
UF2 B 0.0039 0.0039 800
UF3 C 0.0257 0.0448 800
UF4 C 0.0532 0.0735 800
UF7 A 0.00075 0.00076 1200
UF8 D 0.0386 0.0432 1500
UF9 E 0.0805 0.1629 2000
UF10 E 0.0854 0.1795 2000

TABLE IV
Y; FOR TEST INSTANCE 1
X&) 13.7 14.0 14.9 15.1 157 16.3

Y (k)(%) | 8377 | 77.53 | 52.98 | 46.92 | 29.75 | 16.31

« For the two-objective problems with high severity con-
straints (class C) or three-objective problems with low
severity constraints (class D), the improvement is good;

+ For the three-objective problems with high severity con-
straints (class E), the improvement is very significant.

Hence, it can be concluded that our two-phase optimization

approach is effective and efficient for dealing with constrained
optimization problems.

B. 00 for handling chance constraint

This subsection experimentally studies the ability of OO
to handle chance constraints and compares OO with the
standard method in which all the candidates are assigned the
same number of samples (i.e. simulations). The eleven test
instances are given in Section IV (C). In our experiments,
PMC simulation is used in both the OO and standard method.
We first compare the OO and standard method on the first
instance (its data are given in the first row of Table I). Then,
we conduct significance tests on the other ten instances (their
data are given from row 2 to 10 of Table I). The true values
of Y (k) for the first instance are given in Table I'V. Thus, the
solution to this instance is k = 1, 2.

For the first instance, we use different number of samples to
estimate Y (k). 100 independent runs for each experiment have
been conducted in both methods. The results are presented
in Table V. In Table V, the total number of samples in each
experiment is (0 X Ngqm). For the case of the standard method,
Tisam Samples are used for estimating each Y (k). In this table:

« The data in the M OO column are the error rates of using

00, i.e., the percentages of the runs which fail to find
the correct k values by the OO method,

o The data in the M/TR column are the percentages of

the runs which fail to find the correct & values by the
traditional method.

From Table V, it is clear that the error rates of the QO are

much lower than those of the traditional method. For example,
in the case of using 6 x 390 samples, OO can find the right

TABLE V
COMPARISON ON IDENTIFYING CRITICAL SOLUTIONS BETWEEN THE 00
AND TRADITIONAL METHOD ON THE FIRST INSTANCE

Team | MTR | MOO
90 | 36% | 16%
120 | 23% | 9%
200 | 14% | 6%
350 | 11% | 2%
390 | 1% 0

200 | 1% 0

2500 0 0

TABLE VI

COMPARISON ON ESTIMATION ACCURACY BETWEEN THE OO AND THE
TRADITIONAL METHOD

Inslinces N(n‘,[i(nf Np—vatuce(0.0.05] | Np—vatuee(0.05.0.1] | Np—valueso.

Z Z 1 (1] 1
3 1 1 a 0
4 2 2 a 0
5 4 2 1] 2
6 3 2 1 0
7 1 1 0 0
8 2 1 0 1
9 2 1 o 1
10 3 2 o 1
11 1 1 0 0

values of k in all the 100 runs, while the traditional method
fails in 11% of the runs. To reduce the error rate below 1%,
the traditional method needs 6 x 2500 samples. Therefore, a
6.5 times speedup can be achieved by the OO compared with
the traditional method.

The significance tests of the error rates (like in Table V) are
performed for the the second to eleventh instances in Table I
Tsam 18 set to 200. 10 error rates are generated for each method
on each instance, which is obtained by 100 runs. Results show
that in all of the test instances, OO is significantly better than
the traditional method with a significance level of 0.05.

