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System-on-a-chip (SoC) bus systems are typically confined on-chip and rely on higher level compo-
nents to communicate with the outside world. The idea behind the EtherBone (EB) protocol is to extend
the reach of the SoC bus to remote field-programmable gate arrays or processors. The EtherBone core
implementation connects a Wishbone (WB) Ver. 4 Bus via a Gigabit Ethernet based network link to
remote peripheral devices. EB acts as a transparent interconnect module towards attached WB Bus
devices. EB was developed in the scope of the WhiteRabbit Timing Project at CERN and GSI/FAIR.
WhiteRabbit will make use of EB as a means to issue commands to its timing nodes and control connected

accelerator hardware.

DOI: 10.1103/PhysRevSTAB.15.082801

I. PURPOSE AND ENVIRONMENT

This article builds on the paper by the title “EtherBone—A
network Layer for the Wishbone SoC Bus” in the
TCALEPCS 2011 conference proceedings and aims to pro-
vide details on design choices and performance analysis for
implementation. EtherBone (EB) functionality has been suc-
cessfully demonstrated at the 2012 WhiteRabbit workshop.

EtherBone is a fast, low-level network protocol layer
intended for either software to hardware or hardware to
hardware communication. It connects a client to a distant
Wishbone (WB) system-on-a-Chip (SoC) bus and is capable
of direct memory access to attached devices. This article
builds on the paper by the same title in the ICALEPCS 2011
conference proceedings. EB will be used in the timing nodes
at the GSI/FAIR and CERN accelerator facilities.

At this point, a description of the intended environments
for the deployment of EB is in order. In synchrotron
machines, the particle beam can only be kept on its desired
path by a tight interplay between a vast number of smaller
parts. There are beam guide components, like magnets
and radio frequency units, diagnostic equipment, and large
sensor arrays at the targets. All of these machines need
accurately timed commands in the form of synchronous
triggers, timestamps, and control signals in order to
play their part at exactly the right time. When GSI is
expanded with the planned Facility for Antiproton and
Ton Research (FAIR), this means the coordination of
more than 2000 timing end points. WhiteRabbit [1]
(WR), the system chosen for time synchronization, is based
on Ethernet technology and locally employs WB based
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systems hosted inside a field-programmable gate array
(FPGA). EtherBone was named after these underlying
technologies, Ethernet and Wishbone. However, EB re-
sides in the Open Systems Interconnection session layer
(OSI layer 5) and does not depend on a specific choice of
lower layer protocols in implementation.

II. REQUIREMENTS

A. Timing challenge

Control of the accelerator’s machines is time critical,
varying from several n sec, over few u sec, up to thousands
of milliseconds. When compared with a delivery time of
approximately 100 wsecs for an EB packet, this leads to
several conclusions: (i) all actions need to be known in
advance; (ii) all actions must be precisely timed; (iii) there
is no time for acknowledgment or retransmission; (iv) a
deterministic, low-latency command and parameter distri-
bution system is necessary.

For the efficient running of the accelerator it is clearly
necessary that the timing system must produce timing
signals that are deterministic, i.e., the time at which an
action is carried out must be precisely known and repro-
ducible. To facilitate this, it is necessary that there is
minimum delay in the path from the production of the
timing signal to its use.

B. Deterministic command distribution

EB was designed to have very low latency and high
determinism, giving secondary consideration to through-
put. Because of this specialization, EB application focuses
on commands rather than the transport of raw data.
Separation between the data and the commands working
with this data is possible in most cases. This means ma-
chines are fed with data via a standard network infrastruc-
ture and also receive EB packets over the timing network,
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containing a command to carry out a preset action and a
time of execution. EB is also able to address all specialized
control blocks inside the WB hardware description lan-
guage (HDL) designs directly, a fact that is very useful for
this implementation. For example, consider remotely pro-
gramming a function generator with a parameter set for
output level, gate length, and a sequence of trigger pulses
plus a time stamp to execute all this. The function genera-
tor would be a WB memory mapped device, so EB will
provide direct and easy access to all its registers and
functions.

