Implementation of electrical rim driven fan technology to small unmanned aircraft
Bolam, Robert and Vagapov, Yuriy (2017) Implementation of electrical rim driven fan technology to small unmanned aircraft. In: th IEEE Int. Conference on Internet Technologies and Applications ITA-17, 12-15 September 2017, Wrexham, UK.
|
Text
1570342341_inc c sheet.pdf - Accepted Version Download (945kB) | Preview |
Abstract
Aircraft propeller performance is significantly reduced when tip speeds become sonic causing the maximum attainable airspeed of the vehicle to be limited by the propeller diameter. There are also performance losses attributable to miniature Unmanned Aerial Vehicles as the propeller to hub diameter ratio is reduced. The research conducted indicated that re-arranging a Brushless DC Motor and propeller configuration, so that it becomes rim-driven rather than hub-driven, would provide some performance and operational advantages and could inspire the design of novel high-speed Unmanned Aerial Vehicle configurations powered by hub-less, multi-stage contra-rotating electrical fan-compressors. This investigation involved analysis, design and testing a prototype, low cost, concept demonstrator Rim Driven Fan device in order to assess the feasibility of applying this technology to Small Unmanned Aircraft. It was demonstrated that Rim Driven Fan technology could be successfully applied to lift and propel a Small Unmanned Aircraft. However, the performance testing of the Rim Driven Fan demonstrated that in its prototype configuration it would not be as efficient as a conventional Brushless DC motor and propeller.
Item Type: | Conference or Workshop Item (Paper) |
---|---|
Divisions: | Applied Science, Computing and Engineering |
Depositing User: | Hayley Dennis |
Date Deposited: | 23 May 2018 15:13 |
Last Modified: | 23 May 2018 15:13 |
URI: | https://wrexham.repository.guildhe.ac.uk/id/eprint/17308 |
Actions (login required)
Edit Item |