Besides the correct selection for handling chance constraints
studied in the previous experiments, the accuracy of the
estimations using the two methods are also compared. The
second fto eleventh instances in Table I are used. 7igus, iS
set to 200. 500 runs are performed for each method on
each instance. For each instance, the candidates that meet
the chance constraint (indicated by the k& values) are called
critical candidates. Their corresponding Y (k) values need
good estimations. The Wilcoxon signed rank test is performed
to compare the two methods on their estimated Y (k) at these
critical candidates. The results are summarized in Table VI.
Column two shows the number of critical candidates in the ten
test instances. Column three to column five show the number
of critical candidates falling in the three p-value intervals from
the Wilcoxon signed rank test, respectively.

It can be seen that under a significance level of 0.05, the
difference of the estimated Y (k) between these two methods
is significant and the results of OO are much closer to the
correct values for at least 50% of the critical candidates in all
the test instances. Nevertheless, for other critical candidates,
the two estimations show no significant difference.
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VI. EXPERIMENTAL STUDIES OF THE HYBRIDIZATION ON
A REAL WORLD APPLICATION PROBLEM

In this section, we use the proposed approach to solve
the real-world process variation-aware analog circuit sizing
problem described in Section IV (A). The goal is to test
the hybridization of the main technigues in the complete
MOOLP algorithm. We also compare our proposed method
with the single-phase MOEA/D using PMC samples. At last,
the hybridization of OO and LSS is studied by experiments
based on this real-world problem.

The experiments were implemented in Matlab running on a
PC with an 8-core CPU, 4GB RAM and the Linux operating
system. The electrical simulator HSPICE is used as the circuit
performance evaluator.

In our constraint satisfaction phase, the parameter settings

« N =250. o

o« SF1=0.8and CR1 =0.8

e Tig = 20, Nmaz = 600

e TO = simgpe X M1 where simm,q,. = 60 and M1 is the

number of nearly feasible solutions defined in section II1,
A=02xT0
The parameter settings in the optimization phase are:

« N =250

« T=5mn,=3,4§=09 5F2=05 CR2=1

o g = 1000

o p=10

o the number of iterations is 300
The wall clock time spent in this problem is 112 hours.

For each of the final 50 solutions, we have conducted 5000
LSS samples (i.e. simulations) to obtain good estimates of their
final @ and Y values. In all experiments using this problem,
we round the estimated Y value to 1% scale and the @) value to
0.001mW. Because the accuracy of the estimations improves
when the number of samples is increased (the sample variance
approximates the population variance), the method of rounding
to a certain scale is a trade-off between the necessary number
of LSS samples and the density of the points in the PF. For
Y () in this application, 1% is a sufficient accuracy and we
found that 4. = 1000 LSS samples is often enough to achieve
1% accuracy. Due to the rounding up, the number of solutions
in the PF is at most 16 (Y (z) > 85%). 15 final non-dominated
solutions in the objective space are obtained. In addition,
following the practice in robust circuit optimization [30], the
estimated QQ(z) value is replaced by Q(z) + 3o¢(,) in the
optimization process, where () is the average value of the
available samples and o) is the standard deviation of them.

For comparison, we also used MOEA/D with PMC simula-
tion and only one optimization phase for solving this problem.
ng. PMC samples are used for each candidate solution to
estimate their ¥ and @ values. All the parameter settings are
exactly the same as those in our proposed MOOLP approach.
We found that this method could not produce any feasible
solutions after 112 hours of wall clock time if we just use a
penalty function for the chance constraint ¥ () > 85%. This
result shows that the two-phase approach is necessary for this
real-world problem. Then, we included g;(z,0) > 0 (ie. the

F-J approximale PF by MOOLP T
23 | + approximale PF by the tradilional melhod
+ 0
22
p
s21 i
E
g 2
a19; «
o
: O
18 *
5 20
17 $ £ 9
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1Cr' - - Il
E3 80 85 100
yield (%)

Fig. 2. Comparison of the power-yield trade-off of the amplifier by MOOLP
and the traditional method

specifications without considering process variations) in the
constraints and add them together with the chance constraint to
the penalty function. After 112 hours, the solutions generated
and post-processed like in MOOLP and the approximate PF
obtained by MOOLP are shown in Fig. 2. It is clear that the
approximate PF by the traditional method is much worse than
that generated by MOOLP:

« the largest obtained yield is lower than that obtained by
MOOLP,

« there are many gaps in the PF compared with that
obtained by MOOLP,

« all points in the PF are dominated by those provided by
MOOLP.