C. Compatibility and expandability

Particle accelerator facilities like GSI and CERN host
large heterogeneous pools of equipment, which have
evolved for more than 40, or in CERN’s case almost 60,
years. Most equipment at the Large Hadron Collider
(LHC) and on the FAIR project is quite new, but there
are still many legacy systems to cover. FPGA based tech-
nology enables all sorts of adapters and converter logic
with little or no extra hardware effort, while Ethernet based
infrastructure makes the distances in growing facilities
easily covered. This shall also be reflected by the next
generation control systems.

III. FURTHER APPLICATIONS

There are many places on site where well-known hard-
ware tools like debug modules, in-system programming
adapters, logic analyzers, and similar are needed to deploy,
maintain, and upgrade hardware. Because of the distances
between nodes, which are about 2 km at FAIR and 10 km at
CERN, and the quantity of nodes involved, routing was
another requirement of EtherBone. It will not only reduce
the time it takes engineers to travel on site, but also makes
automated testing easier. Personnel can also collaborate
more easily, since access to the hardware tools can be
shared over the network. Last but not least, it is possible
that the electronics are not accessible during beam time
and for some time afterwards due to radiation concerns. All
in all, this feature will reduce time requirements for main-
tenance and deployment.

1V. RELATED WORK

There are many different examples of available proto-
cols for direct data exchange. Among the most commonly
used low-level were Myrinet in the supercomputing sector
(almost completely replaced now by Ethernet based equip-
ment) and different remote direct memory access (RDMA)
[2,3] implementations, While there are pure software im-
plementations of RDMA, their latencies cannot compete
with hardware implementations like Infiniband [4] or
iWARP [5], which can achieve latencies below 7 wsec.
However, these are mostly optimized for maximizing

throughput, while short message latency is a secondary
factor. PCI Express falls into the same category and will
be addressed later in more detail.

There are also high level protocols available like
CORBA [6] and SOAP [7], which aim for abstract software
to software communication in heterogeneous environ-
ments. While being very versatile, due to their higher
logistics overhead and generic nature, they are not well
suited for fast communication between software to hard-
ware or hardware to hardware. All of the above have in
common that they are not tied to a specific underlying bus
protocol at their end points. While they keep data content,
they will not preserve syntax during transport.

A comparison to widely used field buses, like USB, PCI,
and PCI Express (PCle) showed PCle as most fitting for
this scenario but it still does not quite achieve the require-
ments, mainly because of difficulties associated with rout-
ing over WANS. It has nevertheless many features that are
desirable for EB [8].

Like the GbE Interface, EB uses a 125 MHz clock rate.
While the network end point uses an 8 Bit interface, the
Wishbone interface connected to EB is 32 Bit wide, giving
it 4 times the bandwidth. Regardless of delays for process-
ing the packet structure, the difference in bandwidth en-
sures EtherBone to be fully streaming capable. EB has
several design traits in common with PCI Express. Both
are serial field bus protocols, they feature error detection in
the form of a cyclic redundancy check (CRC) to ensure
packet integrity, carry routing information, and provide
quality of service (QoS). Also, both protocols go all the
way down to the physical layer. PCle features autodiscov-
ery of bus devices, which is also present in WB and (and
therefore EB) since March 2012 under the name -self-
describing wishbone [9].

However, there are also differences. While PCle is
packet-based from the bottom up, EB’s underlying WB
bus is cycle based. PCle was also designed for higher
throughput than WB, by bundling several lanes into one
connection, and is meant to run at higher frequencies. This
said, there are also differences to EB on the upper layer.
The first lies in the routing capabilities. While PCle can be
switched much like the MAC layer of Ethernet, it cannot
do complex routing and most importantly is not native to
Wide Area Networks (WANs). This makes long distance
connections over common network architectures impos-
sible. PCIe could of course be encapsulated in IP packets to
do just that, but given the similarity between PCle and
Ethernet/IP packet headers, this would be almost com-
pletely redundant and therefore double the overhead.
PCle is more powerful than WB, but it also has its down-
sides. The controllers are vastly more complex, most of this
is due to backward compatibility for PCL. It is much harder
to implement in an FPGA than WB and therefore takes up
many times more resources. Also, while PCle controller
chips are readily available, high quality HDL cores
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providing similar functionality are all commercial and
closed source. Superior routing capabilities, easy connec-
tion to HDL blocks, the possibilities for expansion, and the
focus on latency over throughput make EB a worthwhile
project to investigate. To conclude the evaluation, all dif-
ferences are based on the trade-off between flexibility and
extensibility on the one hand versus latency and overhead
requirements.

V. ARCHITECTURE

General considerations

Since bus protocols can differ greatly in their operation
and packet layout, conversion between them can severely
reduce fidelity. For EB, therefore Wishbone B4 has been
chosen as the bus implementation, while leaving the under-
lying transport protocol open. There are two categories of
EB devices under development: buffered, nondeterministic
software modules and low-latency, deterministic streaming
hardware cores (see Fig, 1).

Software nodes are used for all applications where
determinism and latency are not the main issue, but
interoperability and fidelity of bus signals are. Examples
would be a developer’s remote computer, running a serial
console on one of the timing end points or debugging
software via JTAG module on an embedded system
elsewhere on the site.

Figure 2 shows an example block diagram of such a
setup. The top box contains the EB library running on
a PC, while the lower is an FPGA board hosting an EB
slave. It is attached to multiple HDL blocks via a WB
interconnect.

The EtherBone software library provides a generic
interface for the driver, and it is not visible to the applica-
tion how the EB device is connected. Most packet-based
protocol could be applied to carry EB information, so an
EB device locally connected via USB would behave
exactly the same as if it were connected remotely over
Ethernet. Hardware nodes operate in full streaming mode,
they are fully deterministic and designed to minimize
latency. An application example for a hardware node
would be an end point of a timing system, receiving

High Bandwith
Buffered e
Nan=Deterministic

Low: Latency
Streaming
Deterministic

FIG. 1. Compatibility between EB node types [18].

Buffered Software
EtherBone Node

CPU

EtherBone API

Virtual
WB Slave

EtherBone Library

Network
Driver

Deterministic Hardware
EtherBone Node

HighSpeed | i

FPGA . §erial IC_)_

Transpont Protocol Handier i
| {Eth, (FV4, UCP) | i

EB Slave
Core

! WB
| Interconnect

FIG. 2. Software EB master (e.g. developer’s computer) con-
necting to a remote FPGA based hardware EB slave [18].

commands to generate a pulse at a specific execution
time. The deterministic characteristics of EB ensure that
the available time frame for delivery does not vary.
Streaming provides low latencies, reducing the reaction
time the control system has to an event occurring elsewhere
on the timing network. Hardware implementations are of
course not as flexible as software. Our streaming hardware
slave implementation uses an HDL block as a deterministic
EB node. On the network interface side, it features stream-
ing WB channels to GbE block, on the SoC side, it has a
WB master which will usually be connected to an inter-
connect. The RX and TX cores are directly linked in order
to already prepare the TX reply header while the incoming
header is processed.
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VI. ETHERBONE DESIGN CHOICES

A. Underlying transport protocols

The EB protocol has been designed to be deterministic
with a focus on minimal latency. It also needed to be able to
use standard transport layer architectures. So a widely
supported protocol with very low overhead was needed
and the decision to use TPv4 at the network layer and
User Datagram Protocol (UDP) at the transport layer was
made [10].

1. Ethernet

Since WR utilizes 802.3 Gigabit Ethernet technology,
making EB interoperable with Gigabit Ethernet standard
was an obvious choice in the development. Raw Ethernet
frames, however, were not an option, because they cannot
pass routers and firewalls without special configuration.
Delays are reduced by the use of QoS functionality for
command messages to ensure that they are not held up
behind other frames. For lowest latencies, WhiteRabbit
switches support cut-through mode, a packet is not stored
and forwarded but directly passed through. Neither cut-
trough nor link aggregation are a standard technique avail-
able in off-the-shelf network switches, but this is not an
issue in our scenario since WR already employs custom
switches. .

2.1rP

The choice for IP was based on the simple fact that it is
the most widespread general purpose protocol. In order to
send EB datagrams over WAN, there is no alternative
supported by an off-the-shelf network equipment.