These performance differences are due to the following rea-
sons:

« without the constraint satisfaction phase, many samples
are wasted to infeasible solutions, and less computational
effort is allocated to important solutions.

« LSS can provide better samples than PMC, which makes
that MOOLP can estimate the Y and ) values more
accurately.

Using MOEA/D with PMC simulation to obtain comparable
results of MOOLP may take too long time. Here, it is roughly
estimated. In the constraint satisfaction phase, MOOLP takes
3.4 hours. According to previous experiments in section V, we
can safely estimate that OO and LSS speed up this phase by
at least 5 times. In the optimization phase, MOOLP takes 109
hours. To estimate the speedup brought by LSS, 50 individuals
generated in the MOOLP optimization are randomly selected.
We have compared the estimation quality of Y of these points
by using PMC and LSS. The experiments show that to obtain
about the same variance (estimated by 5 runs), PMC needs
at least 5 times more samples than LSS. Therefore, without
using OO and LSS, it may take about a month to obtain a
PF of the same quality compared to MOOLP, which is often
unbearable in praclice.

00 has been (raditionally used with PMC simulation
whereas we have applied OO with LSS simulation. An in-
teresting issue is to investigate if OO provides the same or
even more advantages with LSS than with PMC. To address
this issue, we have run the constraint satisfaction phase of this
integrated circuit example with LSS and with PMC for 5 times.
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TABLE VII
COMPARISON OF THE PERCENTAGES OF THE FEASIBLE SOLUTIONS IN THE
CONSTRAINT SATISFACTION PHASE WITH LSS AND THAT WITH PMC

Seed | OO+LSS | O0+PMC
1 86% 74%
2 64% 54%
3 84% 86%
4 62% 4%
5 76% 68%

Each time both implementations start from the same randomly
generated population (same seed) and are allocated the same
number of simulations. In each run the total number of LSS or
PMC simulations is set to 100,000. Note that 100, 000 samples
have substantial contributions to the constraint satisfaction
phase but it is usually an insufficient number to generatc
the output population for this high-performance analog circuit
sizing problem. Hence, we can clearly observe the differ-
ences of the convergence speed from the number of obtained
feasible candidates. The parameter settings in the constraint
satisfaction phase have been listed in section VL. The yield
of the candidates obtained by both methods are re-evaluated
by using 5000 LSS samples and the percentage of feasible
solutions can be calculated (the constraint in this phase is
Y(z) > 0.9 x 85%, see section III). Table VII lists the
percentages of feasible solutions among all the final solutions
obtained by the two techniques in five runs. It is clear that the
constraint satisfaction phase with LSS works better than the
one with PMC on this real-world problem.

VII. CONCLUSIONS

In this paper, the MOOLP algorithm has been proposed for
solving chance-constrained bi-objective stochastic optimiza-
tion problems. A two-phase optimization mechanism is pro-
posed. Different speed enhancement methods are used in these
two phases. Both the solution feasibility and the diversity of
the current population are considered in the constraint satisfac-
tion phase. By using the ordinal optimization technique with
a small number of LSS samples, nearly feasible solutions can
be correctly identified with reasonably accurate cstimations,
while the computational cost on infeasible solutions can be
greatly reduced. In the optimization phase, by using LSS with
a large number of samples, a significant speed enhancement
can be achieved compared with primitive MC simulation.
Parallel computation is also included to speed-up the compu-
tation. Experimental studies on the major components of the
proposed approach have been conducted. Their hybridization,
the complete algorithm, has been applied to a real-world
process variation-aware analog circuit sizing problem. From
the tests, high speed enhancement and high quality results have
been observed. We can conclude that the proposed MOOLP
is efficient and effective for dealing with CBSOP, and thus
provides a practical solution for computationally expensive
manufacturing engineering problems.
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