3. UDP

When comparing the structure of UDP (Fig. 3) to the
more powerful TCP shown in Fig. 4, the main difference
lies in UDP being a stateless protocol. It dispenses with a
handshake, sequence numbers, and acknowledgments in
favor of simplicity and low overhead. Contrary to UDP,
TCP is capable of retransmitting of lost packets [11].
Unfortunately, this is not an option for the control system
scenario, since there is not enough time for retransmis-
sion, These properties make UDP a better fit for the goals
of EtherBone.

0 4 8 12 16 20 24 28 31

Destination Port
Checksum

Source Port

Length

Data

FIG. 3. UDP header. The simplistic structure goes well with
the EB low overhead and latency goals.

0 4 8 12 16 20 24 28 31

Destination Port

Source Port

Sequence No.

Acknowledgement No.

= UJATP[R[STF 5
Oﬂset| R(C|S|S|Y|I Window
GIK|H|T|NIN
Checksum Urgent Pointer
Options
Data

FIG. 4. TCP header. TCP is more powerful than UDP, but most
of its features are not useful to a timing system. It also causes
more overhead.

B. EtherBone protocol

EtherBone itself is designed for low overhead and
latency as well. The packet header consists of a flag
block, containing information on master and slave WB
bus type, protocol version and a mechanism for negotiating
a common bus mode. It is followed by records containing
bus operations. Each record will add a header and
one or two base address fields to the overhead. In our
implementation, this adds 8 or 12 Bytes overhead per
record. Packet header and record format have a smaller
footprint than those of RDMA, the records are similar
to PCle. -

The implementation also uses a 125 MHz bus clock for
WB. At 32 Bit per cycle, WB has 4 times the data rate of
the GbE interface. This makes packet processing without
additional delay possible, the only limit stems from the
reply time of targeted WB devices.

VII. METHODS AND TEST IMPLEMENTATION

The current hardware/software test implementation
utilizes UDP/IP protocol. As a requirement, EB needs
duplicate free transmission, which UDP alone cannot guar-
antee. It will therefore be assisted by a forward error
correction scheme on OSI layer II. In order to be fully
deterministic and to achieve lowest latency possible, EB
needed to be fully streaming capable, ideally introducing
no additional delay to the passing data. Waiting for replies
to EB requests may block the EB master and its network
interface for an unknown time, which is unacceptable. In
order to ensure determinism, a hard timeout is enforced at
this point. If an EB slave has to wait too long for a
connected WB device to answer, a buffer underrun will
occur, corrupting the streaming reply.

The main problem is that the IP and UDP packet headers
contain length information and checksums on the payload.
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FIG. 5. EB streaming hardware slave. Network streaming interface on the left, on the right the IF to the WB interconnect. To speed
up header processing, RX and TX cores are directly connected [18].

However, at the Ethernet layer the CRC field follows the
payload so it is possible to insert information on the fly and
allow the Ethernet CRC field to be recalculated hence solv-
ing the problem. This is not the case with either the UDP or
IP fields, where prior knowledge about the payload is neces-
sary. For low-latency streaming, it is necessary to resolve the
dependencies between packet header and payload.

Like the underlying WB bus [12], EB has master
and slave nodes, which form complementary pairs. This
leads to a bridge architecture, where an EB master accepts
bus operations from local WB masters for transfer to a
remote node. A sample hardware implementation is shown
in Fig. 5. EB slaves therefore have a WB master interface
and form the remote representation of the local WB master.

A. Packet length

The UDP/IP header requires the packet length fields
before the payload [10,13]. To avoid waiting for the com-
plete packet to be received, streaming EB replies are the
same length as the corresponding request, allowing the full
header to be determined in advance. EB responds to every
incoming read operation with an outgoing write operation,
while incoming writes are answered with zero padding.
There are no exceptions to the rules since these are treated
as empty EB records. The result is similar to a no-operation
instruction in a CPU.

Figures 6 and 7 show the structure of an outgoing
UDP/IP header. The outgoing header does not need prior

0 4 8 12 16 20 24 28 31
Versi011| THL |Type of Service Total Length

’;.’! Fragment Offset

Identification | v
Time To Live | Protocol
Source IP
Destination IP
Options & Padding

Da;ta. J

Header Checkswun

FIG. 6. 1P header. All fields causing dependencies for the
packet header of the reply are marked in green.

(4] 4 8 12 16 20 24 28 31

Source Port Destination Port

Length Checksum

Data

FIG, 7. UDP header. All fields causing dependencies for the
packet header of the reply are marked in green.
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knowledge of the contents of the payload in the incoming
packet, All header fields can either be taken from the
header of the incoming request (reply address, port, length)
or deduced from it (IP checksum) or use data already
locally available (source address and port). All processed
fields are colored in light green.

B. Checksums

The Ethernet frame checksum field follows the frame’s
payload, so it can always be calculated on the fly. This is
not the case with either the UDP or IP fields, where prior
knowledge about the payload is necessary. Figure 8 gives
a brief overview of the areas protected by different check-
sums in a UDP/IP packet. When replying to a request,
almost all information required can be taken from the
incoming packet header, except source IP address, IP
checksum, and source UDP port. The IP checksum is
only dependent on fields of the IP header (see Fig. 6).
This includes source and destination address, IP packet
options, and the length field. Source address and port are
already known to the node, which leaves the payload
length, on which the checksum depends, and the check-
sum itself [14]. Because the IP checksum algorithm is
basically a sum, all known fields can already be added in
advance. This leads to a prefabricated checksum that can
be kept for future reference. Since only the length and
new destination information needs to be included, this
process is very fast (see Fig. 5, TX block). Because of the
introduced symmetry, the length is also known in advance
and so the IP checksum of the reply can be calculated in
advance directly after header reception.

The UDP checksum is calculated from a pseudoheader,
which is not transmitted. Tt contains the source IP, desti-
nation IP, protocol (see Fig. 6), the UDP length field, and
the following data (see Fig. 7). The UDP checksum there-
fore depends on the payload, but UDP protocol specifi-
cations allow the checksum to be set to zero. This signals
the recipient “not used” [10]. Since the more powerful
forward error correction is used in addition to the CRC,
the UDP checksum can be omitted without risking data
integrity.

With this, all reply header information is available at
the beginning of the incoming payload. This eliminates
all wait times for payload reception, trading band-
width for latency. In effect, the slave will already starl
sending the reply at the moment that the request header is
processed.

TP Header UDP Header Eth
, Payload Dat
BthHeader | 1p cpecksum  [JUDPGhecksim]| | FCS

FIG. 8. Checksum coverage in a UDP/IP packet.
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FIG. 9. EB packet structure, featuring an 8B header followed
by EB records containing WB bus operations.

VIIL. EB DATA FORMAT

A full EB datagram is shown in Fig. 9. It consists of a
header block and one or more record headers with match-
ing write or read operations. There is also the option to set a
probe flag, which is used for negotiation of usable bus and
address widths between two devices. A probe packet is
always padded to the maximum alignment, 64 bits in this
application to ensure compatibility. A record header con-
tains a set of flag bits stating optional information about
source and destination like the use of FIFO mode. The flags
are followed by the number of write and read operations in
the record, this can be a number between zero and 255 if no
feedback is necessary (assuming sufficient free space in the
packet). If the bus is wider than the record header, it will be
padded. After the record header follow bus operations,
writes first, then reads. Bus operations are not mandatory,
an EB record can therefore be empty, contain writes, reads,
or both. Each of these blocks is preceded by an address
ficld. For a write, this field signifies the target start address
on the slave; for a read it is the address to which the read
values should be written to on the master.

A, COMMUNICATION
1. Negotiation

The developer has a free choice in both bus width and
address width of a WB bus to best suit the requirements
and can choose to also support smaller configurations. This
leads to the question which mode is supported by both a
master and the targeted slave device.

Initially, the master sends a probe packet to the slave,
consisting solely of an EB header without a payload. This
header has a set probe flag and shows all modes supported
by the master, followed by probe ID. This ID is necessary
in case the destination IP of the sender does not match the
source IP of the recipient. The slave then sets the probe
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response flag and answers with all modes it supports,
followed by the received probe ID code. The EB master
then knows about all possible bus and address widths it can
choose from for communication with this particular slave
device, completing the negotiation.

The next step is to send a normal EB packet containing
one or more EB records. The slave will reply with the bus
width and address size chosen by the master in the request
header. In the FAIR and CERN control systems, the most
common bus width will be 32 bits.

2. Atomics

EB supports atomic WB bus operations. By holding the
cycle line on the WB interconnect, the connection to the
target slave is kept, allowing the next record to be trans-
ferred without another slave being able to use the bus. Each
EB record comes with the option of ending the current bus
cycle on completion or keeping it for the next record. With
this mechanism, bus ownership can be held over several
EB records, avoiding interference with the operation by
other bus devices.

3. Status Information

To determine the success of any EB operation, the status
register in the EB configuration space can be read at the
end of a stream of bus operations. It shows the flags for all
previous operations, either ACK or ERROR.

4, Symmetry

Command messages mostly go from a master to a slave,
but there are also cases where the master urgently needs to
read information from a slave device. Equal packet length
of ingoing and outgoing traffic is essential for EB stream-
ing mode, because it significantly reduces round-trip time.
In order to keep equal length between request and reply,
results from reads are converted to write operations while
writes are turned into empty records, i.e., padding. This
makes the length field of UDP/IP headers known in ad-
vance and by that removes all wait times stemming from
header/payload dependencies.

5. Addressing

EB write operations are values to be written, while reads
are addresses to be read, Write addresses therefore need to
be generated by incrementing the start address, reads can
be random access. The increment can either be zero, in
which case the target is treated as a FIFO, or sequential. An
EB master must keep track of read addresses it sent in order
to correctly interpret the answering write.

6. Management

EB also supports the use of a configuration space, an
address space that is not associated with the local WB bus
and only concerns the EB node itself. It can both be

accessed via EB and a local WB slave interface used for
configuration of the EB node. This configuration space has
several purposes. For one, the EB node’s own MAC and IP
address are set via one of its interfaces and kept here. The
configuration space is also used to map incoming EB
packets to the originating queries. Last but not least, it
contains a feedback register of operations on the bus. If
feedback for success of operations is required, this shift
register can be read to supply the ACK or ERR bit for the
last 64 operations on the WB bus interface.

7. Security

In the development of the EtherBone protocol, the deci-
sion about the OSI transport-, internet- and link-layer pro-
tocol has been intentionally left open to provide maximum
flexibility. Likewise, EtherBone does not contain any spe-
cific authentication or encryption mechanism. If access con-
trol and cryptography are required, it can instead be wrapped
in any proven secure protocol of choice (e.g. L2TP, TPsec,
TLS/SSL). EtherBone itself is always assumed to commu-
nicate over a trusted channel, just like the WB SoC bus.

In a timing context at GSI/FAIR and CERN, EtherBone
will run inside a separate timing LAN with special switch
hardware. Since deterministic communication in the mi-
crosecond range is not possible over WANS, all necessary
connections from the outside world into the timing network
can be assumed to have loose timing constraints. They will
therefore be handled by gateway computers connected
both to the campus and the timing network, These com-
puters will host a secure socket layer (SSL) connection to
the campus network and will tunnel all the client’s
EtherBone traffic. While not in the scope of EB security,
it would be easy to provide barriers against accidental
misconfiguration or misuse at the WB and network level.

IX. PERFORMANCE ANALYSIS

GbE uses an 8b/10b channel encoding in order to encode
the clock into the data stream and make the data stream DC
free. This results in 20% extra overhead. Whenever we talk
about overhead or latency, we refer not to the raw bit
stream, but to the higher layer data rates. The results
remain comparable because the main contestants, RDMA
and PCle (<< v3.0), also employ 8b/10b.

A. Overhead details
1. EtherBone

Overhead in EB contains the network header, meaning
all protocol headers below EB (8023 GbE, IP, UDP).
Inside EB, overhead consists of EB record headers, base
write addresses, read back addresses, and read addresses.
The amount of overhead in an EB packet depends on the
type, the order of WB bus operations, and their addressing.
EtherBone supports block and random access operations in
a single network packet. Minimum packet overhead in our
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current implementation with 802.3 Ethernet, IPV4, UDP, and
EB is 18 + 20 + 8 + 8 + 8 = 62 Bytes. Efficiency is cal-
culated as payload over packet data (payload + overhead).
Assuming a maximum packet size of 1500 Bytes, the best
case efficiency for EB is in block write operations
1432/(66 + 1432) - 100 = 95.6%, the worst comes with
random access writes (480/(1010 + 480) - 100 = 32.2%.
Block reads do not differ in format from random access
reads, all read addresses must be provided. This takes up a
great deal more bandwidth than block writes. Because of
streaming, however, block read operations have no impact on
latency.

2. RDMA

In case of RDMA, packet overhead is somewhat bigger
in general. Let us have a closer look at sample read request
and write operations of captured iWarp RDMA packets.
With 802.3 Ethernet, 1P, TCP, iWarp, DDP, and RDMA, it
has more protocol layers than EB. The overhead of all the
packet headers add up to 18 +20+32+6+ 14+ 1=
91 Bytes [3].

3. PCle

PCI Express is the most lightweight of the three proto-
cols in terms of overhead. Physical layer, DLLP, and TLP
add up to a minimum overhead of 2 + 6 + 16 = 24 Bytes
[8]. The small footprint is mostly due to the lack of routing
capabilities, though PCle still carries many legacy features
meant to keep compatibility to PCL

B. Overhead comparison

Figure 10 shows a comparison between the overhead
ratios for block and random access operations of EB,
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1500 |- 1 [ EB T
1250 - 1[JPCle

1000 [ {CJRDMA [ -~ === ==========----~
750 p-mmmmmm o mmmm oo - o
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FIG. 10. Overhead of EB, PCle, and RDMA when transmitting
256 Bytes read and write operations, 32 Bit word width.
EtherBone distinctly excels in random access operations and
block writes.

PCle, RDMA. It becomes clear that EB fills a specialist
role for control applications when it comes to bandwidth
efficiency. For block writes of 256 Bytes, EB can well
compete the other protocols. When it comes to block reads,
EB has the worst efficiency of the three, because all ad-
dresses are contained inside the packet. However, due to the
streaming functionality, this does not have an impact on
latency. The more random access operations are present, the
better EB fares in comparison. When handling many small
bus operations, EB beats RDMA as well as PCle, because it
can transport all of them in the same network frame.
Infiniband RDMA is of course vastly superior to EB in
terms of bandwidth, as is PCle, if more lanes were added.
The outcome fits well with EB’s intended role as a slim
protocol for control applications. For FAIR’s planned con-
trol system, the high efficiency for block writes also comes
in handy for occasional distribution of set values. -

C. Latency

EB was designed to introduce very low latency. In our
implementation, the WB data rate is 4 times that of the
GbE network, therefore all processing can be handled
while gathering the next data word. Ideally, EB therefore
does not cause any additional latency. The introduced
delay when processing or answering an EB packet equals
the time it takes to receive and process the packet headers,
determining if a valid EB packet was received and if a reply
was requested.

However, there is a threshold to the latency caused by
targeted WB slaves above which delays will accumulate.
While pipelined operations are supported, a bus cycle is not
complete before all acknowledgments and data blocks have
been received by the WB master. The EB core has to wait
for all answers at the end of a WB cycle. If the maximum
latency of the ACKs on the WB bus is never greater than 3
(4 cycles per word on IF side—1 cycle on EB/WB side)
cycles, EB is guaranteed not to need prebuffering. Since the
TX header is complete in the buffer by the time the first WB
operations take place, there is still a reserve of 42 cycles if
individual operations should take longer to complete.

The measurements for EB were taken using the
WhiteRabbit time stamping unit, normally used for a spe-
cial version of precision time protocol. Figures for all other
systems were taken from literature. We define the round-
trip latency as first byte sent to the first byte of the reply
arriving at the sender, connected end fo end, in our case
over a 10 m fiber cable. This shows EtherBone to be well
for short message latency with 1.2 gs round-trip time. The
prototype hardware implementation still encompassed
packet buffers that could not be removed in this version
due to their importance for the WR timing framework.
Without this buffering, simulations show EB latency to
be around 550 ns for our setup and will also be independent
of message size again. This result fits in well with the 1 us
estimates made by Rumble et al. [15].
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Direct quantitative comparison with other systems is
difficult when the latency measurements have to be taken
from third parties. In most papers, the test beds are not
completely described and the understanding of latency is
not exactly defined. For example, when talking about
round-trip latency, it is very important at which OSI layer
the turnaround takes place. On top of this, the underlying
hardware differs widely. Bearing this in mind, we will stick
to a qualitative view on latency.

The lowest figures found for RDMA over Infiniband
found comes from a performance benchmark found online
[16] and is stated as <1 ws. Since it is given as an end to
end figure, it would have to be doubled to = 2 us.

The results for PCle [17] were taken from a comparison to
the Hypertransport protocol. The read latency of an 8 Byte
packet came down to 232 ns from first byte sent to the first
byte of the reply packet. Considering the PCle bandwidth of
2.5 Gb/s and the bus controller running at 333 MHz, EB did
not fare badly in comparison. Furthermore, there is still
room for improvement in EB down to = 550 ns when the
WR store-and-forward buffers are removed. In the context of
these figures, EB results can be said as being on the edge of
the technically feasible and being a good fit for a timing/
control system application.

X. EB FOR ACCELERATOR TIMING

The main purpose of the timing system is to provide two
basic functions. The first is time tagging input/output (1I0)
or internal events. Timestamp latch units in the end points
provide and buffer timestamps for all events they are
programmed to listen for. The end point’s buffer access is
handled over EB. Their programming can be done over EB
as well.

The second is sending timing messages that will trigger
preprogrammed actions at a given time, EB can be used for
both, the carrying messages as well as doing the preprog-
ramming. The difference between a message and any other
EB content lies only in the targeted WB slave and data
content, not in format. Messages go to an event-condition-
action (ECA) unit, which controls the end point’s 1O cores.
A timing message contains an absolute time of execution
and ID(s) of actions to be executed. It must be sent suffi-
ciently in advance to arrive before the time of execution
stated in the message is due. Low latency in EB and
switching will help reduce transmission time. The archi-
tecture foreseen for the FAIR facility will have a master
unit on top of a basically treelike network architecture.
Command messages will be broadcast, making the differ-
ence in time it takes them to arrive at all the end points
smaller than using unicast, This also means that contention
for downward packets can never occur, since the band-
width is determined by the bottleneck. Quality of service
(QoS) and cut through mode make command message
delivery faster and more deterministic. To detect relevant
message content, ECAs feature preprogrammed message

filters, receiving and possibly logging all messages but
reacting only if the instructions concern their own end
points.

XI. CONCLUSION

In March 2012, interplay between EtherBone HDL
macrocores and software API has been successfully shown
at the 6th WhiteRabbit Timing Workshop. Faithful trans-
mission of bus operations and timely message delivery
were demonstrated, as well as scanning the device chain
on a remote WB bus. In addition, basic functionality for the
GSI/FAIR’s and CERN’s timing system was shown in the
form of timestamping pulses from a signal generator and
producing a pulse on the end points IO based on the read
timestamp plus a delay.

The desired small protocol footprint has been achieved.
The measured round-trip latency at 1.2 us was above the
calculated values, but the difference stemmed from packet
buffering in this prototype which is indispensable for the
operation of the WhiteRabbit clock synchronization cores
for now. Without the buffering time, the latency will be
even lower. This performance proves EB to be a worth-
while protocol for the use in future timing and control
systems, We hope to see further applications in the large
physics community in the near future.

XIIL FUTURE WORK

Immediate goals are the implementation of an EB hard-
ware master and first tests of an SSL-EB gateway. The next
task will be full integration with GSI and CERN’s next
generation timing system. For GSI, this will happen early
in 2013 on the example of a proton linear accelerator, the
first component to be deployed in GSI's FAIR extension.
The next steps will be the completion of a remote toolbox,
containing a firmware loader, in-system programming
adapter, and debugger for use with our network-capable
embedded systems.
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